С. С. Мочалов*, М. И. Хасанов, Е. В. Трофимова, А. Н. Федотов, Н. С. Зефиров

НОВЫЙ ЭФФЕКТИВНЫЙ ПУТЬ СИНТЕЗА ЗАМЕЩЕННЫХ 2H-ИНДАЗОЛОВ

Осуществлен двухстадийный синтез 2H-индазолов, основанный на последовательных реакциях восстановления 2-алкил-, 2-циклопропил- и 2-арилкарбонилазо-бензолов до фенилазозамещенных бензиловых спиртов и внутримолекулярной гетероциклизации продуктов восстановления под действием органических кислот.

Ключевые слова: 2-аминоацилбензолы, 2-арилазобензиловые спирты, 2-ацил-азобензолы, 2H-индазолы, внутримолекулярная гетероциклизация.

В последние годы значительно усилился интерес к синтезу и изучению медико-биологических свойств производных 2H-индазолов, обусловленный обнаружением у целого ряда соединений этого практически не встречающегося в природе класса гетероциклов широкого спектра биологической активности: высокой антиангиогенной [1], антиканцерогенной и противовоспалительной [2, 3], антимикробной [4], противогрибковой [5, 6], цитотоксической [7] и антигельминтной [8]. Кроме того, соединения указанного класса оказались потенциальными ингибиторами NO-синтетазы [9, 10], протеинкиназы [11, 12], тубулина [13], модуляторами X-рецепторов печени [14], а также проявляют свойства активных мужских контрацептивов [15, 16].

Обнаруженная биологическая активность 2H-индазолов *a priori* делает актуальной проблему синтеза новых представителей этого класса гетероциклов. Важно подчеркнуть, что к настоящему времени для построения 2Н-индазольного цикла используется широкий круг предшественников, практически обозначивший все стратегические пути его синтеза. Так, 2Н-индазолы синтезировали из 2-азидобензилиденаминов [17] или 2-азидобензоиламинов [18, 19], окислительной циклизацией из N-ацилгидразонов 2-аминоацилбензолов [20, 21], реакцией карбенов с азобензолом [22, 23], перегруппировкой орто-замещенных азобензолов [24, 25], восстановительной гетероциклизацией орто-нитробензилиденаминов [26–28] или гетероциклизацией орто-нитробензиламинов [29-33]. Описан вариант формирования системы 2Н-индазола из соединений, уже содержащих пиразольный фрагмент. Например, окислением 4,5-тетраметиленпиразолов дихлордицианобензохиноном с высоким выходом получены замещенные 2Н-индазолы [34]. Однако несмотря на обилие вариантов построения 2Н-индазольного цикла, вариации заместителей практически ограничены положениями 2 и 3, и только в работах [30, 31, 33] были синтезированы 2Н-индазолы, содержащие заместители в аннелированном бензольном кольце.

Недавно [35] мы показали, что 2-бензоил-4,5-этилендиоксиазобензолы двухстадийным процессом (восстановлением до соответствующих фенилазозамещенных бензгидролов и кислотно-катализируемой гетероциклизацией полученных спиртов) с высоким выходом превращаются в 2,3-диарил-5,6-этилендиокси-2H-индазолы. По существу, это были первые примеры нового варианта использования соединений ряда азобензола в синтезе 2H-индазолов.

Задача настоящей работы — выяснить синтетические перспективы найденной двухстадийной трансформации *орто*-ацилазобензолов в соответствующие им 2H-индазолы и возможность получения таким путем 2H-индазолов, замещенных в аннелированном бензольном кольце. С этой целью мы синтезировали ряд несимметрично замещенных *орто*-ацилазобензолов конденсацией *орто*-аминокетонов 1–8 и 2-аминофенилциклопропана 10 с нитрозобензолами и изучили их поведение в условиях указанной двухстадийной трансформации.

1, 9a R = Me; 2, 9b, c R = i-Pr, 3, 9d,e R = c-Pr; 4, 9f R = Ph; 5, 9g R = 4-MeC₆H₄; 6, 9h R = 4-MeOC₆H₄; 7, 9i R = 4-ClC₆H₄; 8, 9j R = 3-FC₆H₄, 9a,b,d,g,i,j X = H, c, e, h X = Cl, f X = Ph

ON
$$AcOH$$
 NH_2
 NH_2
 $N=11$
 $Bu-t$
 $AcOH$
 ON
 Me
 ON
 N
 N
 N
 N
 Me
 N
 Me

Важно подчеркнуть, что при наличии в нитрозосоединении **11** двух способных к конденсации функциональных групп реакция идет только с участием нитрозогруппы и образуется только азобензол **9k**. Интересно, что 5-амино-6-ацилзамещенные 1,4-бензодиоксаны **12**, **13** в отличие от 6-амино-7-ацилзамещенных изомеров не образуют соответствующих азобензолов **9l–o**.

12, 9 l, m R = Me, **13, 9 n, o** R = i-Pr; **9 l, n** X = H, **m**, **o** X = Cl

Даже при многократном увеличении времени реакции как с нитрозобензолом, так и с 4-хлорнитрозобензолом аминокетоны 12 и 13 не взаимодействуют и количественно возвращаются неизмененными, при этом нитрозобензолы превращаются в соответствующие азоксибензолы.

Восстановление *орто*-ацилазобензолов **9a-k** до фенилазозамещенных бензиловых спиртов **14a-k**, непосредственных предшественников 2H-индазолов **15a-k**, осуществляют действием NaBH₄ в спирте: реакции протекают с высокими выходами (табл. 2) и ни в одном случае не наблюдается трансформации азогруппы под действием использовавшегося восстановителя. Этот результат свидетельствует о том, что азогруппа может быть отнесена к числу групп, которые не затрагиваются в реакции с NaBH₄, по крайней мере, при наличии в субстрате группировок, восстанавливающихся под его действием.

