Т. А. Воловненко, А. В. Тарасов*, Р. И. Зубатюк^а, О. В. Шишкин^а, А. В. Туров, Ю. М. Воловенко

ВЗАИМОДЕЙСТВИЕ 2-ХЛОРХИНОЛИН-3-КАРБАЛЬДЕГИДОВ С 2-ГЕТАРИЛАЦЕТОНИТРИЛАМИ

Изучено взаимодействие 2-хлорхинолин-3-карбальдегидов с 1Hбензимидазол-2-илацетонитрилами и 1-бензил-1Н-имидазол-2-илацетонитрилом. Показано, что в мягких условиях образуются продукты конденсации по метиленовой группе. Проведение реакции в более жестких условиях приводит к внутримолекулярному нуклеофильному замещению атома хлора и образованию циклических ионных соединений (в случае N-замещенных гетарилацетонитрилов), которые впослед- ствии дезалкилируются.

Ключевые слова: (1-бензил-1Н-имидазол-2-ил)ацетонитрил, 2-(1-бензил-1Н-имидазол-2-ил)-3-(2-хлорхинолин-3-ил)акрилонитрилы, бензимидазо[1,2-*a*]бензо[*g*]-1,8-нафтиридин-6-карбонитрилы, 1Н-бензимидазол-2-илацетонитрилы, бензо[*g*]-имидазо[1,2-*a*]-1,8-нафтиридин-4-карбонитрилы, 2-(1Н-бензимидазол-2-ил)-3-(2-хлор-хинолин-3-ил)акрилонитрилы, хлориды 5-алкил-6-цианобензимидазо[1,2-*a*]бензо[*g*]-1,8-нафтиридиния, 2-хлорхинолин-3-карбальдегиды.

Ранее мы показали [1–4], что взаимодействие (гет)ароматических 2-галогенальдегидов с гетарилацетонитрилами приводит на первой стадии к продуктам конденсации по типу реакции Кневенагеля, а последующее нуклеофильное замещение атома галогена сопровождается внутримолекулярной циклизацией с образованием новых гетероциклических соединений.

В настоящей работе мы изучили взаимодействие 2-хлорхинолин-3карбальдегидов 1 с 1Н-бензимидазол-2-илацетонитрилами 2 и 1-бензил-1Н-имидазол-2-илацетонитрилом 6. Известен только один пример реакции 7-метил-2-хлорхинолин-3-карбальдегида с 1Н-бензимидазол-2-илацетонитрилом [5], в результате чего образуется циклический продукт, обладающий флуоресцентными свойствами.

Реакция 2-хлорхинолин-3-карбальдегидов 1 с 1Н-бензимидазол-2-илацетонитрилами 2 в мягких условиях (нагревание в ДМФА при 90–95 °С или кипячение в 2-пропаноле) приводит к продуктам конденсации по метиленовой группе – 2-(1Н-бензимидазол-2-ил)-3-(2-хлорхинолин-3-ил)акрилонитрилам 3 (табл. 1). Исключением является альдегид 1а, продукты конденсации которого 3a,e,j были получены только при кратковременном кипячении в спирте (3а – в метаноле и 3e,j – в 2-пропаноле). Проведение реакции в ДМФА при участии альдегида 1а дает смесь продуктов конденсации и циклических продуктов.

а ДМФА, 90–95 °С, 1–2 ч 30 мин; *b* 2-РгОН, кипячение, 10 мин – 3 ч; *с* МеОН, кипячение, 10–20 мин.

с МеОН, кипячение, 10–20 мин. **1 a**-**c** $R = R^1 = H$; **a** $R^2 = R^3 = H$, **b** $R^2 = Me$, $R^3 = H$; **c** $R^2 = R^3 = Me$, **d** $R = R^3 = Me$, $R^1 = R^2 = H$; **e** $R = R^2 = R^3 = H$, $R^1 = OMe$; **f** $R = R^1 = R^2 = H$, $R^3 = OMe$; **2 a** $R^4 = H$, **b** $R^4 = Me$, **c** $R^4 = Bn$; **3 a**-**g** $R^1 = H$, **a** $R = R^2 = R^3 = R^4 = H$, **b** $R = R^4 = H$, $R^2 = R^3 = Me$, **c** $R^2 = R^4 = H$, $R = R^3 = Me$, **d** $R = R^2 = R^4 = H$, $R^3 = OMe$, **e** $R = R^2 = R^3 = H$, $R^4 = Me$, **f** R = H, $R^2 = R^3 = R^4 = Me$, **g** $R^2 = H$, $R = R^3 = R^4 = Me$, **h**-**n** R = H, **h** $R^1 = OMe$, $R^2 = R^3 = H$, $R^4 = Me$, **i** $R^1 = R^2 = H$, $R^3 = OMe$, $R^4 = Me$, **j** $R^1 = R^2 = R^3 = H$, $R^4 = Bn$, **k** $R^1 = R^3 = H$, $R^2 = Me$, $R^4 = Bn$, **l** $R^1 = H$, $R^2 = R^3 = Me$, $R^4 = Bn$, **m** $R^1 = OMe$, $R^2 = R^3 = H$; $R^4 = Bn$, **n** $R^1 = R^2 = H$, $R^3 = OMe$, $R^4 = Bn$, **d** $R^4 = Bn$,

Характеристики акрилонитрилов 3

Таблица 1

Coom		Най	дено, %	Т	Dermon
соеди-	Брутто-формула	Вычи	іслено, %	1. IIJI., °C*	выход,
nenne		Cl	Ν	C	70
3a	$C_{19}H_{11}CIN_4$	10.73	17.02	208	80
		10.72	16.94		
3b	$C_{21}H_{15}CIN_4$	<u>9.79</u>	<u>15.70</u>	> 300	86
		9.88	15.61		
3c	C ₂₁ H ₁₅ ClN ₄	<u>9.82</u>	<u>15.54</u>	> 300	91
		9.88	15.61		
3d	C ₂₀ H ₁₃ ClN ₄ O	<u>9.87</u>	<u>15.55</u>	> 300	87
		9.83	15.53		
3e	$C_{20}H_{13}CIN_4$	<u>10.21</u>	<u>16.29</u>	221	84
		10.28	16.25		
3f	$C_{22}H_{17}CIN_4$	<u>9.57</u>	<u>15.10</u>	230	79
		9.51	15.03		
3g	$C_{22}H_{17}CIN_4$	<u>9.45</u>	<u>15.09</u>	204	71
	~ ~ ~ ~ ~ ~ ~	9.51	15.03		
3h	$C_{21}H_{15}CIN_4O$	<u>9.39</u>	<u>15.01</u>	227	80
	~ ~ ~ ~ ~ ~ ~	9.46	14.95		
3i	$C_{21}H_{15}CIN_4O$	<u>9.43</u>	<u>15.04</u>	237	75
	G 11 GD1	9.46	14.95		
3j	$C_{26}H_{17}CIN_4$	<u>8.40</u>	$\frac{13.37}{12.21}$	212	72
		8.42	13.31	100	71
3k	$C_{27}H_{19}CIN_4$	<u>8.14</u> 9.15	12.93	189	/1
21		8.15	12.88	1(2	74
31	$C_{28}H_{21}CIN_4$	7.93	12.54	163	/4
2	C IL CIN O	7.90	12.48	204	75
Sm	$C_{27}H_{19}CIN_4O$	$\frac{1.81}{7.86}$	$\frac{12.38}{12.42}$	204	/5
2-	CHCINO	/.80	12.43	196	70
311	$C_{27}\Pi_{19}CIIN_4O$	7.86	$\frac{12.44}{12.43}$	100	19
		1 1 1 1 1 1	14.7.7		

