И. Стракова, А. Страковс*, М. Петрова^а, С. Беляков^а

СИНТЕЗ И РЕАКЦИИ 4-(АРИЛГИДРАЗИНО)КУМАРИНОВ

Взаимодействие 4-гидроксикумарина с гидрохлоридами фенил-, 2-хлорфенили 4-бромфенилгидразинов в присутствии триэтиламина приводит во всех случаях к соответствующим 4-(арилгидразино)кумаринам и 1-арил-3-(2-гидроксифенил)-2H-пиразолин-5-онам. 4-(Арилгидразино)кумарины в реакциях с 4-хлорбензальдегидом в присутствии ацетата пиперидина образуют соответствующие 2-арил-3-(4-хлорфенил)[1]бензопирано[4,3-*b*]пиразол-4-оны. Реакция 4-(4-бромфенилгидразино)кумарина с 4-хлорбензальдегидом в присутствии ацетата пиперидина и избытка пиперидина дает 2-(4-бромфенил)-3-(2-гидроксифенил)-5-(4-хлорфенил)-4-(пиперидинокарбонил)пиразол, а взаимодействие фенил- и 4-(2-хлорфенилгидразино)кумаринов с 4-хлорбензальдегидом – 1-арил-3-(2-гидроксифенил)-4-(1-пиперидино)карбонил-5-(4-хлорфенил)-4,5-дигидропиразолы.

Ключевые слова: 4-(арилгидразино)кумарины, 1-арил-3-(2-гидроксифенил)-2Нпиразолин-5-оны, ароматические альдегиды, 2,3-диарил[1]бензопирано[4,3-*b*]пиразол-4-оны.

В развитие работ по синтезу кумаринов с гетероциклами по связи C(3)-C(4) [1–3] нами синтезированы пиразолокумарины в реакциях 4-(арилгидразино)кумаринов с ароматическими альдегидами. Мы обратились к пиразолокумаринам [4–6], которые наравне с другими 3,4-гетероаннелированными кумаринами обнаруживают существенную биологическую активность [7–13].

Реакции гидрохлоридов фенил-, 2-хлорфенил- и 4-бромфенилгидразинов с 4-гидроксикумарином 1 в присутствии триэтиламина проводили при нагревании без растворителя (1 ч 30 мин, 90–100 °C). При этом во всех случаях помимо соответствующих 4-(арилгидразино)кумаринов 2a-cобразуются 1-арил-3-(2-гидроксифенил)пиразол-5-оны 3a-c. Пиразолон 3aполучен ранее [14] кипячением 4-гидроксикумарина с фенилгидразином в бензоле. Кипячением тех же реагентов в толуоле в присутствии каталитических количеств *n*-толуолсульфокислоты в качестве основного продукта (50%) нами получен 4-(фенилгидразино)кумарин (2a), а пиразолон 3a - c выходом лишь 18%. Кипячение пиразолонов 3a-c в уксусном ангидриде в присутствии *n*-толуолсульфокислоты приводит к диацетилпроизводным 4a-c.

2–5 a Ar = Ph, **b** Ar = 2-ClC₆H₄, **c** Ar = 4-BrC₆H₄; **7** a Ar = Ph, **b** Ar = 2-ClC₆H₄

1644

При взаимодействии (4-арилгидразино)кумаринов **2а**-с с 4-хлорбензальдегидом в растворе ДМФА в присутствии эквимолярных каталитических количеств пиперидина и уксусной кислоты образуются соответствующие 2-арил-3-(4-хлорфенил)[1]бензопирано[4,3-*b*]пиразол-4-оны **5а**-с.

В реакциях 4-(арилгидразино)кумаринов **2а-с** с 4-хлорбензальдегидом в присутствии ацетата пиперидина и избытка пиперидина в случае **2с** получен 1-(4-бромфенил)-3-(2-гидроксифенил)-4-(пиперидинокарбонил)-5-(4-хлорфенил)пиразол (**6**), а в случаях **2а**,**b** в таких же условиях – соответствующие 1-арил-3-(2-гидроксифенил-4-(пиперидинокарбонил)-5-(4-хлорфенил)-4,5-дигидропиразолы **7а**,**b**.

Строение синтезированных соединений подтверждено данными ИК и $\rm SMP$ ¹H спектров, а в случае дигидропиразола **7а** – также рентгеноструктурным исследованием (табл. 1–3).