Таблица 1

Характеристики 2-ацилзамещенных азобензолов 9а-k, 2-арилазозамещенных бензиловых спиртов 14а-k, 2H-индазолов 15а-k

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %			Т. пл.*, °С	Выход,
нение	формула	С	Н	N	ĺ	%
1	2	3	4	5	6	7
9a	$C_{16}H_{14}N_2O_3$	67.92 68.07	5.03 5.00	9.99 9.92	105–106	49
9b	$C_{18}H_{18}N_2O_3$	69.42 69.66	5.89 5.85	9.11 9.03	74–75	52
9c	$C_{18}H_{17}CIN_2O_3$	62.78 62.70	4.81 4.97	8.16 8.12	117–118	48
9 d	$C_{18}H_{16}N_2O_3$	69.91 70.12	<u>5.31</u> 5.23	9.16 9.09	128–129	51
9e	$C_{18}H_{15}CIN_2O_3$	62.76 63.07	4.46 4.41	8.26 8.17	120–121	45
9f	$C_{21}H_{16}N_2O_3$	73.01 73.24	4.59 4.68	8.02 8.13	130–131	48
9g	$C_{22}H_{18}N_2O_3$	73.61 73.73	5.09 5.06	7.93 7.82	124–125	54
9h	C ₂₂ H ₁₇ ClN ₂ O ₄	64.71 64.63	4.26 4.19	7.01 6.85	141–142	46
9i	$C_{21}H_{15}CIN_2O_3$	66.28 66.58	3.91 3.99	7.45 7.40	127–128	52
9j	$C_{21}H_{15}FN_2O_3$	69.37 69.61	4.22 4.17	7.88 7.73	131–132	51
9k	$C_{21}H_{24}N_2O$	78.51 78.71	7.31 7.55	8.92 8.74	Вязкое масло	53
14a	$C_{16}H_{16}N_2O_3$	67.41 67.59	<u>5.76</u> 5.67	9.93 9.85	Вязкое масло	87
14b	$C_{18}H_{20}N_2O_3$	69.03 69.21	6.31 6.45	9.14 8.97	Вязкое масло	81
14c	$C_{18}H_{19}CIN_2O_3$	62.11 62.34	<u>5.58</u> 5.52	8.21 8.08	105–106	86
14d	$C_{18}H_{18}N_2O_3$	69.52 69.66	5.94 5.85	9.21 9.03	90–91	92
14e	$C_{18}H_{17}CIN_2O_3$	62.61 62.70	4.88 4.97	8.22 8.12	115–116	87
14f	$C_{21}H_{18}N_2O_3$	72.64 72.82	5.03 5.24	7.82 8.09	115–116	85
14g	$C_{22}H_{20}N_2O_3$	73.21 73.32	<u>5.48</u> 5.59	<u>7.56</u> 7.77	61–62	86
14h	C ₂₂ H ₁₉ ClN ₂ O ₄	<u>64.14</u> 64.31	4.51 4.66	6.62 6.82	128–129	82

Окончание таблицы 1

1	2	3	4	5	6	7
14i	$C_{21}H_{17}CIN_2O_3$	66.18 66.23	4.36 4.50	7.02 7.36	73–74	95
14j	$C_{21}H_{17}FN_2O_3$	68.98 69.22	4.62 4.70	7.81 7.69	125–126	94
14k	$C_{21}H_{26}N_2O$	78.01 78.22	8.24 8.13	8.46 8.69	Вязкое масло	83
15a	$C_{16}H_{14}N_2O_2$	72.01 72.16	5.36 5.30	10.68 10.52	118–119	85
15b	$C_{18}H_{18}N_2O_2$	73.11 73.45	6.28 6.16	9.71 9.52	124–125	79
15c	$C_{18}H_{17}CIN_2O_2$	65.97 65.75	5.36 5.21	8.44 8.52	151–152	79
15d	$C_{18}H_{16}N_2O_2$	73.78 73.95	5.41 5.52	9.32 9.58	78–79	89 (96)**
15e	$C_{18}H_{15}CIN_2O_2$	65.95 66.16	4.68 4.63	8.48 8.57	118–119	94
15f	$C_{21}H_{16}N_2O_2$	76.53 76.81	4.80 4.91	8.44 8.53	199–200	91
15g	$C_{22}H_{18}N_2O_2$	76.92 77.17	5.18 5.30	8.03 8.18	184–185	95
15h	$C_{22}H_{17}CIN_2O_3$	67.14 67.26	4.31 4.36	7.28 7.13	208–209	91 (96)
15i	$C_{21}H_{15}CIN_2O_2$	69.31 69.52	3.91 4.17	7.53 7.72	179–180	94
15j	$C_{21}H_{15}FN_2O_2$	73.08 72.82	4.44 4.37	7.88 8.09	201–202	88 (94)
15k	$C_{21}H_{24}N_2$	82.78 82.85	8.07 7.95	9.24 9.20	146–147	87 (93)

^{*} Кристаллизовали из этанола.

Гетероциклизация *орто*-фенилазобензиловых спиртов легко и с высоким выходом целевых 2H-индазолов идет под действием трифторуксусной кислоты (табл. 3). Поскольку это превращение протекает практически без осложнений даже при наличии у бензильного атома углерода циклопропанового фрагмента (см. далее), есть основания предполагать, что в процессе гетероциклизации карбениевые ионы бензильного типа как дискретные частицы не образуются,* и она осуществляется как внутримолекулярный вариант нуклеофильного замещения S_N 2-типа через переходное состояние **A**; далее образующийся интермедиат типа **Б** стабилизируется отщеплением протона из бензильного положения, трансформируясь в 2H-индазольный гетероцикл.

^{**} В скобках указаны выходы 2H-индазолов **15d,h,j,k** при проведении реакции в муравьиной кислоте.