* При нагревании может происходить реакция гетероциклизации.

Строение соединений **3** подтверждается наличием в спектрах ЯМР ¹Н (ДМСО-d₆) синглета H-4 протона хинолинового ядра при 8.88–9.29 и стирильного протона CH синглета при 8.12–8.62 м. д. В случае соединений **3а–d** присутствует также сигнал протона NH с химическим сдвигом 13.18–13.21 м. д. Отнесение сигналов в спектрах соединений **3** сделано с помощью экспериментов по гомоядерной (COSY, NOESY-1D) и гетероядерной (HMQC и HMBC) корреляциям на примере продукта **3m** (рис. 1), полный список найденных гетероядерных корреляций приведен в табл. 2. В ИК спектрах соединений **3** наблюдаются валентные колебания нитрильной группы в области 2241–2207, а также группы NH при 3317–3249 см⁻¹ для соединений **3а–d** (табл. 3).

Рис. 1. Отнесение сигналов и эффект Оверхаузера для соединения 3т

Таблица 2

Гетероядерные корреляции для соединения 3m (ДМСО-d₆)

Сигналы протонов,	Химические сдвиги у	глеродных сигналов, с которыми имеется корреляция, б, м. д.
д, м. д.	HMQC	HMBC
8.88	138.5	146.3; 143.9; 107.2; 145.5
8.12	145.5	146.8; 146.3; 138.5; 116.1
7.89	129.9	159.1; 128.4
7.81	120.6	125.0
7.59	112.1	124.0
7.55	107.2	159.1
7.53	125.7	159.1
7.34	129.7	126.8;
	125.0	137.0; 120.6
	123.4	129.7; 112.1
7.27	128.4	126.8
7.09	126.8	48.3; 128.4
5.83	48.3	146.8; 137.0; 126.8
3.92	56.6	159.1

Таблица З

ИК и ЯМР ¹Н спектры соединений 3

	ИК спектр.	Спектр ЯМР ¹ Н, б, м. д.	(Ј, Гц)*	
Соеди- нение	v_{CN} (v_{NH}), cM^{-1}	Характерные сигналы	CH=CCN (1H, c)	H-4 хинолин. (1H, c)
1	2	3	4	5
3a	2230 (3249)	7.24–7.29 (2H, м, H-5,6 бензимидазол); 7.50–7.52 (1H, м, H-7 бензимидазол); 7.70–7.73 (2H, м, H-6 хинолин, H-4 бензимидазол); 7.89 (1H, т, <i>J</i> = 7.2, H-7 хинолин); 8.01 (1H, д, <i>J</i> = 8.4, H-5 хинолин); 8.16 (1H, д, <i>J</i> = 8.0, H-8 хинолин); 13.21 (1H, с, NH)	8.60	9.09
3b	2241 (3277)	2.50 (3H, c, C–CH ₃); 2.68 (3H, c, C–CH ₃); 7.23 (2H, м, H-5,6 бензимидазол); 7.52 (2H, д, <i>J</i> = 8.0, H-6 хинолин, H-7 бензимидазол); 7.68 (1H, д, <i>J</i> = 7.2, H-4 бензимидазол); 7.85 (1H, д, <i>J</i> = 8.4, H-5 хинолин); 13.18 (1H, c, NH)	8.58	8.99
3c	2224 (3317)	2.68 (3H, c, C–CH ₃); 2.74 (3H, c, C–CH ₃); 7.23–7.28 (2H, м, H-5,6 бензимидазол); 7.40 (1H, д, <i>J</i> = 7.2); 7.53 (1H, д, <i>J</i> = 7.2); 7.58 (1H, д, <i>J</i> = 7.2); 7.68 (1H, д, <i>J</i> = 8.0, H-7 хинолин); 13.20 (1H, c, NH)	8.62	9.29
3d	2234 (3303)	4.04 (3H, с, О–СН ₃); 7.24–7.26 (2H, м, H-5,6 бензимидазол); 7.31 (1H, д, <i>J</i> = 7.2, H-7 хинолин); 7.56–7.67 (4H, м, H-5,6 хинолин, H-4,7 бензимидазол); 13.21 (1H, с, NH)	8.57	9.00
3e	2227	4.11 (3H, с, N–CH ₃); 7.28–7.35 (2H, м, H-5,6 бензимидазол); 7.61 (1H, д, <i>J</i> = 7.2, H-7 бензимидазол); 7.70–7.74 (2H, м, H-6 хинолин, H-4 бензимидазол); 7.90 (1H, т, <i>J</i> = 7.2, H-7 хинолин); 8.00 (1H, д, <i>J</i> = 7.6, H-5 хинолин); 8.16 (1H, д, <i>J</i> = 7.2, H-8 хинолин)	8.39	9.12
3f	2231, 2204	2.56 (3H, c, C–CH ₃); 2.68 (3H, c, C–CH ₃); 4.11 (3H, c, N–CH ₃); 7.27 (1H, т, $J = 7.6$, бензимидазол); 7.33 (1H, т, $J = 7.6$, бензимидазол); 7.53 (1H, д, $J = 8.0$, H-7 бензимидазол); 7.60 (1H, д, $J = 8.4$, H-6 хинолин); 7.69 (1H, д, $J = 8.0$, H-4 бензимидазол); 7.86 (1H, д, $J = 8.4$, H-5 хинолин)	8.41	9.02
3g	2207	2.95 (3H, c, C–CH ₃); 3.04 (3H, c, C–CH ₃); 4.45 (3H, c, N–CH ₃); 7.90–8.00 (5H, м, H-6 хинолин, H-4,5,6,7 бензимидазол); 8.18 (1H, д, <i>J</i> = 7.2, H-7 хинолин)	8.78	10.32
3h	2230	4.12 (3H, c, N–CH ₃); 4.39 (3H, c, O–CH ₃); 7.83–7.94 (5H, м, H-5 хинолин, H-4,5,6,7 бензимидазол); 8.01 (1H, д, <i>J</i> = 9.6, H-7 хинолин); 8.22 (1H, д, <i>J</i> = 9.6, H-8 хинолин)	8.68	9.82