			Цайна	wo 0/			D
Соеди-	Брутто-	<u>паидено, %</u> Вычислено %				Т. пл.,	Вы-
нение	формула	С	Н	N	Hal	°C	лод, %
2a	$C_{15}H_{12}N_2O_2$	<u>71.49</u> 71.41	$\frac{4.69}{4.80}$	<u>10.95</u> 11.10		245–246	51
2b	$C_{15}H_{11}ClN_2O_2$	<u>62.63</u> 62.84	<u>3.80</u> 3.87	<u>9.63</u> 9.77	<u>12.20</u> 12.36	256–257	53
2c	$C_{15}H_{11}BrN_2O_2$	<u>54.20</u> 54.40	<u>3.11</u> 3.35	<u>8.32</u> 8.46	<u>23.90</u> 24.13	254–256	52
3a	$C_{15}H_{12}N_2O_2$	<u>71.30</u> 71.41	$\frac{4.66}{4.80}$	<u>10.87</u> 11.10		119–121	18
3b	$C_{15}H_{11}CIN_2O_2$	<u>62.58</u> 62.84	<u>3.71</u> 3.87	<u>9.61</u> 9.77	<u>12.10</u> 12.36	208–210	9
3c	$\mathrm{C}_{15}\mathrm{H}_{11}\mathrm{BrN}_{2}\mathrm{O}_{2}$	<u>54.18</u> 54.40	<u>3.14</u> 3.35	<u>8.29</u> 8.46	<u>23.95</u> 24.13	196–197	15
4a	$C_{19}H_{16}N_2O_4$	<u>67.66</u> 67.85	$\frac{4.70}{4.80}$	<u>8.11</u> 8.33		90–91	43
4b	$C_{19}H_{15}ClN_2O_4$	<u>61.30</u> 61.54	<u>3.92</u> 4.08	<u>7.37</u> 7.55	<u>9.40</u> 9.56	122–123	88
4c	$C_{19}H_{15}BrN_2O_4$	<u>54.72</u> 54.96	<u>3.60</u> 3.64	<u>6.65</u> 6.74	<u>19.00</u> 19.24	92–93	64
5a	$C_{22}H_{13}ClN_2O_2$	<u>70.70</u> 70.88	<u>3.55</u> 3.51	<u>7.40</u> 7.51	<u>9.30</u> 9.51	201–202	30
5b	$C_{22}H_{12}Cl_2N_2O_2$	<u>64.69</u> 64.88	<u>2.99</u> 2.97	<u>6.71</u> 6.88	<u>17.50</u> 17.41	207–208	37
5c	$C_{22}H_{12}BrClN_2O_2$	<u>58.40</u> 58.50	<u>2.60</u> 2.68	<u>6.14</u> 6.20		135–137	40
6	$C_{27}H_{23}BrClN_3O_2$	<u>59.91</u> 59.96	$\frac{4.35}{4.29}$	<u>7.60</u> 7.77		197–198	70
7a	C ₂₇ H ₂₆ ClN ₃ O ₂	<u>70.33</u> 70.50	<u>5.57</u> 5.70	<u>9.11</u> 9.14	<u>7.60</u> 7.71	221–223	50
7b	$C_{27}H_{25}Cl_2N_3O_2$	<u>65.41</u> 65.59	<u>5.00</u> 5.10	<u>8.38</u> 8.50	<u>14.10</u> 14.34	177–178	32