^{*} Циклопропановый фрагмент, непосредственно связанный с атомом углерода, несущим полный положительный заряд, легко изомеризуется [36].

Особый интерес представляет случай гетероциклизации спирта **14k**. По существу, этот спирт представляет собой модель, на которой можно было сравнить реакционную способность двух группировок, находящихся в *орто*-положении к азогруппе, способных быть источниками карбениевых ионов бензильного типа и, следовательно, отвечать за региоселективность образования соответствующего 2H-индазола.

В работе [24] было показано, что 2-циклопропилазобензол способен перегруппировываться в 3-этил-2-фенил-2H-индазол под действием трифторуксусной кислоты, но не изменяется под действием муравьиной кислоты даже при нагревании. Преследуя цель сохранить трехуглеродный цикл в условиях циклизации азоспирта 14k, мы провели реакцию в муравьиной кислоте. Оказалось, что в этом случае реакция протекает региоселективно и при комнатной температуре образуется только 3-метил-6-*трет*-бутил-2-(2-циклопропил)фенил-2H-индазол (15k).

Этот результат показывает, что в процессе синтеза 2H-индазолов предлагаемым двухстадийным превращением *орто*-ацилазобензолов, стадию гетероциклизации *орто*-арилазозамещенных бензиловых спиртов, содержащих неустойчивые к действию относительно сильных кислых агентов заместители, можно осуществлять под действием значительно более слабой по сравнению с трифторуксусной муравьиной кислоты.

На примере азоспиртов **14d**,**j** и **h** мы показали также, что превращение прекурсоров этого типа в отвечающие им 2H-индазолы также легко, как и в трифторуксусной кислоте, протекает и в муравьиной кислоте (табл. 3).

Таким образом, найденный тип превращений 2-ацилазобензолов может быть использован в создании библиотек 2H-индазолов, в том числе, с целью испытания их биологической активности.

Спектры ЯМР ¹Н соединений 9, 14, 15

Соеди-	Химические сдвиги, δ , м. д. $(J, \Gamma_{\rm II})^*$
нение 1	2
9a	2.68 (3H, c, CH ₃); 4.34 (4H, c, OCH ₂ CH ₂ O); 7.28 (1H, c); 7.34 (1H, c) – H-5,8; 7.52 (3H, м), 7.88 (2H, м) – ArH
9b	1.19 (6H, д, J = 6.4, CH(C $\underline{\text{H}}_3$) ₂); 3.36 (1H, сп, J = 6.4, C $\underline{\text{H}}$ (CH ₃) ₂); 4.33 (4H, м, OCH ₂ CH ₂ O); 7.07 (1H, c), 7.39 (1H, c) – H-5,8; 7.48 (3H, м), 7.85(2H, м) – ArH
9c	1.17 (6H, д, J = 6.5, CH(C <u>H</u> ₃) ₂); 3.31 (1H, сп, J = 6.5, C <u>H</u> (CH ₃) ₂); 4.35 (4H, с, OCH ₂ CH ₂ O); 7.06 (1H, c), 7.41 (1H, c) – H-5,8; 7.45 (2H, д, J = 8.4), 7.78 (2H, д, J = 8.4) – ArH
9d	0.99 (2H, м), 1.31 (2H, м), 2.51 (1H, м) – протоны циклопропана; 4.34 (4H, с, OCH ₂ CH ₂ O); 7.18 (1H, с), 7.41 (1H, с) – H-5,8; 7.48 (3H, м), 7.91 (2H, д, J = 8.0) – ArH
9e	0.99 (2H, м), 1.32 (2H, м), 2.45 (1H, м) — протоны циклопропана; 4.35 (4H, с, OCH ₂ CH ₂ O); 7.17 (1H, c), 7.39 (1H, c) — H-5,8; 7.48 (2H, д, $J=8.6$), 7.84 (2H, д, $J=8.6$) — ArH
9f	4.42 (4H, м, OCH ₂ CH ₂ O); 7.17 (1H, с), 7.42 (1H, с) – H-5, H-8; 7.28 (2H, м), 7.39 (3H, м), 7.46 (2H, м), 7.57 (1H, м), 7.68 (2H, м) – ArH
9g	2.37 (3H, c, CH ₃); 4.35 (4H, c, OCH ₂ CH ₂ O); 7.13 (1H, c, H-8); 7.19 (2H, д, <i>J</i> = 8.0, H-3',5'); 7.33 (3H, м), 7.40 (2H, м) – ArH"; 7.51 (1H, c, H-5); 7.71 (2H, д, <i>J</i> = 8.0, H-2',6')
9h	3.83 (3H, c, OCH ₃); 4.36 (4H, c, OCH ₂ CH ₂ O); 7.10 (1H, c), 7.48 (1H, c) – H-5,8; 6.87 (2H, д, J = 8.6), 7.29 (2H, д, J = 8.6), 7.38 (2H, д, J = 8.4), 7.77 (2H, д, J = 8.4) – ArH
9i	4.42 (4H, м, OCH ₂ CH ₂ O); 7.19 (1H, с, H-8); 7.32 (2H, д, <i>J</i> = 7.6), 7.42 (3H, м) – ArH"; 7.44 (1H, с, H-5); 7.53 (2H, д, <i>J</i> = 8.2, H-3',5'); 7.68 (2H, д, <i>J</i> = 8.2, H-2',6')
9 j	4.43 (4H, м, OCH ₂ CH ₂ O); 7.19 (1H, с, H-8); 7.32 (2H, д, <i>J</i> = 8.4), 7.39–7.51 (7H, м) – ArH; 7.44 (1H, с, H-5)
9k	0.89 (2H, м), 1.15 (2H, м) — CH ₂ -протоны циклопропана; 1.40 (9H, с, C(CH ₃) ₃); 2.51 (3H, с, CH ₃); 2.93 (1H, м, CH-циклопропана); 7.01 (1H, м), 7.23 (1H, м), 7.41 (1H, м), 7.75 (1H, д. д, J_1 = 7.4, J_2 = 1.6), 7.58–7.68 (2H, м), 7.81 (1H, д, J_2 = 7.6) — ArH
14a	1.61 (3H, д, J = 6.5, CH ₃); 3.90 (1H, уш. c, OH); 4.31 (4H, м, OCH ₂ CH ₂ O); 5.56 (1H, кв, J = 6.5, CHOH); 7.05 (1H, c, H-5); 7.40 (1H, c, H-8); 7.51 (3H, м), 7.85 (2H, д, J = 8.2) – ArH
14b	0.82 (3H, π , J = 6.6), 1.09 (3H, π , J = 6.6) – CH(CH ₃) ₂ ; 2.03 (1H, cn, J = 6.6, CH(CH ₃) ₂); 3.62 (1H, π , J = 6.8, OH); 4.34 (4H, π , OCH ₂ CH ₂ O); 4.94 (1H, π , CHOH); 6.95 (1H, c, H-5); 7.42 (1H, c, H-8); 7.48 (3H, π), 7.83 (2H, π , J = 8.3) – ArH
14c	0.82 (3H, д, J = 5.9), 1.06 (3H, д, J = 5.9) – CH(С \underline{H}_3) ₂ ; 1.99 (1H, м, С \underline{H} (СН ₃) ₂); 3.35 (1H, уш. c, OH); 4.32 (4H, м, OCH ₂ CH ₂ O); 4.96 (1H, м, С \underline{H} OH); 6.99 (1H, c, H-5); 7.39 (1H, c, H-8); 7.48 (2H, д, J = 8.6), 7.75 (2H, д, J = 8.6) – ArH
14d	0.34 (1H, м), 0.48 (1H, м), 0.58 (1H, м), 0.71 (1H, м), 1.34 (1H, м) – протоны циклопропана; 3.70 (1H, уш. с, ОН); 4.32 (4H, м, ОСН ₂ СН ₂ О); 4.63 (1H, д, $J = 6.4$, С <u>Н</u> ОН); 7.11 (1H, с), 7.44 (1H, с) – H-5,8; 7.51 (3H, м), 7.83 (2H, д, $J = 8.3$) – ArH
14e	0.31 (1H, м), 0.51 (1H, м), 0.55 (1H, м), 0.68 (1H, м), 1.29 (1H, м) – протоны циклопропана; 3.45 (1H, уш. с, ОН); 4.31 (4H, м, ОСН ₂ СН ₂ О); 4.69 (1H, д, $J = 6.4$, С <u>Н</u> ОН); 7.13 (1H, с), 7.40 (1H, с) – H-5,8; 7.49 (2H, д, $J = 8.4$), 7.78 (2H, д, $J = 8.4$) – ArH