Окончание таблицы 3

1	2	3	4	5
3i	2231	4.04 (3H, c, N-CH ₃); 4.11 (3H, c, O-CH ₃); 7.28-7.37 (3H, м, H-7 хинолин, H-5,6 бензимидазол); 7.60-7.67 (3H, м, H-6 хинолин, H-4,7 бензимидазол); 7.70 (1H, д, <i>J</i> = 8.0, H-5 хинолин)	8.39	9.04
3j	2237	5.81 (2H, c, CH ₂ Ph); 7.12 (2H, д, <i>J</i> = 7.2, H-2,6 Ph); 7.26–7.35 (5H, м, H-5,6 бензимидазол, H-3,4,5 Ph); 7.49–7.51 (1H, м, H-7 бензимидазол); 7.69 (1H, т, <i>J</i> = 7.2, H-6 хинолин); 7.76–7.78 (1H, м, H-4 бензимидазол); 7.87 (1H, т, <i>J</i> = 7.2, H-7 хинолин); 7.96 (1H, д, <i>J</i> = 8.0, H-5 хинолин); 8.11 (1H, д, <i>J</i> = 8.4, H-8 хинолин)	8.14	9.00
3k	2234	2.61 (3H, c, C–CH ₃); 5.77 (2H, c, CH ₂ Ph); 7.12 (2H, д, <i>J</i> = 7.2, H-2,6 Ph); 7.26– 7.36 (5H, м, H-5,6 бензимидазол, H-3,4,5 Ph); 7.49–7.52 (1H, м, H-7 бензимидазол); 7.54 (1H, д, <i>J</i> = 8.4, H-6 хинолин); 7.77–7.79 (2H, м, H-8 хино- лин, H-4 бензимидазол); 8.01 (1H, д, <i>J</i> = 8.4, H-5 хинолин)	8.14	8.96
31	2230	2.54 (3H, c, C–CH ₃); 2.65 (3H, c, C–CH ₃); 5.81 (2H, c, CH ₂ Ph); 7.12 (2H, д, <i>J</i> = 7.2, H-2,6 Ph); 7.28–7.35 (5H, м, H-5,6 бензимидазол, H-3,4,5 Ph); 7.48–7.52 (2H, м, H-6 хинолин, H-7 бензими- дазол); 7.76–7.78 (1H, м, H-4 бенз- имидазол); 7.81 (1H, д, <i>J</i> = 8.0, H-5 хинолин)	8.17	8.91
3m	2232	3.92 (3H, c, O-CH ₃); 5.83 (2H, c, CH ₂ Ph); 7.09 (1H, д, <i>J</i> = 7.2, H-2,6 Ph); 7.27–7.36 (5H, м, H-5,6 бензимидазол, H-3,4,5 Ph); 7.53–7.60 (3H, м, H-5,7 хинолин, H-7 бензимидазол); 7.81–7.82 (1H, м, H-4 бензимидазол); 7.89 (1H, д, <i>J</i> = 8.8, H-8 хинолин)	8.12	8.88
3n	2230	4.02 (3H, c, O-CH ₃); 5.82 (2H, c, CH ₂ Ph); 7.12 (2H, д, <i>J</i> = 7.2, H-2,6 Ph); 7.28–7.35 (6H, м, H-6 хинолин, H-5,6 бенз- имидазол, H-3,4,5 Ph); 7.48–7.50 (1H, м, H-7 бензимидазол); 7.59–7.61 (2H, м, H-5,7 хинолин); 7.77–7.79 (1H, м, H-4 бензимидазол)	8.14	8.91

* Спектры ЯМР ¹Н снимали в ДМСО- d_6 (соединения **3а–f,i–n**) и дейтерированной трифторуксусной кислоте (соединения **3g,h**).

Данные PCA соединения **3i** свидетельствуют об образовании только одного из возможных изомеров, а именно *E*-изомера (рис. 2).

Следует отметить заметную стерическую напряженность молекулы 3i, связанную с наличием объемных заместителей при центральной двойной связи C=C. На это указывают сильно укороченные внутримолекулярные

Таблица 4

4
7
3
ā
F
2
Ξ.
.8
ď
3
¥
ٺ
1
-
Ê.
2
2
E
Ę
12
Ξ.
Σ,
-
<u> </u>
<u>_</u> 00
0
ē
E
ŏ
ž
Ŷ
C,
-
7
ĕ
ЦЦ
ЦИД
дими
зимид
нзимида
уензимид:

	Выход, %**	86	83	85	82	86	88
	Т. ш., °C	297	> 300	> 300	> 300	> 300	> 300
	H-1 (1Н, д)	9.25 (<i>J</i> = 7.2)	9.92 ($J = 7.6$)	9.91 ($J = 8.0$)	9.90 (<i>J</i> = 8.0)	9.28 ($J = 7.2$)	9.37 (<i>J</i> = 8.0)
*(I	H-7 (1H, c), H-8 (1H, c)	8.85, 9.13	9.26, 9.32	9.27, 9.30	9.36, 9.59	8.81, 8.99	8.92, 9.16
Спектр ЯМР ¹ Н, ô, м. д. (J, Гт	Характерные сигналы	7.59–7.65 (2H, m, H-2,3); 7.71 (1H, r, <i>J</i> = 7.6, H-10); 8.00–8.04 (2H, m, H-4,11); 8.24–8.28 (2H, m, H-12, 9)	2.86 (3H, с, C–CH ₃); 7.86 (1H, д, <i>J</i> = 8.8, H-10); 8.04– 8.14 (3H, м, H-2,3,4); 8.26 (1H, д, <i>J</i> = 8.8, H-9); 8.41 (1H, с, H-12)	2.84 (3H, с, C-CH ₃); 3.16 (3H, с, C-CH ₃); 7.86 (1H, д, <i>J</i> = 8.4, H-10); 8.05–8.16 (4H, м, H-2,3,4,9)	2.98 (3H, c, C-CH ₃); 3.16 (3H, c, C-CH ₃); 7.75 (1H, $_{\rm H}$, $J = 6.8$, H-10); 8.06–8.18 (4H, M, H-2,3,4,11)	3.99 (3H, c, O-CH ₃); 7.55–7.63 (4H, m, H-2,3,9,11); 7.95 (1H, $_{\rm H}$, J = 8.0, H-4); 8.15 (1H, $_{\rm H}$, J = 8.8, H- 12)	4.16 (3H, c, O-CH ₃); 7.51 (1H, $_{\rm H}$, $J = 7.2$, H-11); 7.62–7.71 (3H, m, H-2,3,10); 7.82 (1H, $_{\rm H}$, $J = 8.4$, H-4); 8.03 (1H, $_{\rm H}$, $J = 7.6$, H-9)
ИК	cnekrp, v _{CN} , cm ⁻¹	2232	2227	2230	2227	2235	2230
<u>Найдено, %</u> Вычислено, %	N	<u>19.01</u> 19.04	<u>18.21</u> 18.17	$\frac{17.33}{17.38}$	<u>17.40</u> 17.38	<u>17.26</u> 17.27	<u>17.21</u> 17.27
	Брутто- формула	$C_{19}H_{10}N_4$	$C_{20}H_{12}N_{4}$	$C_{21}H_{14}N_4$	$C_{21}H_{14}N_4$	$C_{20}H_{12}N_4O$	C ₂₀ H ₁₂ N ₄ O
	Соеди- нение	4a	4b	4c	4d	4e	4f

^{*} Спектры ЯМР ¹Н снимали в ДМСО-d₆ (соединения **4а,е,f**) и дейтерированной трифторуксусной кислоте (соединения **4b-d**). ** Метод А.

Рис. 2. Молекулярная структура соединения **3i**, по данным РСА. Эллипсоиды тепловых колебаний неводородных атомов показаны на уровне 50% вероятности

контакты C(7)...H(11) 2.55 и C(10)...H(14) 2.44 Å при сумме ван-дер-ваальсовых радиусов 2.87 Å [6], которые приводят к разуплощению молекулы (торсионные углы N(2)–C(8)–C(9)–C(11) –24.0(3)° и C(9)–C(11)–C(12)–C(13) 22.6(4)°), а также к увеличению валентных углов C(11)–C(9)–C(10) 122.6(2)° и C(8)–N(2)–C(7) 129.85(18)° по сравнению с аналогичными углами C(10)–C(9)–C(8) 112.59(17)° и C(6)–N(2)–C(7) 123.04(18)° соответственно.

Циклические соединения **4** (табл. 4), которые в дальнейших исследованиях мы рассматривали как модельные, синтезировали из 2-хлорхинолин-3-карбальдегидов **1** и N-незамещенного 1H-бензимидазол-2-илацетонитрила **2a** при более жестких условиях (кипячение в ДМФА). С высокими выходами соединения **4** (табл. 4) могут быть получены в аналогичных условиях также из соответствующих продуктов конденсации **3a**–**d**. Как отмечалось выше, соединение **4b** было синтезировано ранее [5]. Все остальные продукты – **4a,с**–**f** являются новыми веществами.

4 \mathbf{a} - \mathbf{d} $\mathbf{R}^1 = \mathbf{H}$, \mathbf{a} $\mathbf{R} = \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{H}$, \mathbf{b} $\mathbf{R} = \mathbf{R}^3 = \mathbf{H}$, $\mathbf{R}^2 = \mathbf{M}e$, \mathbf{c} $\mathbf{R} = \mathbf{H}$, $\mathbf{R}^2 = \mathbf{R}^3 = \mathbf{M}e$, \mathbf{d} $\mathbf{R} = \mathbf{R}^3 = \mathbf{M}e$, $\mathbf{R}^2 = \mathbf{H}$, \mathbf{e} , \mathbf{f} $\mathbf{R} = \mathbf{R}^2 = \mathbf{H}$, \mathbf{e} $\mathbf{R}^1 = \mathbf{OM}e$, $\mathbf{R}^3 = \mathbf{H}$, \mathbf{f} $\mathbf{R}^1 = \mathbf{H}$, $\mathbf{R}^3 = \mathbf{OM}e$

В самом слабом поле спектров ЯМР ¹Н соединений **4** наблюдается дублет H-1, аномальный химический сдвиг которого – 9.25–9.37 (ДМСО-d₆) или 9.90–9.92 м. д. (ТФК) – объясняется влиянием электронной пары атома N-13. Синглеты H-7 и H-8 часто сближены и наблюдаются в слабом поле в области 8.81–9.16 (ДМСО-d₆) или 9.26–9.59 м. д. (ТФК). Для ИК спектров продуктов **4** характерной является интенсивная полоса валентных колебаний группы СN в области 2235–2227 см⁻¹.

При непродолжительном кипячении в ДМФА 2-хлорхинолин-3-карбальдегидов 1 с N-замещенными 1Н-бензимидазол-2-илацетонитрилами 2b,с были получены ионные соединения 5 (табл. 5) с положительным зарядом, рассредоточенным на атомах азота, и анионом Cl⁻ в качестве противоиона. В аналогичных условиях с одинаково хорошими выходами продукты 5 могут быть получены также из соответствующих соединений 3.

Расположение характеристичных сигналов в спектрах ЯМР ¹Н продуктов **5** (табл. 6) аналогично таковым в спектрах циклических соединений **4**. Однако дублет H-1 незначительно смещается в слабое поле – 10.01–10.20 м. д. (ТФК). Синглеты H-7 и H-8 находятся в области 9.26–9.57 м. д. (ТФК) и в отдельных случаях сливаются в один сигнал. Характеристичным для спектров соединений **5** является наличие сигналов метильного (4.80–4.98 м. д.) или бензильного заместителя (6.48 м. д. для группы CH₂) при атоме N-5. Полоса валентных колебаний нитрильной группы наблюдается при 2246–2207 см⁻¹.

a – ДМФА, кипячение, 20 мин – 1ч 30 мин; *b* – ДМФА, кипячение, 3–12 ч. **5 а–с** $R = R^1 = H$, **a** $R^2 = R^3 = H$, $R^4 = Me$, **b** $R^2 = R^4 = Me$, $R^3 = H$, **c** $R^2 = R^3 = R^4 = Me$, **d** $R = R^3 = R^4 = Me$, $R^1 = R^2 = H$, **e–h** R = H, **e** $R^1 = OMe$, $R^2 = R^3 = H$, $R^4 = Me$, **f** $R^1 = R^2 = H$, $R^3 = OMe$, $R^4 = Me$, **g** $R^1 = R^3 = H$, $R^2 = Me$, $R^4 = Bn$, **h** $R^1 = OMe$, $R^2 = R^3 = H$, $R^4 = Bn$

Последующие исследования показали, что в результате длительного кипячения ионных соединений **5** в ДМФА происходит элиминирование заместителя от атома N-5, в результате чего образуются циклические продукты, спектры ЯМР ¹Н которых идентичны спектрам модельных соединений **4**.