Характеристики синтезированных соединений

Таблица 1

Спектры ЯМР ¹Н синтезированных соединений

Соеди- нение	Химические сдвиги, δ, м. д. (КССВ, J, Гц)				
2a	5.35 (1H, c, H-3); 6.76–8.10 (9H, м, C ₆ H ₄ , C ₆ H ₅); 8.14 (1H, c, NH); 9.67 (1H, c, NH)				
2b	5.25 (1H, с, H-3); 6.77–8.10 (8H, м, 2С ₆ H ₄); 8.13 (1H, с, NH); 9.77 (1H, с, NH)				
2c	5.29 (1H, c, H-3); 6.70–8.10 (8H, м, 2С ₆ H ₄); 8.35 (1H, c, NH); 9.72 (1H, c, NH)				
3a	6.16 (1H, с, H-4); 6.90–7.78 (9H, м, C ₆ H ₄ , C ₆ H ₅); 10.84 (1H, с, NH); 12.20 (1H, уш. с, OH)				
3b	6.11 (1H, с, H-4); 6.88–7.70 (8Н, м, 2С ₆ H ₄); 10.73 (1H, с, NH); 11.95 (1H, уш. с, OH)				
3c	6.16 (1H, с, H-4); 6.88–7.76 (8Н, м, 2С ₆ H ₄); 10.65 (1H, с, NH); 12.34 (1H, уш. с, OH)				
4a	2.29 (3H, с, CH ₃); 2.33 (3H, с, CH ₃); 6.73 (1H, с, H-4); 7.20–7.97 (9H, м, C ₆ H ₄ , C ₆ H ₅)				
4b	2.19 (3H, c, CH ₃); 2.24 (3H, c, CH ₃); 6.69 (1H, c, H-4); 7.10–7.92 (8H, м, 2C ₆ H ₄)				
4c	2.28 (3H, с, CH ₃); 2.34 (3H, с, CH ₃); 6.74 (1H, с, H-4); 7.20–7.96 (8H, м, 2C ₆ H ₄)				
5a	7.45–7.51 (11H, м, 2C ₆ H ₄ , C ₆ H ₅); 7.61 (1H, д. т, $J = 6$, $J = 2$, C ₆ H ₄); 8.12 (1H, д. д, $J = 6$, $J = 2$, C ₆ H ₄); 8.12 (1H,				
5b	7.38–7.62 (10Н, м, 3С ₆ Н ₄); 7.88 (1Н, м, С ₆ Н ₄); 8.10 (1Н, д. д, <i>J</i> = 6.5, <i>J</i> = 1.5, С ₆ Н ₄)				
5c	7.31–7.72 (11Н, м, 3С ₆ Н ₄); 8.10 (1Н, д, <i>J</i> = 7.4, С ₆ Н ₄)				
6	1.40 (6H, м, C ₅ H ₁₀ N); 3.02 и 3.41 (4H, м, C ₅ H ₁₀ N); 6.85–7.64 (12 H, м, 3C ₆ H ₄); 9.87 (1H, уш. с, OH)				
7a	1.55 (6H, M, $C_5H_{10}N$); 3.44 (4H, yiii. c, $C_5H_{10}N$); 5.00 (1H, π , $J = 5$, H-4); 5.45 (1H, π , $J = 5$, H-5); 5.49 (4H, M, $C_5H_{10}N$); 6.76–7.42 (13H, M, 2 C_6H_4 , C_6H_5); 10.28 (1H, c, OH)				
7b	1.52 (6H, M, $C_5H_{10}N$); 5.21 (1H, π , $J = 5$, H-4); 5.49 (4H, M, $C_5H_{10}N$); 5.58 (1H, π , $J = 5$, H-5); 6.82–7.41 (12H, M, $3C_6H_4$); 10.44 (1H, yu. c, OH)				

Таблица З

Основные длины связей (1) и величины валентных углов (00) в молекуле 7а

Связь	l, Å	Угол	ω, град.
N(1)–N(2)	1.372(4)	N(2)–N(1)–C(5)	112.1(3)
N(1)–C(5)	1.466(4)	N(2)–N(1)–C(6)	119.2(3)
N(1)–C(6)	1.392(4)	C(5)–N(1)–C(6)	126.5(3)
N(2)–C(3)	1.298(4)	N(1)–N(2)–C(3)	110.9(3)
C(3)–C(4)	1.507(5)	N(2)-C(3)-C(4)	112.6(3)
C(3)–C(12)	1.464(5)	C(3)–C(4)–C(5)	101.9(3)
C(4)–C(5)	1.572(5)	C(4)–C(5)–N(1)	102.4(3)
C(4)–C(19)	1.514(5)	C(12)-C(13)-O(18)	122.2(3)
C(5)–C(27)	1.509(5)		
C(13)–O(18)	1.358(5)		
C(19)–O(20)	1.206(4)		
C(19)–N(21)	1.350(5)		
C(30)–Cl(33)	1.743(4)		

Пространственная модель молекулы 7а с обозначениями атомов и эллипсоидами тепловых колебаний

Сигналы протонов NH арилгидразинокумаринов **2а**–с в спектрах ЯМР ¹H, снятых в ДМСО, находятся в интервалах δ 8.13–8.35 и δ 9.67–9.77 м. д., а сигналы протонов NH и OH пиразолонов **3а**–с, соответственно при δ 10.65–10.83 и δ 11.97–12.34 м. д. Частоты трех карбонильных групп диацетилпиразолонов **4а–с** обнаруживаются при 1740–1750, 1760–1764 и 1775–1777 см⁻¹. В спектрах ЯМР ¹H пиразолокумаринов **5а–с** обнаруживаются лишь сигналы ароматических протонов, которые в случае 5-(пиперидинокарбонил)производного **6** дополняются сигналами метиленовых групп пиперидина при δ 1.5 и 3.0–3.5 м. д. В соединениях **7** кроме того обнаруживаются дублетные сигналы *транс*-фиксированных протонов при C(4) и C(5) с КССВ J = 5 Гц. *транс*-Расположение протонов при атомах C(4) и C(5) пиразолинона **7а** подтверждают рентгеноструктурные данные (рисунок, табл. 3).