	Окончание таблицы 2
1	2
14f	4.27 (2H, м), 4.33 (2H, м) – OCH ₂ CH ₂ O; 5.95 (1H, д, J = 4.4, OH); 6.58 (1H, д, J = 4.4, CHOH); 7.15 (1H, c), 7.19 (1H, c) – H-5,8; 7.13 (1H, т, J = 7.3), 7.24 (2H, т, J = 7.3), 7.32 (2H, д, J = 7.3), 7.53 (1H, т, J = 7.4), 7.59 (2H, т, J = 7.4), 7.85 (2H, д, J = 7.4) – ArH
14g	2.32 (3H, c, CH ₃); 3.85 (1H, уш. c, OH); 4.31 (4H, м, OCH ₂ CH ₂ O); 6.55 (1H, c, C <u>H</u> OH); 6.97 (1H, c, H-5); 7.12 (2H, д, <i>J</i> = 8.2, H-3',5'); 7.30 (2H, д, <i>J</i> = 8.2, H-2',6'); 7.42 (1H, c, H-8); 7.48 (3H, м), 7.80 (2H, д, <i>J</i> = 7.8) – ArH"
14h	3.58 (1H, уш. с, OH); 3.77 (3H, с, OCH ₃); 4.30 (4H, м, OCH ₂ CH ₂ O); 6.53 (1H, с, С <u>Н</u> ОН); 7.01 (1H, с), 7.40 (1H, с) – H-5,8; 6.84 (2H, д, <i>J</i> = 8.4), 7.30 (2H, д, <i>J</i> = 8.4), 7.46 (2H, д, <i>J</i> = 8.2), 7.71 (2H, д, <i>J</i> = 8.2) – ArH
14i	4.27 (2H, м), 4.33 (2H, м) – OCH ₂ CH ₂ O; 6.06 (1H, д, J = 4.5, OH); 6.77 (1H, д, J = 4.5, CHOH); 7.17 (2H, c, H-5,8); 7.31 (2H, д, J = 8.8, H-3', 5'); 7.33 (2H, д, J = 8.8, H-2',6'); 7.53 (1H, т, J = 7.2), 7.59 (2H, т, J = 7.2), 7.85 (2H, д, J = 7.2) – ArH"
14j	4.27 (2H, м), 4.33 (2H, м) – OCH ₂ CH ₂ O; 6.06 (1H, д, J = 4.5, OH); 6.77 (1H, д, J = 4.5, CHOH); 7.17 (2H, с, H-5,8); 7.31 (2H, д, J = 8.8, H-3',5'); 7.33 (2H, д, J = 8.8, H-2',6'); 7.53 (1H, т, J = 7.2), 7.59 (2H, т, J = 7.2), 7.85 (2H, д, J = 7.2) – ArH"
14k	0.92 (2H, м), 1.15 (2H, м) — CH ₂ -протоны циклопропана; 1.37 (9H, с, C(CH ₃) ₃); 1.63 (3H, д, J = 6.8, CH ₃); 1.73 (1H, уш. с, OH); 2.93 (1H, м, CH-циклопропана); 5.54 (1H, м, C <u>H</u> OH); 7.05 (1H, д, J = 7.8), 7.23 (1H, м), 7.41 (1H, м), 7.53 (3H, м), 7.79 (1H, д, J = 1.8) — ArH
15a	2.57 (3H, c, CH ₃); 4.31 (4H, м, OCH ₂ CH ₂ O); 6.98 (1H, c), 7.12 (1H, c) – H-4,7; 7.52 (5H, м, ArH)
15b	1.45 (6H, д, $J = 6.4$, CH(C $\underline{\text{H}}_3$) ₂); 3.31 (1H, сп, $J = 6.4$, CH(C $\underline{\text{H}}_3$) ₂); 4.32 (4H, м, OCH ₂ CH ₂ O); 7.12 (1H, c), 7.22 (1H, c) – H-4,7; 7.48 (5H, м, ArH)
15c	1.45 (6H, д, J = 6.4, CH(C $\underline{\text{H}}_3$) ₂); 3.26 (1H, сп, J = 6.4, CH(C $\underline{\text{H}}_3$) ₂); 4.32 (4H, с, OCH ₂ CH ₂ O); 7.09 (1H, с), 7.19 (1H, с) – H-4,7; 7.42 (2H, д, J = 9.1), 7.50 (2H, д, J = 9.1) – ArH
15d	0.82 (2H, м), 0.97 (2H, м), 2.09 (1H, м) – протоны циклопропана; 4.31 (4H, м, OCH ₂ CH ₂ O); 7.08 (1H, c), 7.11 (1H, c) – H-4,7; 7.43 (1H, т, $J=8.0$), 7.51 (2H, т, $J=8.0$), 7.67 (2H, д, $J=8.0$) – ArH
15e	0.81 (2H, м), 1.01 (2H, м), 2.06 (1H, м) — протоны циклопропана; 4.31 (4H, м, OCH ₂ CH ₂ O); 7.06 (1H, c), 7.08 (1H, c) — H-4,7; 7.48 (2H, д, $J=8.8$), 7.64 (2H, д, $J=8.8$) — ArH
15f	4.31 (4H, м, OCH ₂ CH ₂ O); 7.11 (1H, c), 7.22 (1H, c) – H-4,7; 7.30–7.44 (10H, м, ArH)
15g	2.38 (3H, c, CH ₃); 4.33 (4H, м, OCH ₂ CH ₂ O); 7.11 (1H, c), 7.19 (1H, c) – H-4,7; 7.18 (2H, д, <i>J</i> = 8.3, H-3',5'); 7.22 (2H, д, <i>J</i> = 8.3, H-2',6'); 7.38 (3H, м), 7.43 (2H, м) – ArH"
15h	3.85 (3H, c, OCH ₃); 4.30 (2H, м), 4.35 (2H, м) – OCH ₂ CH ₂ O; 7.07 (1H, c), 7.24 (1H, c) –H-4,7; 6.94 (2H, д, <i>J</i> = 8.4), 7.21 (2H, д, <i>J</i> = 8.4), 7.36 (4H, м) – ArH
15i	4.32 (4H, м, OCH ₂ CH ₂ O); 7.06 (1H, с), 7.19 (1H, с) – H-4,7; 7.24 (2H, д, J = 8.2, H-3',5'); 7.35 (2H, д, J = 8.2, H-2',6'); 7.41 (5H, м, ArH")
15j	4.33 (4H, м, OCH ₂ CH ₂ O); 7.01–7.10 (3H, м, ArH); 7.11 (1H, c), 7.22 (1H, c) – H-4,7; 7.31–7.44 (6H, м, ArH)
15k	$0.65-0.85$ (4H, м), 1.36 (1H, м) – протоны циклопропана; 1.42 (9H, с, $C(CH_3)_3$); 2.45 (3H, с, CH_3); 6.97 (1H, д, $J=7.8$), 7.24 (1H, д, $J=8.4$), 7.28 (2H, м), 7.43 (1H, м), 7.61 (1H, д, $J=8.4$), 7.66 (1H, м) – ArH