Как мы и предполагали, в реакциях элиминирования лучшей уходящей группой является бензильный заместитель в силу большей стабильности бензильного катиона. Подтверждением этому служит меньшее время, необходимое для проведения реакции элиминирования, а также невозможность во многих случаях выделить ионные соединения **5** в индивидуальном виде в реакциях с 1-бензил-1Н-бензимидазол-2-илацетонитрилом **2с**.

Исследование процессов гетероциклизации и элиминирования мы продолжили изучать на примере реакций 2-хлорхинолин-3-карбальдегидов 1 с 1-бензил-1Н-имидазол-2-илацетонитрилом 6.

Таблица 5

Соеди-	Брутто-формула	<u>Найде</u> Вычис.	<u>ено, %</u> лено, %	Т. пл.,	Выход,
нение		Cl	Ν	•ر*	%0**
5a	$C_{20}H_{13}ClN_4$	<u>10.23</u> 10.28	<u>16.32</u> 16.25	164	79
5b	$C_{21}H_{15}ClN_4$	<u>9.95</u> 9.88	<u>15.57</u> 15.61	232	77
5c	$C_{22}H_{17}ClN_4$	<u>9.45</u> 9.51	<u>15.06</u> 15.03	275	80
5d	$C_{22}H_{17}ClN_4$	<u>9.49</u> 9.51	<u>14.97</u> 15.03	> 300	75
5e	$C_{21}H_{15}CIN_4O$	<u>9.47</u> 9.46	<u>15.01</u> 14.95	> 300	77
5f	$C_{21}H_{15}CIN_4O$	<u>9.53</u> 9.46	<u>14.99</u> 14.95	238	78
5g	C ₂₇ H ₁₉ ClN ₄	<u>8.18</u> 8.15	<u>12.95</u> 12.88	247	72
5h	C ₂₇ H ₁₉ ClN ₄ O	<u>7.80</u> 7.86	<u>12.52</u> 12.43	251	74
7a	$C_{22}H_{15}ClN_4$	<u>15.15</u> 15.11	<u>9.62</u> 9.56	162	83
7b	C ₂₃ H ₁₇ ClN ₄	<u>14.59</u> 14.56	<u>9.13</u> 9.21	157	79
7c	C ₂₄ H ₁₉ ClN ₄	<u>14.08</u> 14.05	<u>8.96</u> 9.89	145	86
7d	C ₂₃ H ₁₇ ClN ₄ O	$\frac{14.04}{13.98}$	<u>8.78</u> 8.84	158	85
7e	C ₂₃ H ₁₇ ClN ₄ O	<u>14.01</u> 13.98	<u>8.90</u> 8.84	129	89

5-Алкил-6-цианобензимидазо[1,2- <i>a</i>]бензо[g]-1,8-нафтиридинийхло	риды 5 и
2-(1-бензил-1Н-имилазол-2-ил)-3-(2-хлорхинолин-3-ил)акрилонит	рилы 7

* При нагревании соединений 7а-е может происходить реакция гетероциклизации.

^{**} Приведен выход соединений **5а-h** по методу А.

Таблица б

Соети	ИК	Спектр ЯМР ¹ Н, б, м. д.	(Ј, Гц)*	
нение	спектр, v_{CN} , см ⁻¹	Характерные сигналы	H-7 (1H, c), H-8 (1H, c)	H-1 (1Н, д)
5a	2246	4.80 (3H, c, N–CH ₃); 8.00 (1H, т, <i>J</i> = 7.2, H-10); 8.12–8.15 (3H, м, H-2,3,4); 8.31 (1H, т, <i>J</i> = 8.0, H-11); 8.37 (1H, д, <i>J</i> = 8.4, H-9); 8.60 (1H, д, <i>J</i> = 8.4, H-12)	9.34, 9.39	10.05 (<i>J</i> = 8.0)
5b	2231	2.91 (3H, c, C–CH ₃); 4.84 (3H, c, N–CH ₃); 7.92 (1H, д, <i>J</i> = 8.4, H-10); 8.12–8.17 (3H, м, H-2,3,4); 8.31 (1H, д, <i>J</i> = 8.8, H-9); 8.46 (1H, c, H-12)	9.36, 9.36	10.10 (<i>J</i> = 7.6)
5c	2230	2.84 (3H, c, C–CH ₃); 3.16 (3H, c, C–CH ₃); 4.80 (3H, c, N–CH ₃); 7.87 (1H, д, <i>J</i> = 8.4, H-10); 8.10–8.16 (4H, м, H-2,3,4,9)	9.29, 9.32	10.04 (<i>J</i> = 7.6)
5d	2207	2.98 (3H, c, C–CH ₃); 3.15 (3H, c, C–CH ₃); 4.80 (3H, c, N–CH ₃); 7.74 (1H, д, <i>J</i> = 7.2, H-10); 8.08–8.14 (4H, м, H-2,3,4,11)	9.40, 9.57	10.01 (<i>J</i> = 7.2)
5e	2235	4.38 (3H, с, OCH ₃); 4.98 (3H, с, N–CH ₃); 7.83 (1H, с, H-9); 8.19 (1H, д, <i>J</i> = 9.2, H-11); 8.30–8.33 (3H, м, H-2,3,4); 8.69 (1H, д, <i>J</i> = 9.2, H-12)	9.44, 9.50	10.20 (<i>J</i> = 6.8)
5f	2231	4.45 (3H, c, OCH ₃); 4.83 (3H, c, N–CH ₃); 7.77 (1H, д, <i>J</i> = 8.4, H-11); 7.94–8.02 (2H, м, H-9,10); 8.15–8.19 (3H, м, H-2,3,4)	9.37, 9.40	10.12 (<i>J</i> = 6.8)
5g	2230	2.87 (3H, c, C–CH ₃); 6.48 (2H, c, CH ₂ Ph); 7.31 (2H, м, H-2,6 Ph); 7.45 (3H, м, H- 3,4,5 Ph); 7.88 (1H, д, <i>J</i> = 8.4, H-10); 8.09–8.14 (3H, м, H-2,3,4); 8.27 (1H, д, <i>J</i> = 8.8, H-9); 8.44 (1H, c, H-12)	9.33, 9.33	10.12 (<i>J</i> = 8.4)
5h	2232	4.18 (3H, c, OCH ₃); 6.48 (2H, c, CH ₂ Ph); 7.28–7.30 (2H, м, H-2,6 Ph); 7.43–7.45 (3H, м, H-3,4,5 Ph); 7.64 (1H, c, H-9); 8.02–8.15 (4H, м, H-2,3,4,11); 8.52 (1H, д, <i>J</i> = 9.2, H-12)	9.26, 9.33	10.08 (<i>J</i> = 8.4)

