И. В. Украинец,* Р. Г. Редькин, Л. В. Сидоренко, А. В. Туров^а

4-ГИДРОКСИХИНОЛОНЫ-2

172*. СИНТЕЗ И СТРОЕНИЕ 4,3'-СПИРО[(6-АЛЛИЛ-2-АМИНО-5-ОКСО-5,6-ДИГИДРО-4Н-ПИРАНО-[3,2-с]ХИНОЛИН-3-КАРБОНИТРИЛ)-2'-ОКСИНДОЛА]

Трехкомпонентной конденсацией 1-аллил-4-гидрокси-2-оксо-1,2-дигидрохинолина, изатина и малононитрила с удовлетворительным выходом синтезирован 4,3'-спиро[(6-аллил-2-амино-5-оксо-5,6-дигидро-4Н-пирано[3,2-*c*]хинолин-3карбо- нитрил)-2'-оксиндол], строение которого подтверждено РСА.

Ключевые слова: 4-гидрокси-2-оксо-1,2-дигидрохинолин, изатин, малононитрил, пирано[3,2-*c*]хинолин, спиро[индол-3,4'-пиран], РСА.

Производные 4-гидроксихинолонов-2, аннелированные пирановым фрагментом по грани *c*, давно привлекают внимание химиков-синтетиков и других исследователей. Вызван такой интерес, прежде всего, тем, что ядро 2H-пирано[3,2-*c*]хинолин-5-она составляет основу ряда выделенных из растений семейства *Rutaceae* природных алкалоидов: вепризина, флиндерзина, гапламина, параэнзидимерина и вепридимерина [2–5]. Среди соединений этого ряда обнаружены вещества, обладающие фотохромными свойствами [6], а также способностью блокировать Ca²⁺-каналы клеточных мембран [7] или K⁺-каналы тимоцитов [8].

Все синтетические методы построения пирано[3,2-*c*]хинолин-5-оновых систем базируются на присоединении 4-гидроксихинолонов-2 к а,β-ненасыщенным карбонильным соединениям по Михаэлю [9–12]. Этот же принцип использован нами и в синтезе не изученных пока 4-гидроксихинолонов-2, аннелированных спиро[индол-3,4'-пирановым] ядром.

Практически при получении гетероциклических систем такого типа могут быть использованы различные синтетические схемы, рассмотренные нами на примере близкого по строению 4-гидроксикумарина. Одна из них предполагает предварительную конденсацию изатина с малононитрилом, после чего выделенный 2-(2-оксоиндолин-3-илиден)малононитрил вводится в реакцию с 4-гидроксикумарином [13]. Следует, однако, сразу отметить, что такой метод дает не очень хорошие результаты и поэтому используется в основном как встречный синтез. Препаративное значение имеет несколько иная схема, представляющая собой трехкомпонентную конденсацию, когда изатин 1, малононитрил 2 и 4-гидроксикумарин вводятся в реакцию одновременно, и которая, к тому же, гораздо проще в выполнении [13–15].

^{*} Сообщение 171 см. [1].

Проведенные нами эксперименты показали, что замена 4-гидроксикумарина азааналогами, в частности 1-аллил-4-гидрокси-2-оксо-1,2-дигидрохинолином (**3**), какого-либо существенного влияния на ход реакции не оказывает. В результате получен 4,3'-спиро[(6-аллил-2-амино-5-оксо-5,6-дигидро-4H-пирано[3,2-*c*]хинолин-3-карбонитрил)-2'-оксиндол] (**4**).

4-Гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновые кислоты, в том числе и 1-аллилзамещенный аналог 5, весьма легко декарбоксилируются [16], поэтому их так же можно использовать в синтезе пирано[3,2-*c*]-хинолинов 4. Понятно, что выделение промежуточных 3H-производных 3 при этом не требуется.