Пятичленный гетероцикл молекулы **7а**, несмотря на два тетраэдрических атома C(4) и C(5), является плоским в пределах ошибки. Также плоскими являются три фенольных кольца молекулы. Пиперидиновый цикл имеет конформацию *кресла*.

Таблица 4

Брутто-формула	$C_{27}H_{26}CIN_3O_2$		
Молекулярная масса, <i>M_r</i>	459.977		
Кристаллическая сингония	Моноклинная		
Пространственная группа	$P2_{1}/n$		
Параметры элементарной ячейки:			
<i>a</i> , Å	9.3045(3)		
b, Å	21.4232(7)		
<i>c</i> , Å	11.8452(4)		
β, град.	96.661(2)		
Объем элементарной ячейки, V , Å ³	2345.2(1)		
Число молекул в элементарной ячейке, Z	4		
Плотность кристаллов, <i>d</i> , г/см ³	1.303		
Коэффициент поглощения, µ, мм ⁻¹	0.19		
Число независимых рефлексов	6213		
Число рефлексов с $I > 3\sigma(I)$	2366		
Число уточняемых параметров	298		
Окончательный фактор расходимости, R	0.078		
Используемые программы	SIR97 [1], maXus [2]		

Кристаллографические данные для соединения 7а

В молекуле **7a** обнаружена внутримолекулярная водородная связь O(18)-H…N(2); длина ее составляет 2.620(4) Å (H…N(2) 1.89 Å, угол O(18)-H…N(2) 132°). Посредством этой связи в молекуле **7a** образуется еще один шестичленный цикл.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получены на приборе Specord IR-75 для суспензий веществ в вазелиновом масле (область 1800–1500 см⁻¹) и гексахлорбутадиене (область 3600–2000 см⁻¹). Частоты валентных колебаний связей С–Н в области 3050–2800 см⁻¹ не приведены. Спектры ЯМР ¹Н зарегистрированы на спектрометре Varian-Mercury BB (200 МГц) в CDCl₃ и ДМСО-d₆. Внутренний стандарт ТМС.

4-(2-Фенилгидразино)- (2а), **4-[2-(2-хлорфенил)гидразино]-** (2b), **4-[2-(4бромфенил)гидразино]кумарины** (2c) и **1-фенил-** (3а), **1-(2-хлорфенил)-** (3b), **1-(4-бромфенил)-3-(гидроксифенил)-2Н-пиразолин-5-оны** (3c). Смесь из 10 ммоль 4-гидроксикумарина **1** и 10 ммоль гидрохлорида арилгидразина растирают в ступке, переносят в колбу, прибавляют 20 ммоль триэтиламина и нагревают 1 ч 30 мин с обратным холодильником на масляной бане при температуре 90–100 °C. Охлаждают, приливают 30 мл этанола, доводят до кипения при взбалтывании, охлаждают и отфильтровывают соединение **2**. Разбавление фильтрата водой дополнительно дает небольшое количество смеси соединений **2** и **3**. Соединение **3** растворяют при 20 °C в 1% водном растворе гидроксида натрия и осаждают при подкислении. Соединения **2а**, **3а-с** перекристаллизовывают из этанола, **2b** – из смеси этанол–ДМФА, а **2с** – из смеси этанол–уксусная кислота. 1-Фенил- (4а), 1-(2-хлорфенил)- (4b) и 1-(4-бромфенил)-2-ацетил-3-(2-ацетоксифенил)-2Н-пиразолин-5-оны (4с). Пиразолинон 3 (5 ммоль) в 20 мл уксусного ангидрида в присутствии каталитического количества *п*-толуолсульфокислоты нагревают 3 ч на кипящей водяной бане, охлаждают и выливают на толченый лед. Диацетилпроизводные 4 отфильтровывают и перекристаллизовывают из этанола.

1-Фенил- (5а), 2-(2-хлорфенил)- (5b) и 2-(4-бромфенил)-3-(4-хлорфенил)-[1]бензопирано[4,3-с]пиразол-4-оны. Нагревают 6 ч на кипящей водяной бане 10 ммоль 4-(арилгидразино)кумарина, 10 ммоль 4-хлорбензальдегида, 4 ммоль пиперидина и 4 ммоль уксусной кислоты в 30 мл ДМСО. Охлаждают, выливают в воду, осадок пиразолокумаринов отфильтровывают и перекристаллизовывают из этанола.