^{*} Спектры ЯМР ¹Н снимали в CDCl₃ (соединения **9a–e,g,h,k**, **14a–e,g,h,j,k** и **15a–k**) и ДМСО-d₆ (соединения **9f,i,j** и **14f,i**).

Масс-спектры соединений 9, 14 и 15

Соеди-	$m/z~(I_{ ext{OTH}},~\%)$
9a	282 [M] ⁺ (56.2), 267 (6.3), 205 (12.2), 177 (25.8), 149 (30.4), 123 (8.8), 105 (17.1), 77 (100.0), 51 (46.5), 43 (42.2)
9d	308 [M] ⁺ (8.2), 280 (10.3), 203 (7.3), 175 (13.5), 163 (9.5), 147 (6.1), 131 (11.2), 119 (8.2), 103 (24.2), 91 (12.6), 77 (100.0), 51 (40.6), 39 (26.6)
9e	342 [M] ⁺ (8.1), 314 (7.2), 203 (8.2), 175 (16.1), 163 (12.4), 131 (13.1), 119 (12.2), 111 (100.0), 103 (30.5), 91 (16.1), 75 (52.1), 69 (13.2), 50 (51.1), 39 (52.6)
9f	344 [M] ⁺ (46.5), 239 (45.2), 183 (16.1), 167 (11.8), 155 (18.2), 139 (34.8), 127 (22.5), 105 (36.1), 77 (100.0), 69 (15.1), 51 (80.1), 39 (11.1)
9g	358 [M] ⁺ (35.4), 253 (14.1), 197 (6.5), 169 (9.1), 153 (13.2), 119 (13.5), 91 (40.6), 77 (100.0), 65 (30.6), 51 (52.5), 39 (18.2)
9i	378 [M] ⁺ (40.4), 273 (10.8), 238 (23.6), 173 (6.5), 154 (9.1), 139 (13.4), 126 (14.8), 111 (21.2), 105 (14.1), 77 (100.0), 69 (11.1), 51 (40.1)
9j	362 [M] ⁺ (72.2), 257 (68.4), 201 (16.4), 185 (15.1), 173 (19.1), 157 (34.2), 145 (14.1), 123 (19.2), 105 (34.2), 95 (48.1), 77 (100.0), 69 (20.8), 51 (51.2)
14d	310 [M] ⁺ (11.3), 293 (9.2), 218 (16.1), 190 (18.2), 178 (11.9), 164 (11.3), 134 (24.2), 107 (12.1), 91 (14.1), 77 (100.0), 65 (19.2), 51 (63.1), 39 (37.1)
14f	346 [M] ⁺ (59.8), 329 (55.1), 254 (94.1), 211 (12.2), 198 (16.4), 182 (12.2), 170 (14.1), 139 (15.1), 128 (15.6), 115 (16.1), 105 (18.2), 77 (100.0), 51 (68.1), 39 (18.1)
14g	360 [M] ⁺ (61.1), 343 (51.1), 268 (100.0), 225 (6.1), 212 (9.1), 184 (12.2), 128 (8.1), 119 (14.2), 91 (28.2), 77 (56.1), 65 (18.1), 51 (36.2), 39 (15.4)
14i	380 [M] ⁺ (66.1), 363 (49.1), 288 (100.0), 253 (41.2), 197 (16.2), 139 (24.4), 111 (17.1), 77 (96.2), 65 (12.5), 51 (58.2), 39 (15.2)
14j	364 [M] ⁺ (62.5), 347 (50.6), 272 (100.0), 229 (16.1), 216 (17.2), 200 (14.3), 188 (14.2), 157 (13.3), 146 (13.4), 133 (14.6), 123 (18.1); 95 (32.3), 77 (86.5), 69 (19.5), 51 (68.3), 39 (17.5)
15f	328 [M] ⁺ (100), 271 (45.7), 255 (7.1), 243 (29.9), 204 (30.1), 150 (8.5), 77 (28.5), 50 (15.7)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н получены на спектрометрах Varian VXR-400 (400 МГц) в CDCl₃, внутренний стандарт остаточный CHCl₃, и Bruker DRX-500 (500 МГц) в ДМСО-d₆, внутренний стандарт ТМС. Масс-спектры зарегистрированы на приборе Finnigan MAT Incos-50, ионизация электронным ударом, 70 эВ. Препаративное разделение реакционных смесей и контроль чистоты полученных соединений осуществлялся на пластинках с Al_2O_3 II ст. акт. в системе эфир– CH_2Cl_2 —петролейный эфир (40–70 °C), 1:1:3.

Физико-химические и спектральные характеристики соединений 9, 14 и 15 приведены в табл. 1–3.

6-Амино-7-ацетил-1,4-бензодиоксан (1). К раствору 2.23 г (10 ммоль) 6-ацетил-7-нитро-1,4-бензодиоксана в 100 мл бензола, нагретого до 75 °C, добавляют 17 г восстановленного Fe, перемешивают при указанной температуре 30 мин и порциями в течение 2 ч вводят 7 мл воды. Реакционную массу перемешивают 1 ч при 80 °C, декантируют горячий бензольный раствор, растворитель упаривают, остаток перекристаллизовывают из этанола. Выход 79%, т. пл. 126—127 °C [37].