По результатам проведенного РСА установлено, что пирано[3,2-*c*]хинолин **4** выделен из реакционной смеси в виде сольвата с этанолом состава 1:1 (см. рисунок и табл. 1, 2). При этом сольватная молекула этанола разупорядочена по двум положениям с равновероятной заселенностью. Хинолоновый фрагмент и атомы O(1) и C(20) лежат в одной плоскости с точностью 0.02 Å. 4H-Пирановый цикл находится в конформации сильно уплощенная *ванна* (параметры складчастости [17]: S = 0.17, $\theta = 71.9^\circ$, $\Psi = 2.8^\circ$). Отклонения атомов O(2) и C(12) от среднеквадратичной плоскости остальных атомов цикла составляют –0.07 и –0.14 Å соответственно. Спиросочлененные фрагменты развернуты практически перпендикулярно друг другу (торсионный угол C(7)–C(8)–C(12)–C(19) 113.2(2)°). Следует отметить неравноценность длин связей O(2)–C(7) 1.386(2) и O(2)–C(10) 1.365(2) Å в дигидропирановом цикле, наблюдаемую также и у других спиросочлененных пиранов [18]. В то же время для 4-алкил- и арилза-мещенных производных данный эффект оказался нехарактерным [19, 20].

Строение молекулы сольвата пиранохинолина 4 с этанолом в кристалле

Сильное отталкивание между атомами аллильного заместителя и хинолонового фрагмента [укороченные внутримолекулярные контакты H(2)…C(20) 2.53 (сумма ван-дер-ваальсовых радиусов [21] 2.87), H(2)…H(20a) 2.07 (2.34), H(20a)…C(2) 2.59 (2.87) и H(20b)…O(1) 2.32 Å

Таблица 1

Связь	<i>l</i> , Å	Связь	l, Å
N(1)–C(9)	1.388(2)	N(1)–C(1)	1.401(2)
N(1)–C(20)	1.476(2)	N(2)–C(13)	1.353(2)
N(2)–C(14)	1.403(2)	N(3)–C(10)	1.340(2)
N(4)–C(23)	1.157(2)	O(1)–C(9)	1.237(2)
O(2)–C(10)	1.365(2)	O(2)–C(7)	1.386(2)
O(3)–C(13)	1.223(2)	C(1)–C(2)	1.397(2)
C(1)–C(6)	1.412(2)	C(2)–C(3)	1.378(2)
C(3)–C(4)	1.390(2)	C(4)–C(5)	1.372(2)
C(5)–C(6)	1.397(2)	C(6)–C(7)	1.433(2)
C(7)–C(8)	1.350(2)	C(8)–C(9)	1.455(2)
C(8)–C(12)	1.508(2)	C(10)–C(11)	1.359(2)
C(11)–C(23)	1.424(2)	C(11)–C(12)	1.526(2)
C(12)–C(19)	1.519(2)	C(12)–C(13)	1.557(2)
C(14)–C(19)	1.383(2)	C(14)–C(15)	1.384(3)
C(15)–C(16)	1.385(3)	C(16)–C(17)	1.376(3)
C(17)–C(18)	1.382(3)	C(18)–C(19)	1.370(2)
C(20)–C(21)	1.476(3)	C(21)–C(22)	1.274(3)
O(1S)–C(2SA)	1.430(1)	O(1S)–C(2SB)	1.430(1)
C(1SA)–C(2SA)	1.540(1)	C(1SB)–C(2SB)	1.539(1)

Длины связей (1) в структуре сольвата пиранохинолина 4 с этанолом

(2.46 Å)] приводит к удлинению связей N(1)–C(9) до 1.388(2) и N(1)–C(1) до 1.401(2) по сравнению с их средними значениями [22] 1.353 и 1.371 Å соответственно. Винильный фрагмент аллильного заместителя расположен практически перпендикулярно плоскости хинолонового цикла, а сам этот заместитель находится в конформации, близкой к *син*-перипланарной (торсионные углы C(9)–N(1)–C(20)–C(21) 96.1(2)°, N(1)–C(20)–C(21)–C(22) –11.3(3)° соответственно).

Молекулы пирано[3,2-c]хинолина **4** связаны друг с другом через мостиковые молекулы этанола за счет межмолекулярных водородных связей N(2)–H(2N)…O(1S)' (-1–x, 2–y, -z) H…O 1.97 Å, N–H…O 175° и O(1S)–H(1SA)…N(4)' H…N 2.10 Å, O–H…N 164° и образуют димеры. В кристалле такие комплексы скомпонованы в бесконечные цепочки вдоль кристаллографического направления (0 1 0) и связаны межмолекулярными водородными связями N(3)–H(3NA)…O(1S)' (-x, 2–y, -z) H…O 2.13 Å, N–H…O 165°, N(3)–H(3NB)…O(1)' (1+x, y, z) H…O 2.25 Å, N–H…O 158°.