ИК и ЯМР ¹Н спектры соединений 5

* Спектры ЯМР ¹Н снимали в дейтерированной трифторуксусной кислоте.

Продукты конденсации 7 (табл. 5, 7) были получены при взаимодействии исходных соединений в кипящем 2-пропаноле или при нагревании в ДМФА (90–95 °C). В спектрах ЯМР ¹Н этих соединений синглет H-4 хинолинового ядра аналогично спектрам продуктов конденсации **3** наблюдается в наиболее слабом поле – при 8.73–8.85 м. д.

При этом синглет стирильного протона находится в более сильном поле при 7.80–7.88 м. д. Все отнесения сигналов были осуществлены на основе исследований по гомоядерной (COSY, NOESY-1D) и гетероядерной (HMQC и HMBC) корреляциях на примере соединения 7е (рис. 3, табл. 8).

Рис. 3. Отнесение сигналов и эффект Оверхаузера для соединения 7е

Таблица 7

Соели-	ИК спектр.	Спектр ЯМР ¹ Н, б, м.	д. (<i>J</i> , Гц)*	
нение	$v_{\rm CN}, {\rm cm}^{-1}$	Характерные сигналы	CH=CCN (1H, c)	H-4 хино- лин (1H, c)
7a	2230	5.56 (2H, c, C <u>H</u> ₂ –Ph); 7.13–7.15 (3H, м, H-2,6 Ph, H-4 имидазол); 7.29–7.40 (4H, м, H-3,4,5 Ph, H-5 имидазол); 7.69 (1H, т, <i>J</i> = 7.6, H-6 хинолин); 7.84 (1H, т, <i>J</i> = 7.6, H-7 хинолин); 7.94 (1H, д, <i>J</i> = 8.0, H-5 хинолин); 8.07 (1H, д, <i>J</i> = 8.0, H-8 хинолин)	7.88	8.85
7b	2227	2.59 (3H, с, CH ₃); 5.55 (2H, с, C <u>H₂</u> -Ph); 7.11-7.17 (3H, м, H-2,6 Ph, H-4 ими- дазол); 7.28-7.39 (4H, м, H-3,4,5 Ph, H-5 имидазол); 7.51 (1H, д, <i>J</i> = 7.6, H-6 хинолин); 7.73 (1H, с, H-8 хинолин); 7.95 (1H, д, <i>J</i> = 8.0, H-5 хинолин)	7.86	8.80
7c	2224	2.51 (3H, c, CH ₃); 2.63 (3H, c, CH ₃); 5.55 (2H, c, C <u>H</u> ₂ -Ph); 7.12–7.15 (3H, м, H-2,6 Ph, H-4 имидазол); 7.27–7.39 (4H, м, H-3,4,5 Ph, H-5 имидазол); 7.48 (1H, д, <i>J</i> = 8.4, H-6 хинолин); 7.77 (1H, д, <i>J</i> = 8.4, H-5 хинолин)	7.87	8.75
7d	2227	3.94 (3H, c, CH ₃); 5.56 (2H, c, C <u>H</u> ₂ -Ph); 7.13-7.15 (3H, м, H-2,6 Ph, H-4 имидазол); 7.30-7.43 (6H, м, H-5,7 хинолин, H-3,4,5 Ph, H-5 имидазол); 7.82-7.84 (1H, м, H-8 хинолин)	7.86	8.73
7e	2224	3.96 (3H, с, CH ₃); 5.57 (2H, с, C <u>H₂</u> -Ph); 7.10 (2H, д, <i>J</i> = 8.4, H-2,6 Ph); 7.21 (1H, с, H-4 имидазол); 7.29–7.38 (4H, м, H-3,4,5 Ph, H-7 хинолин); 7.52 (1H, с, H-5 имидазол); 7.60–7.63 (2H, м, H-5,6 хинолин)	7.80	8.78

ИК и ЯМР ¹Н спектры соединений 7

* Спектры ЯМР ¹Н снимали в ДМСО-d₆.

В отличие от реакций с 1Н-бензимидазол-2-илацетонитрилами 2b,c, даже при кратковременном кипячении исходных соединений 1 и 6 в ДМФА ионные соединения 8 выделены не были, поскольку в результате элиминирования бензильного заместителя сразу образовывались циклические продукты 9 (табл. 9), которые являются производными новой гетероциклической системы – бензо[g]имидазо[1,2-a]-1,8-нафтиридина. Соединения 9 в аналогичных условиях были получены также из соответствующих продуктов 7.

Таблица 8

Гетероядерные корреляции для соединения 7е (ДМСО-d₆)

Сигналы протонов	Химические сдвиги у	/глеродных сигналов, с которыми имеется корреляция
ð, M. Д.	HMQC	HMBC
8.78 7.80	139.4 141.2	154.8; 147.7; 141.2; 139.0; 120.5 147.7; 140.4; 139.0; 116.3; 120.5
7.61	129.3 120.5	154.8; 128.0 139.0
7.52	126.1	140.4; 129.9
7.37	129.6	137.5; 129.6; 127.1
7.32	111.9 128.5	139.0; 154.8; 120.5 127.1
7.21	129.9	140.4
5.57	50.6	140.4; 137.5; 127.1; 126.1
3.96	56.6	154.8

В спектрах ЯМР ¹Н циклических соединений **9** характерным является наличие 3 синглетов в области слабого поля, соответствующих H-5 (8.50–8.62), H-1 (8.56–8.66) и H-6 (9.00–9.21 м. д.) (рис. 4). Положение характеристических сигналов определено с помощью экспериментов по гомоядерной и гетероядерной коррекции на примере соединения **9**е (табл. 10). В ИК спектрах полоса группы СN циклических продуктов **9** наблюдается при 2235–2227 см⁻¹ и является более интенсивной, чем полоса группы CN продуктов конденсации **7** при 2230–2224 см⁻¹.