- Амины 2–8, 12, 13 получают аналогичным восстановлением соответствующих нитросоединений.
- **6-Амино-7-изо-бутироил-1,4-бензодиоксан (2)**, выход 69%, т. пл. 114 °C [38].
- **6-Амино-7-циклопропилкарбонил-1,4-бензодиоксан (3)**, выход 68%, т. пл. 93–95 °С [38].
 - **6-Амино-7-бензоил-1,4-бензодиоксан (4)**, выход 84%, т. пл. 134–135 °С [37].
- **6-Амино-7-(4-метилбензоил)-1,4-бензодиоксан (5)**, выход 79%, т. пл. 136–137 °С [38].
- **6-Амино-7-(4-метоксибензоил)-1,4-бензодиоксан (6)**, выход 78%, т. пл. 160–161 °C [38].
- **6-Амино-7-(4-хлорбензоил)-1,4-бензодиоксан (7)**, выход 82%, т. пл. 123–124 °С. Спектр ЯМР 1 Н (ДМСО-d₆), δ , м. д.: 4.12 (2H, м), 4.23 (2H, м) OCH₂CH₂O; 6.32 (1H, c, H-5); 6.68 (1H, c, H-8); 6.85 (2H, уш. c, NH₂); 7.52 (4H, м, ArH'). Найдено, %: С 61.92; Н 3.91; N 4.63. $C_{15}H_{12}CINO_3$. Вычислено, %: С 62.19; Н 4.17; N 4.83.
- **6-Амино-7-(3-фторбензоил)-1,4-бензодиоксан (8)**, выход 82%, т. пл. 124–125 °С [38].
- **5-Амино-6-ацетил-1,4-бензодиоксан (12)**, выход 74%, т. пл. 115–116 °C. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (J, Γ u): 2.55 (3H, c, CH₃); 4.27 (4H, м, OCH₂CH₂O); 6.22 (1H, д, J = 9.2, H-8); 6.52 (2H, уш. c, NH₂); 7.24 (1H, д, J = 9.2, H-7). Найдено, %: C 61.93; H 5.68; N 7.29. $C_{10}H_{11}NO_3$. Вычислено, %: C 62.17; H 5.74; N 7.25.
- **5-Амино-6-изо-бутироил-1,4-бензодиоксан (13)**, выход 69%, т. пл. 67–68 °С. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (J, Γ ц): 1.19 (6H, д, J = 6.5, CH(C $\underline{\text{H}}_3$)₂); 3.51 (1H, сп, С $\underline{\text{H}}$ (CH₃)₂); 4.29 (4H, м, OCH₂CH₂O); 6.22 (1H, д, J = 9.3, H-8); 6.61 (2H, уш. с, NH₂); 7.35 (1H, д, J = 9.3, H-7). Найдено, %: С 64.88; H 6.91; N 6.47. С₁₂H₁₅NO₃. Вычислено, %: С 65.14; H 6.83; N 6.33.
- **2-Аминофенилциклопропан** получают, как описано в работе [39]. Выход 72%, т. кип. 103–104 °C (9 мм рт. ст.), n_D^{20} 1.5810.
- **2-Ацетил-5-***трет***-бутилнитрозобензол (11)** синтезируют, как описано в работе [40]. Выход 87%, т. пл. 140–143 °С (из этанола).
- **2-Арилазоацилбензолы 9а–k** (общая методика). К раствору 10 ммоль аминокетона **1–8**, **10** в 30 мл ледяной уксусной кислоты в течение 3 мин прибавляют 10 ммоль соответствующего нитрозобензола. Образовавшийся однородный раствор выдерживают 8 ч при 20 °C, выливают в 250 мл воды, продукт реакции экстрагируют CHCl₃, экстракт сушат $CaCl_2$ и, упарив растворитель, остаток хроматографируют на пластинках с Al_2O_3 .
- **2-Арилазобензиловые спирты 14а–k** (общая методика). К суспензии 0.38 г (10 ммоль) NaBH₄ в 30 мл этанола порциями прибавляют 10 ммоль 2-арилазоацилбензола **9а–k**, перемешивают 6–8 ч при 40–50 °C, осторожно разлагают реакционную массу 10% раствором HCl (~2–3 мл) и выливают спиртовой раствор в 200 мл воды. Продукты восстановления экстрагируют CHCl₃, экстракт сушат MgSO₄ и, упарив растворитель, остаток перекристаллизовывают или хроматографируют на пластинках с Al_2O_3 .
- **Циклизация 2-арилазобензиловых спиртов 14а**—**k в 2H-индазолы 15а**—**k под действием трифторуксусной кислоты** (общая методика). К 4 мл CF $_3$ CO $_2$ H при 0–5 °C добавляют 1 ммоль азоспирта **14а**—**j**, повышают температуру до 20 °C, перемешивают 30 мин, выливают в 100 мл воды со льдом, нейтрализуют Na $_2$ CO $_3$, экстрагируют CHCl $_3$ (2 × 30 мл), сушат MgSO $_4$ и, упарив растворитель, остаток перекристаллизовывают из спирта.