Таблица 2

Угол	ω, град.	Угол	ω, град.
C(9)-N(1)-C(1)	123.0(1)	C(9)–N(1)–C(20)	117.3(1)
C(1)–N(1)–C(20)	119.6(1)	C(13)–N(2)–C(14)	112.3(1)
C(10)–O(2)–C(7)	118.9(1)	C(2)-C(1)-N(1)	121.9(1)
C(2)–C(1)–C(6)	119.1(1)	N(1)-C(1)-C(6)	119.1(1)
C(3)–C(2)–C(1)	120.2(2)	C(2)–C(3)–C(4)	121.0(2)
C(5)-C(4)-C(3)	119.3(2)	C(4)–C(5)–C(6)	121.2(2)
C(5)-C(6)-C(1)	119.2(1)	C(5)–C(6)–C(7)	123.1(1)
C(1)-C(6)-C(7)	117.7(1)	C(8)–C(7)–O(2)	122.9(1)
C(8)–C(7)–C(6)	123.2(1)	O(2)–C(7)–C(6)	113.9(1)
C(7)–C(8)–C(9)	119.2(1)	C(7)–C(8)–C(12)	122.9(1)
C(9)-C(8)-C(12)	117.9(1)	O(1)-C(9)-N(1)	120.8(1)
O(1)–C(9)–C(8)	121.4(1)	N(1)-C(9)-C(8)	117.8(1)
N(3)-C(10)-C(11)	126.2(1)	N(3)-C(10)-O(2)	111.9(1)
C(11)–C(10)–O(2)	121.9(1)	C(10)-C(11)-C(23)	119.2(1)
C(10)-C(11)-C(12)	123.5(1)	C(23)-C(11)-C(12)	117.2(1)
C(8)–C(12)–C(19)	114.4(1)	C(8)–C(12)–C(11)	108.6(1)
C(19)-C(12)-C(11)	110.6(1)	C(8)–C(12)–C(13)	112.7(1)
C(19)-C(12)-C(13)	101.1(1)	C(11)-C(12)-C(13)	109.3(1)
O(3)–C(13)–N(2)	127.3(1)	O(3)–C(13)–C(12)	125.3(1)
N(2)-C(13)-C(12)	107.4(1)	C(19)-C(14)-C(15)	122.0(2)
C(19)-C(14)-N(2)	109.3(2)	C(15)-C(14)-N(2)	128.7(2)
C(14)-C(15)-C(16)	117.0(2)	C(17)-C(16)-C(15)	121.3(2)
C(16)-C(17)-C(18)	120.9(2)	C(19)-C(18)-C(17)	118.7(2)
C(18)-C(19)-C(14)	120.1(2)	C(18)-C(19)-C(12)	130.7(1)
C(14)-C(19)-C(12)	109.2(1)	N(1)-C(20)-C(21)	114.1(1)
C(22)-C(21)-C(20)	127.5(2)	N(4)-C(23)-C(11)	178.2(2)
O(1S)-C(2SA)-C(1SA)	113.9(3)	O(1S)-C(2SB)-C(1SB)	98.3(2)

Валентные углы (ω) в структуре сольвата пиранохинолина 4 с этанолом

Проведенный РСА не только подтвердил строение синтезированного пирано[3,2-*c*]хинолина **4**, но еще и продемонстрировал его достаточную сложность, представляющую особый интерес для исследования методом ЯМР. Поскольку молекула содержит две одинаковые спиновые системы

Таблица З

¹ Н сигнал,	Поле	Положения кросс-пиков в измерении ¹³ С		
δ, м. д.	HMQC	HMBC		
10.52	-	178.5; 143.1; 135.0; 48.8		
8.06	123.2	152.4; 138.5; 132.9		
7.71	132.9	138.5; 116.1; 123.2		
7.48	116.1	159.6; 152.4; 123.0; 113.2; 57.9		
7.40	123.0	116.1; 113.2		
7.15	129.0	143.1; 124.1		
7.02	124.1	143.1; 129.0; 48.8		
6.85	122.4	135.0; 110.0		
6.81	110.0	135.0; 122.4		
5.75	132.9	44.4		
5.05	117.2	44.4		
4.84	117.2	132.9; 44.4		
4.72	44.4	159.2; 138.5; 132.9; 117.2		