1-(4-Бромфенил)-3-(2-гидроксифенил)-4-(пиперидинокарбонил)-5-(4-хлорфенил)пиразол (6). Нагревают 6 ч на кипящей водяной бане 5 ммоль 4-(4-бромфенилгидразино)кумарина (2с), 5 ммоль 4-хлорбензальдегида, 4 ммоль уксусной кислоты и 15 ммоль пиперидина в 15 мл ДМСО. Охлаждают, выливают в воду, осадок 6 отфильтровывают, на фильтре тщательно промывают водой и перекристаллизовывают из этанола.

1-Фенил- и 1-(2-хлорфенил)-3-(2-гидроксифенил)-4-(пиперидинокарбонил)-5-(4-хлорфенил)-4,5-дигидропиразолы (7а) и (7b), соответственно, получают аналогично предыдущему эксперименту из 4-(арилгидразино)кумаринов 2a,b, 4-хлорбензальдегида, ацетата пиперидина и избытка пиперидина. Соединения 7a,b перекристаллизовывают из этанола.

Рентгеноструктурный анализ. Для рентгеноструктурного анализа дифракционная картина с монокристалла соединения 7а, размером $0.04 \times 0.06 \times 0.37$ мм, снята на автоматическом дифрактометре Nonius KappaCCD до $2\theta_{max} = 55^{\circ}$ ($\lambda_{Mo} = 0.71073$ Å) при комнатной температуре. Основные кристаллографические характеристики соединения 7а, а также параметры уточнения структуры даны в табл. 4. Расчеты выполнены с помощью программ [15, 16].

СПИСОК ЛИТЕРАТУРЫ

- 1. И. Стракова, М. Петрова, С. Беляков, А. Страков, *XГС*, 1827 (2003). [*Chem. Heterocycl. Comp.*, **39**, 1608 (2003)].
- 2. И. Стракова, М. Петрова, С. Беляков, А. Страков, *ХГС*, 660 (2006). [*Chem. Heterocycl. Comp.*, **42**, 574 (2006)].
- 3. И. Стракова, М. Петрова, С. Беляков, А. Страков, *ХГС*, 935 (2007). [*Chem. Heterocycl. Comp.*, **43**, 793 (2007)].
- 4. M. Čačič, M. Trkovnik, E. Has-Schön, J. Heterocycl. Chem., 40, 833 (2002).
- 5. V. V. Mulwad, J. M. Shirodkar, Indian J. Chem., 41B, 1263 (2002).
- 6. V. Colotta, L. Cecchi, F. Melani, G. Filacchioni, C. Martini, S. Gelli, A. Lucacchini, *J. Pharm. Sci.*, **80**, 276 (1991).
- 7. А. А. Шестопалов, В. П. Литвинов, Изв. АН, Сер. хим., 968 (2005).
- I. A. Khan, M. V. Kulkarni, M. Gopal, M. S. Shahabuddin, C.-M. Sun, *Bioorg. Med. Chem. Lett.*, 15, 3584 (2005).
- 9. E. M. Becalli, A. Contini, P. Trimerco, Tetrahedron Lett., 45, 3447 (2004).
- 10. F. H. Havaldar, S. S. Bhise, Indian J. Heterocycl. Chem., 13, 15 (2003).
- 11. В. Л. Савельев, О. Л. Самсонов, В. П. Лезина, В. С. Троицкая, И. И. Козловский, А. Бешимов, М. М. Козловская, *Хим.-фарм журн.*, **37**, № 9, 25 (2003).

- 12. F. Al-Omran, A.-Z. A. Elassar, A. A. El-Khair, J. Heterocycl. Chem., 40, 249 (2003).
- A. Alberol, L. Calvo, A. Gonzlez-Ortega, A. F. Encabo, M. C. Sanudo, *Synthesis*, 194 (2001).
- 14. J. A. Frogget, M. H. Hockley, R. B. Titman, J. Chem. Res. (S), 30 (1997).
- A. Altomare, M. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. Moliterni, R. Spagna, *J. Appl. Crystallogr.*, 32, 115 (1999).
- S. Mackay, C. Edwards, A. Henderson, C. J. Gilmore, N. Stewart, K. Shankland, A. Donald, *maXus Computer Program for the Solution and Refinement of Crystal Structures*, Bruker Nonius, The Netherlands; MacSci., Japan, 1999.

Рижский технический университет, Рига LV-1048, Латвия e-mail: strakovs@latnet.lv Поступило 16.06.2006 После доработки 23.05.2009

^аЛатвийский институт органического синтеза, Рига LV-1006, Латвия e-mail: marina@osi.lv