Циклизация 2-арилазобензиловых спиртов 14d,j,h,k в **2H-индазолы 15d,j,h,k под действием муравьиной кислоты** (общая методика). К 10 мл HCO_2H при 20 °C добавляют 1 ммоль азоспирта **14d,j,h,k**, перемешивают 2 ч, выливают реакционную смесь в 150 мл холодной воды, нейтрализуют Na_2CO_3 , осадок отфильтровывают, промывают водой и перекристаллизовывают из этанола.

Работа выполнена при финансовой поддержке гранта "Ведущая научная школа академика Н. С. Зефирова".

СПИСОК ЛИТЕРАТУРЫ

- L. J. Huang, M. L. Shin, H. S. Chen, S. L. Pan, C. M. Teng, F. Y. Lee, S. C. Kuo, Bioorg. Med. Chem., 14, 528 (2006).
- 2. C. J. Chen, M. H. Hsu, L. J. Huang, T. Yamori, F. G. Chung, F. Y. Lee, C. M. Teng, S. C. Kuo, *Biochem. Pharmacol.*, **75**, 360 (2008).
- 3. T. Yakaiah, B. P. V. Lingaiah, B. Narsaiah, B. Shireesha, B. A. Kumar, S. Gururaj, T. Parthsarathy, B. Srindhar, *Bioorg. Med. Chem. Lett.*, 17, 3445 (2007).
- 4. T. Yakaiah, B. P. V. Lingaiah, B. Narsaiah, B. A. Kumar, U. S. N. Murthy, *Eur. J. Med. Chem.*, **43**, 341 (2008).
- 5. J. S. Park, K. A. Yu, Y. S. Yoon, M. R. Han, T. H. Kang, S. H. Kim, N. J. Kim, H. Yun, Y. G. Suh, *Drugs Future*, **32**, 121 (2007).
- 6. J. S. Park, K. A. Yu, T. H. Kang, S. H. Kim, Y. G. Suh, *Bioorg. Med. Chem. Lett.*, 17, 3486 (2007).
- 7. E. Rakib, B. Oulemda, S. Abouricha, L. Bouissane, H. A. Mouse, A. Zyad, *Lett. Drug Des. Discovery*, **4**, 467 (2007).
- 8. W. D. Kingsbury, R. J. Gyurik, V. J. Theodorides, R. C. Parish, G. Gallagher, *J. Med. Chem.*, **19**, 839 (1976).
- 9. N. Matsumura, K. Kirachu-Utsumi, T. Nakaki, *J. Pharmacol. Exp. Ther.*, **325**, 357 (2008).
- 10. M. Boulouard, P. Shumann-Bard, S. Butt-Gueulle, S. Stiebing, V. Collot, S. Rault, *Bioorg. Med. Chem. Lett.*, **17**, 3177 (2007).
- G. D. Zhu, V. B. Gandhi, J. C. Gong, S. Thomas, K. W. Woods, X. H. Song, T. M. Li, R. B. Diebold, Y. Luo, X. S. Liu, R. Guan, V. Klinghofer, E. F. Johnson, J. Bouska, A. Olson, K. C. Marsh, V. S. Stoll, M. Mamo, J. Polakowski, T. J. Campbell, R. L. Martin, G. A. Gintant, T. D. Penning, Q. Li, S. H. Rosenberg, M. L. Giranda, J. Med. Chem., 50, 2990 (2007).
- 12. J. Lee, H. Choi, K. H. Kim, S. Jeong, J. W. Park, C. S. Back, S. H. Lee, *Bioorg. Med. Chem. Lett.*, **18**, 2292 (2008).
- 13. F. Y. Meng, X. H. Cai, J. X. Duan, M. G. Mattencchi, C. P. Hart, *Cancer Chemother. Pharmacol.*, **61**, 953 (2008).
- 14. J. Wrobel, S. Steffan, S. M. Bowen, R. Magolda, E. Matelan, R. Unwalla, M. Basso, V. Clerin, S. J. Gardell, P. Nambi, E. Quinet, J. I. Reminick, G. P. Vlasuk, S. Wang, I. Feingold, C. Huselton, T. Bonn, M. Famegardi, T. Hansson, A. G. Nilsson, A. Wilhelmsson, E. Zamaratski, M. S. Evans, *J. Med. Chem.*, 51, 7161 (2008).
- 15. J. S. Tash, B. Attardi, S. A. Hild, R. Chakrasali, S. R. Jakkaraj, G. I. Geerg, *Biol. Reprod.*, **78**, 1127 (2008).
- J. S. Tash, R. Chakrasali, S. R. Jakkaraj, J. Hughes, S. K. Smith, K. Hombaker, L. L. Heckert, S. B. Ozhurk, M. K. Hadden, T. G. Kinzy, B. S. J. Blagg, G. I. Georg, *Biol. Reprod.*, 78, 1139 (2008).