Полный перечень гетероядерных ¹H-¹³С корреляций, найденных для сольвата пиранохинолина 4 с этанолом

ароматических протонов, то имеются некоторые трудности в их интерпретации. Наиболее надежно отнести эти сигналы можно путем измерения двумерных спектров COSY и NOESY. Так, из спектра NOESY следует, что дублет одного из ароматических протонов с химическим сдвигом 7.48 м. д. сближен в пространстве с метиленовой группой аллильного заместителя, поглощающей при 4.72 м. д. Из формулы соединения следует, что это возможно только для протона хинолонового фрагмента, находящегося в *пери*-положении относительно N-аллильного заместителя. Таким образом, все сигналы, имеющие спиновую связь с сигналом при 7.48 м. д., относятся к хинолоновому фрагменту молекулы. Их можно найти из корреляций в спектре COSY. Оказалось, что все ароматические протоны спиновой системы хинолонового ядра поглощают в более слабом поле, чем сигналы индолинового фрагмента. Координаты кросс-пиков в спектре COSY позволяют сделать отнесение всех протонных сигналов.

В спектре ЯМР ¹³С сольвата пирано[3,2-*c*]хинолина **4** присутствует сигнал четвертичного спиро-атома углерода при 48.8 м. д. и сигнал метиленовой группы аллильного фрагмента при 44.4 м. д. Атомы углерода метильной и метиленовой групп сольватного этанола проявляются сигналами при 19.3 и 56.7 м. д. соответственно. Отнесение сигналов в ароматической области спектра ЯМР ¹³С можно легко осуществить на основании анализа кросс-пиков в двумерных спектрах HMQC и HMBC – их координаты приведены в табл. 3. Интерпретация большинства четвертичных атомов углерода проведена по кросс-пикам, обусловленным спинспиновым взаимодействием через три химические связи. Сделанные отнесения приведены на схеме (с. 1838), где важнейшие корреляции HMBC показаны стрелками.

В спектре НМВС отсутствуют корреляции только для двух атомов углерода с химическими сдвигами 107.0 и 118.4 м. д. Первый из них соответствует узловому атому С(4а), второй – атому углерода нитрильной группы.

Не совсем обычное поведение пирано[3,2-c]хинолина 4 отмечено после добавления к его раствору в ДМСО-d₆ дейтерированной трифторуксусной кислоты. Никаких обычно наблюдаемых в таких случаях существенных изменений не происходит ни в протонном, ни в углеродном спектрах. Даже активные протоны групп NH и NH₂ не поддаются дейтерообмену и остаются в спектре.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹H и ¹³С сольвата пиранохинолина **4** с этанолом, эксперименты по двумерной спектроскопии ЯМР ¹H COSY, гомоядерному эффекту Оверхаузера NOESY-2D, а также гетероядерные корреляционные спектры HMQC и HMBC зарегистрированы на спектрометре Varian Mercury-400 (400 и 100 МГц соответственно). Все двумерные эксперименты проводились с градиентной селекцией полезных сигналов. Время смешивания в импульсных последовательностях соот-

ветствовало ${}^{1}J_{CH} = 140$ и ${}^{2-3}J_{CH} = 8$ Гц. Количество инкрементов в спектрах COSY и HMQC составило 128, а в спектрах HMBC – 400. Время смешивания в эксперименте NOESY-2D составляло 500 мс. Во всех случаях растворитель ДМСОd₆.

внутренний стандарт ТМС.

1-Аллил-4-гидрокси-2-оксо-1,2-дигидрохинолин (**3**) и 1-аллил-4-гидрокси-2оксо-1,2-дигидрохинолин-3-карбоновая кислота (**5**) получены по известным методикам – [16] и [23] соответственно.