Рис. 4. Отнесение сигналов и эффект Оверхаузера для соединения 9е

Таблица 9

Бензо[g]имидазо[1,2-a]-1,8-нафтиридин-4-карбонитрилы 9

Сое- ди-	Брутто-	<u>Найдено, %</u> Вычислено, %	ИК спектр, v _{CN} , см ⁻¹	Спектр ЯМР ¹ Н, δ, м. д. (.	(J, Гц)*			Т. пл., °С	Вы- ход,
нение	формула	Ν		Характерные сигналы	H-5 (1H, c)	H-1 (1H, c)	H-6 (1H, c))	**%
9a	C ₁₅ H ₈ N ₄	<u>23.02</u> 22.94	2227	7.67 (1H, c, H-2); 7.72 (1H, $_{\rm T}$, $J = 7.6$, H-8); 7.96 (1H, $_{\rm T}$, $J = 7.6$, H-9); 8.15 (1H, $_{\rm H}$, $J = 8.4$, H-7); 8.23 (1H, $_{\rm H}$, $J = 8.4$, H-10)	8.62	8.65	9.21	> 300	94
9b	$C_{16}H_{10}N_4$	<u>21.65</u> 21.69	2235	2.77 (3H, с, CH ₃); 7.50 (1H, д, <i>J</i> = 8.4, H-8); 7.64 (1H, с, H-2); 7.88 (1H, с, H-10); 8.05 (1H, д, <i>J</i> = 8.4, H-7)	8.53	8.56	9.05	276	95
9с	$C_{17}H_{12}N_4$	<u>20.49</u> 20.58	2230	2.58 (3H, c, CH ₃); 2.78 (3H, c, CH ₃); 7.48 (1H, μ , $J = 8.8$, H-8); 7.65 (1H, c, H-2); 7.89 (1H, μ , $J = 8.8$ H-7)	8.50	8.62	9.00	> 300	91
b 6	$\mathrm{C}_{16}\mathrm{H}_{10}\mathrm{N}_{4}\mathrm{O}$	<u>20.47</u> 20.43	2232	3.98 (3H, с, CH ₃); 7.56–7.61 (2H, м, H-7, 9); 7.65 (1H, с, H-2); 8.05 (1H, д, J=9.2, H-10)	8.61	8.61	9.03	297	94
9e	$C_{16}H_{10}N_4O$	<u>20.35</u> 20.43	2230	4.09 (3H, c, CH ₃); 7.37 (1H, $_{\rm H}$, $J = 8.0$, H-9); 7.60 (1H, $_{\rm T}$, $J = 8.0$, H-8); 7.66 (1H, c, H-2); 7.73 (1H, $_{\rm H}$, $J = 8.4$, H-7)	8.59	8.66	9.12	282	96

* Спектры ЯМР ¹Н снимали в ДМСО-d₆. ** Метод А.

Таблица 10

Сигналы протонов б, м. д.	Химические сдвиги углеродных сигналов, с которыми имеется корреляция	
	HMQC	HMBC
9.12	141.1	155.0; 141.8; 139.6; 127.8; 121.0
8.66	114.8	141.1; 132.9
8.59	135.9	141.1; 141.8; 116.8; 115.4; 103.2
7.73	121.0	141.1; 139.6
7.66	132.9	141.1
7.60	127.4	155.0; 127.8
7.37	111.6	155.0
4.09	56.5	155.5

Гетероядерные корреляции для соединения 9e (ДМСО-d₆)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборе Perkin–Elmer Spectrum BX в таблетках КВг. Спектры ЯМР ¹Н измерены на спектрометре Varian Mercury 400 (400 МГц) в ДМСО-d₆ или дейтерированной трифторуксусной кислоте, внутренний стандарт ТМС. Эксперименты по ЯЭО выполнены по методике NOESY-1D, время смешивания 500 мс. Спектры HMQC получены для 128 инкрементов по 32 накопления на инкремент со спектральным диапазоном для протонов 4 кГц, а для углерода – 21 кГц. Время смешивания соответствовало ¹ J_{CH} = 140 Гц. Спектры HMBC получены для 400 инкрементов по 32 накопления на инкремент со спектральным диапазоном для протонов 4 кГц, а для углерода – 21 кГц. Время смешивания соответствовало ²⁻³ J_{CH} = 8 Гц. Температуры плавления измерены на малогабаритном нагревательном столе типа Boetius с прибором для наблюдения PHMK 05 VEB Analytik. Контроль за ходом реакций и чистотой синтезированных соединений проводился методом TCX на пластинках Silufol UV-254 в системе хлороформ–метанол, 9:1.

Рентгеноструктурное исследование соединения 3і. Кристаллы соединения 3і, моноклинные, получены путем медленной кристаллизации из горячего раствора вещества **3i** в ДМФА. С₂₁Н₁₅СlN₄О, при 20 °C: *a* = 11.6324(4), *b* = 19.8026(9), *c* = = 7.5798 (4) Å, β = 101.298(4)°, V = 1712.18(13) Å³, M_r = 374.82, Z = 4, пространственная группа $P2_1/c$, $d_{\text{выч}} = 1.454$ г/см³, $\mu(\text{МоК}\alpha) = 0.24$ мм⁻¹, F(000) = 776. Параметры элементарной ячейки и интенсивности 16 867 отражений (2921 независимое, R_{int} = 0.046) измерены на автоматическом четырехкружном дифрактометре Xcalibur 3 (МоКа, графитовый монохроматор, ССD детектор, ω-сканирование, 20_{max} = 50°). Структура расшифрована прямым методом по комплексу программ SHELX97 [7]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с $U_{iso} = nU_{eq}$ $(n = 1.5 для атомов водорода метильных групп и <math>n = 1.2 для остальных атомов водорода). Структура уточнена по <math>F^2$ полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.092$ по 2921 отражению $(R_1 = 0.040$ по 1907 отражениям с $F > 4\sigma(F)$, S = 1.01). Кристаллографические данные депонированы в Кембриджском банке структурных данных (ССОС 726718).