- 17. L. Krbechek, H. Takimoto, J. Org. Chem., 29, 1150 (1964).
- 18. M. A. Ardakani, R. K. Smalley, R. H. Smith, Synthesis, 308 (1979).
- M. A. Ardakani, R. K. Smalley, R. H. Smith, J. Chem. Soc., Perkin Trans. 1, 2501 (1983).
- 20. A. Kotali, P. A. Harris, Heterocycles, 37, 1541 (1994).
- 21. A. Kotali, P. A. Harris, J. Heterocycl. Chem., 33, 605 (1996).
- 22. P. J. Stang, M. G. Mangum, J. Am. Chem. Soc., 99, 2597 (1977).
- 23. K. Krageloh, G. H. Anderson, P. J. Stang, J. Am. Chem. Soc., 106, 6015 (1984).
- 24. А. Н. Федотов, И. Н. Шишкина, Т. Г. Кутателадзе, С. С. Мочалов, Ю. С. Шабаров, *XГС*, 1063 (1987). [*Chem. Heterocycl. Comp.*, **23**, 849 (1987)].
- 25. M. V. Peters, R. S. Stoll, R. Goddard, G. Buth, S. Hecht, *J. Org, Chem.*, **71**, 7840 (2006).
- 26. J. I. G. Cadogan, M. Cameron-Wood, R. K. Mackie, R. J. G. Searle, *J. Chem. Soc.*, 4831 (1965).
- 27. M. Akazome, T. Kondo, Y. Watanabe, J. Org. Chem., 59, 3375 (1994).
- 28. D. Sawant, R. Kumar, P. R. Maulick, B. Kundu, Org. Lett., 8, 1525 (2006).
- 29. B. A. Frontana-Uribe, C. Moinet, *Tetrahedron*, **54**, 3197 (1998).
- 30. A. D. Mills, P. Maloney, E. Hassanein, M. J. Haddadin, M. J. Kurth, *J. Comb. Chem.*, **9**, 171 (2007).
- 31. A. D. Mills, M. Z. Nazer, M. J. Haddadin, M. J. Kurth, *J. Org. Chem.*, **71**, 2687 (2006).
- 32. G. L. Dou, S. N. Ni, J. W. Shi, X. Y. Li, X. S. Wang, H. Wu, S. J. Ji, *Synlett.*, 2509 (2007).
- 33. J. D. Butler, D. M. Solano, L. I. Robins, M. J. Haddadin, M. J. Kurth, *J. Org. Chem.*, **73**, 234 (2008).
- 34. K. Y. Lee, S. Gowrisankar, J. N. Kim, *Tetrahedron Lett.*, **46**, 5387 (2005).
- 35. С. С. Мочалов, М. И. Хасанов, А. Н. Федотов, Е. В. Трофимова, *XГС*, 296 (2008). [*Chem. Heterocycl. Comp.*, **44**, 229 (2008)].
- 36. K. Oyama, T. T. Tidwell, J. Am. Chem. Soc., 98, 947 (1976).
- 37. С. С. Мочалов, Д. В. Косынкин, И. Д. Юдин, В. И. Атанов, Ю. С. Шабаров, Н. С. Зефиров, *XIC*, 601 (1994). [*Chem. Heterocycl. Comp.*, **30**, 527 (1994)].
- 38. С. С. Мочалов, М. И. Хасанов, Н. С. Зефиров, *XIC*, 252 (2009). [*Chem. Heterocycl. Comp.*, **45**, 201 (2009)].
- 39. Ю. С. Шабаров, В. К. Потапов, Р. Я. Левина, ЖОХ, 34, 3127 (1964).
- 40. Р. А. Газзаева, А. Н. Федотов, Е. В. Трофимова, О. А. Попова, С. С. Мочалов, Н. С. Зефиров, *ЖОрХ*, **42**, 94 (2006).

Московский государственный университет им. М. В. Ломоносова, Москва 119992, Россия e-mail: ssmoch@org.chem.msu.ru

Поступило 19.12.2008