Сольват 4,3'-спиро[(6-аллил-2-амино-5-оксо-5,6-дигидро-4Н-пирано[3,2-с]хинолин-3-карбонитрил)-2'-оксиндола] (4) с этанолом. Смесь 2.01 г (0.01 моль) 1-аллил-4-гидрокси-2-оксо-1,2-дигидрохинолина (3), 1.47 г (0.01 моль) изатина 1, 0.66 г (0.01 моль) малононитрила 2 и 1.3 мл (0.01 моль) триэтаноламина в 20 мл этанола кипятят 2 ч, после чего охлаждают и помещают в холодильный шкаф на 24 ч при температуре –5 °C. Выделившиеся кристаллы сольвата пиранохинолина 4 с этанолом отфильтровывают, промывают горячим гексаном, сушат. Выход 2.56 г (58%). Т. пл. 313–315 °С (этанол). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 10.52 (1Н, с, NH); 8.06 (1H, д, *J* = 7.2, H-10); 7.71 (1H, т, *J* = 7.2, H-8); 7.48 (3H, м, H-7 + NH₂); 7.40 (1Н, т, J = 7.6, Н-9); 7.15 (1Н, т, J = 7.6, Н-6' индола); 7.02 (1Н, д, J = 7.2, Н-4' индола); 6.85 (1H, т, J = 7.6, H-5' индола); 6.81 (1H, д, J = 7.6, H-7' индола); 5.75 (1H, м, C<u>H</u>=CH₂); 5.05 (1H, д, *J* = 10.4, NCH₂CH=C<u>H</u>-*cis*); 4.84 (1H, д, *J* = 17.2, NCH₂CH=C<u>H</u>-*trans*); 4.72 (2H, д, *J* = 2.8, NCH₂); 4.39 (1H, т, *J* = 5.2, OH этанола); 3.44 (2H, кв, J = 5.2, CH₂ этанола); 1.06 (3H, т, J = 7.2, CH₃ этанола). Спектр ЯМР ¹³С, б, м. д.: 178.5 (О=С-2'), 159.6 (H₂NC-2), 159.2 (С-5), 152.4 (С-10В), 143.1 (C-7'A), 138.5 (C-6A), 135.0 (C-3'A), 132.9 (C-8 + NCH₂CH), 129.0 (C-6'), 124.1 (C-4'), 123.2 (C-10), 123.0 (C-9), 122.4 (C-5'), 118.1 (C≡N), 117.2 (NCH₂CH=CH₂), 116.1 (C-7), 113.2 (C-10A), 110.0 (C-7), 107.0 (C-4A), 57.9 (C-3), 56.7 (CH₃<u>C</u>H₂OH), 48.8 (C-4), 44.4 (NCH₂), 19.3 (<u>C</u>H₃CH₂OH). Найдено, %: С 67.98; Н 5.14; N 12.57. C₂₃H₁₆N₄O₃•EtOH. Вычислено, %: С 67.86; Н 5.01; N 12.66.

При использовании в качестве исходного продукта 1-аллил-4-гидрокси-2оксо-1,2-дигидрохинолин-3-карбоновой кислоты (5) поступают следующим образом: в кипящие 5 мл ДМФА небольшими порциями добавляют 2.45 г (0.01 моль) кисло-ты 5 – при этом плохо растворимая кислота быстро декарбоксилируется и превра-щается в легко растворимое 3H-производное 3, которое не выделяя используют в дальнейшем синтезе по описанной выше методике.

Рентгеноструктурное исследование. Кристаллы сольвата пиранохинолина 4 с этанолом состава 1:1 триклинные (этанол), при 20 °C: a = 8.665(1), b = 10.364(2), c = 13.294(2) Å, $\alpha = 80.94(1)^{\circ}$, $\beta = 83.52(1)^{\circ}$, $\gamma = 71.69(2)^{\circ}$, V = 1116.7(3) Å³, $M_r = 442.47$, Z = 2, пространственная группа $P_{\bar{1}}$, $d_{\rm выч} = 1.316$ г/см³, μ (Мо $K\alpha$) = = 0.091 мм⁻¹, F(000) = 464. Параметры элементарной ячейки и интенсивности 12 468 отражений (3916 независимых, $R_{\rm int} = 0.040$) измерены на дифрактометре Xcalibur-3 (Мо $K\alpha$ излучение, ССD-детектор, графитовый монохроматор, ω -сканирование, $2\theta_{\rm max} = 50^{\circ}$).