Синтез 2-(1Н-бензимидазол-2-ил)-3-(2-хлорхинолин-3-ил)акрилонитрилов 3f-i,k-n (общая методика). К раствору 2 ммоль 1Н-бензимидазол-2илацетонитрила 2b,c в 2–3 мл ДМФА (или в 5–7 мл 2-пропанола) добавляют 2 ммоль 2-хлорхинолин-3-карбальдегида 1b-f и нагревают на кипящей водяной бане 1 ч – 2 ч 30 мин (в случае 2-пропанола кипятят 40 мин – 3 ч). Затем реакционную смесь охлаждают. Образовавшийся осадок отфильтровывают, промывают ацетоном, сушат.

Синтез 2-(1Н-бензимидазол-2-ил)-3-(2-хлорхинолин-3-ил)акрилонитрилов За-е, j (общая методика). К раствору 2 ммоль 1Н-бензимидазол-2-илацетонитрила 2а-с в 5–7 мл 2-пропанола (или в 5–7 мл метанола для соединения 3а) добавляют 2 ммоль соединения 1 и кипятят 10–20 мин (в случае соединений 3а-d) или 30 мин–1 ч (в случае соединений 3е, j). Затем реакционную смесь охлаждают. Образовавшийся осадок отфильтровывают, промывают ацетоном, сушат.

Синтез бензимидазо[1,2-*a*]бензо[*g*]-1,8-нафтиридин-6-карбонитрилов 4a-f (общая методика). А. К раствору 2 ммоль 1Н-бензимидазол-2-илацетонитрила 2a в 2–3 мл ДМФА добавляют 2 ммоль 2-хлорхинолин-3-карбальдегида 1 и кипятят 30 мин–1 ч 30 мин. Затем реакционную смесь охлаждают. Образовавшийся осадок отфильтровывают, промывают ацетоном, сушат.

Б. Растворяют 2 ммоль соответствующего продукта **За-d** в 2-3 мл ДМФА и кипятят 20 мин-1 ч 30 мин. Затем реакционную смесь охлаждают. Образовавшийся осадок отфильтровывают, промывают ацетоном, сушат.

В. К раствору 2 ммоль 1Н-бензимидазол-2-илацетонитрила **2b,с** в 2–3 мл ДМФА добавляют 2 ммоль соответствующего 2-хлорхинолин-3-карбальдегида **1** и кипятят 3–12 ч. Затем реакционную смесь охлаждают. Образовавшийся осадок отфильтровывают, промывают ацетоном, сушат.

Г. Растворяют 2 ммоль соответствующего продукта **3е-п** в 2-3 мл ДМФА и кипятят 3-12 ч. Затем реакционную смесь охлаждают. Образовавшийся осадок отфильтровывают, промывают ацетоном, сушат.

Д. Растворяют 2 ммоль соответствующего продукта **5а-h** в 2-3 мл ДМФА и кипятят 3-12 ч. Затем реакционную смесь охлаждают. Образовавшийся осадок отфильтровывают, промывают ацетоном, сушат.

Синтез 5-алкил-6-цианобензимидазо[1,2-*a*]бензо[*g*]-1,8-нафтиридинийхлоридов 5а-h (общая методика). А. К раствору 2 ммоль 1Н-бензимидазол-2-илацетонитрила 2b,с в 2–3 мл ДМФА добавляют 2 ммоль соответствующего 2-хлорхинолин-3-карбальдегида 1 и кипятят 20 мин–1 ч 30 мин (в случае соединения 5а реакционную смесь нагревают 1–2 ч на кипящей водяной бане). Затем реакционную смесь охлаждают. Образовавшийся осадок отфильтровывают, промывают ацетоном, сушат.

Б. Растворяют 2 ммоль соответствующего продукта **3** в 2–3 мл ДМФА и кипятят 20 мин–1 ч 30 мин (в случае соединения **5а** реакционную смесь нагревают 1–2 ч на кипящей водяной бане). Затем реакционную смесь охлаждают. Образовавшийся осадок отфильтровывают, промывают ацетоном, сушат.

Синтез 2-(1-бензил-1Н-имидазол-2-ил)-3-(2-хлорхинолин-3-ил)акрилонитрилов 7а-е (общая методика). К раствору 2 ммоль 1-бензил-1Н-имидазол-2илацетонитрила 6 в 5–7 мл 2-пропанола (или в 2–3 мл ДМФА) добавляют 2 ммоль 2-хлорхинолин-3-карбальдегида 1 и кипятят 30 мин–2 ч (или в случае ДМФА нагревают на кипящей водяной бане 1 ч–1 ч 30 мин). Затем реакционную смесь охлаждают. Образовавшийся осадок отфильтровывают, промывают ацетоном, сушат.

Синтез бензо[g]имидазо[1,2-a]-1,8-нафтиридин-4-карбонитрилов 9а-е (общая методика). А. К раствору 2 ммоль соединения 6 в 2–3 мл ДМФА добавляют 2 ммоль соответствующего 2-хлорхинолин-3-карбальдегида 1 и кипятят 30 мин–1 ч. Затем реакционную смесь охлаждают. Образовавшийся 1862

осадок отфильтровывают, промывают ацетоном, сушат.

Б. Растворяют 2 ммоль соответствующего продукта 7 в 2–3 мл ДМФА и кипятят 30 мин–1 ч. Затем реакционную смесь охлаждают. Образовавшийся осадок отфильтровывают, промывают ацетоном, сушат.

СПИСОК ЛИТЕРАТУРЫ

- 1. О. В. Хиля, Т. А. Воловненко, А. В. Туров, Ю. М. Воловенко, Укр. хим. журн., **69**, № 7–8, 55 (2003).
- О. В. Хиля, Т. А. Воловненко, А. В. Туров, Ю. М. Воловенко, XГС, 1226 (2004). [Chem. Heterocycl. Comp., 40, 1063 (2004)].
- 3. О. В. Хиля, Т. А. Воловненко, Ю. М. Воловенко, *XГС*, 1520 (2006). [*Chem. Heterocycl. Comp.*, **42**, 1311 (2006)].
- 4. Т. А. Воловненко, А. В. Тарасов, Ю. М. Воловенко, *Укр. хим. журн.*, **72**, № 8, 108 (2006).
- 5. U. V. Gokhale, S. Seshadri, Dyes and Pigments, 8, 157 (1987).
- 6. Ю. В. Зефиров, Кристаллография, 42, 936 (1997).
- 7. G. M. Sheldrick, Acta Crystallogr., A64, 112 (2008)

Киевский национальный университет им. Тараса Шевченко, химический факультет, кафедра органической химии, Киев 01601, Украина e-mail: antaran@gala.net Поступило 30.04.2009

^аНТК Институт монокристаллов НАН Украины, Харьков 61001, Украина e-mail: shishkin@isc.kharkov.com