Структура расшифрована прямым методом по комплексу программ SHELXTL [24]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с $U_{iso} = nU_{eq}$ (n = 1.5 для метильных групп и n = 1.2 для остальных атомов водорода). Атомы водорода, участвующие в образовании водородных связей, уточнялись изотропно. Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.110$ по 3831 отражению ($R_1 = 0.043$ по 1757 отражениям с $F > 4\sigma(F)$, S = 0.810). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных – депонент ССDC 717536. Межатомные расстояния и валентные углы представлены в табл. 1 и 2.

- 1. И. В. Украинец, Лю Янян, А. А. Ткач, А. В. Туров, О. С. Головченко, *XTC*, 1663 (2009).
- 2. J. F. Ayafor, B. L. Sondengam, B. T. Ngadjui, Phytochemistry, 21, 2733 (1982).
- 3. M. F. Grundon, in: *The Alkaloids: Quinoline Alkaloids Related to Anthranilic Acid*, Acad. Press, London, 1988, vol. 32, p. 341.
- I. S. Chen, S. J. Wu, I. J. Tsai, T. S. Wu, J. M. Pezzuto, M. C. Lu, H. Chai, N. Suh, C. M. Teng, J. Nat. Prod., 57, 1206 (1994).
- 5. W. N. Setzer, B. Vogler, R. B. Bates, J. M. Schmidt, C. W. Dicus, P. Nakkiew, *Phytochem. Anal.*, 14, 54 (2003).
- 6. B. Kim, A. Kumar, B. Van Gemert, US Pat. 7094368 (2006). http://ep.espacenet.com
- 7. K. Atwal, US Pat. 5070088 (1991). http://ep.espacenet.com
- 8. I. Butenschön, K. Miller, W. Hänsel, J. Med. Chem., 44, 1249 (2001).
- 9. W. H. Watters, V. N. Ramachandran, J. Chem. Res. (S), 184 (1997).
- 10. Jia-Hai Ye, Ke-Qing Ling, Yan Zhang, Ning Li, Jian-Hua Xu, J. Chem. Soc., Perkin Trans. 1, 2017 (1999).
- 11. Xiang-Shan Wang, Zhao-Sen Zeng, Da-Qing Shi, Shu-Jiang Tu, Xian-Yong Wie, Zhi-Min Zong, J. Chem. Crystallography, **36**, 697 (2006).
- 12. J. H. Ye, J. Xue, K. Q. Ling, J. H. Xu, Tetrahedron Lett., 40, 1365 (1999).
- 13. Р. Г. Редькін, Л. А. Шемчук, В. П. Черних, А. І. Березнякова, Н. А. Цубанова, *Журн. орг. фарм. хім.*, **6**, вип. 2(22), 24 (2008).
- 14. K. C. Joshi, A. Dandia, S. Baweja, A. Joshi, J. Heterocycl. Chem., 1097 (1989).
- 15. S.-L. Zhu, S.-J. Ji, Y. Zhang, Tetrahedron, 63, 9365 (2007).
- И. В. Украинец, Н. Л. Березнякова, А. В. Туров, С. В. Слободзян, *XГС*, 1365 (2007). [*Chem. Heterocycl. Comp.*, 43, 1159 (2007)].
- 17. N. S. Zefirov, V. A. Palyulin, E. E. Dashevskaya, J. Phys. Org. Chem., 3, 147 (1990).
- R. G. Redkin, L. A. Shemchuk, V. P. Chernykh, O. V. Shishkin, S. V. Shishkina, *Tetrahedron*, 63, 11444 (2007).
- 19. В. Д. Дьяченко, Е. Б. Русанов, *ХГС*, 270 (2004). [*Chem. Heterocycl. Comp.*, **40**, 231 (2004)].
- 20. А. М. Шестопалов, А. П. Якубов, Д. В. Цыганов, Ю. М. Емельянова, В. Н. Нестеров, *ХГС*, 1345 (2002). [*Chem. Heterocycl. Comp.*, **38**, 1180 (2002)].
- 21. Ю. В. Зефиров, *Кристаллография*, **42**, 936 (1997).
- 22. H.-B. Burgi, J. D. Dunitz, *Structure Correlation*, VCH, Weinheim, 1994, vol. 2, p. 741.
- 23. И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, С. В. Шишкина, А. В. Туров, *XIC*, 736 (2007). [*Chem. Heterocycl. Comp.*, **43**, 617 (2007)].
- 24. G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev. 5.1 (1998).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило 18.12.2008

^аКиевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: nmrlab@univ.kiev.ua