И. Г. Дмитриева*, Л. В. Дядюченко, В. Д. Стрелков^а, Е. А. Кайгородова⁶

СИНТЕЗ

4,6-ДИМЕТИЛ-5-R-3-ЦИАНОПИРИДИН-2-СУЛЬФОНИЛХЛОРИДОВ И N-ЗАМЕЩЕННЫХ СУЛЬФОНИЛАМИДОВ НА ИХ ОСНОВЕ

Окислительным хлорированием 3-цианопиридин(1H)-2-тионов синтезированы соответствующие 3-цианопиридин-2-сульфонилхлориды. Установлено, что 4,6ди-метил-3-цианопиридин-2-сульфонилхлорид на стадии выделения элиминирует молекулу SO₂. N-Замещенные сульфониламиды на основе последнего получены взаимодействием сырого сульфонилхлорида с аминами в водной среде.

Ключевые слова: сульфониламиды, сульфонилхлориды, окислительное хлорирование, синтез, элиминирование.

Арил- и гетерилсульфониламиды обладают разнообразной биологической активностью, в том числе фармакологической [1, 2], гербицидной [3] и фунгицидной [4]. С целью расширения спектра биологически активных веществ нами была предпринята попытка синтеза новых пиридил-2-сульфонилхлоридов и N-замещенных сульфониламидов на их основе. Одним из распространенных способов получения ароматических сульфонилхлоридов является окислительное хлорирование соответствующих меркаптопроизводных [5]. В качестве исходных соединений нами использованы 3-цианопиридин(1H)-2-тионы **1а,b**, синтез которых описан в работе [6].

Окислительное хлорирование осуществляли в среде 2 н. раствора HCl в интервале от -3 до 0 °C. При этом 4,6-диметил-5-хлор-2(1H)пиридинтион (1a) гладко и с хорошим выходом (85% теор.) дает соответствующий пиридин-2-сульфонилхлорид 2a. 4,6-Диметил-2(1H)пиридинтион (1b) в процессе реакции также образует целевой сульфонилхлорид 2b. Однако его дальнейшее поведение весьма необычно: на стадии высушивания (температура комнатная, давление атмосферное или 5–10 мм рт. ст.; либо отгонка растворителя из осушенной вытяжки продукта) последний элиминирует молекулу SO₂, как бы "вскипая" при этом. В результате образуется 4,6-диметил-2-хлорникотинонитрил (3).

Чтобы избежать разложения сульфонилхлорида **2b**, сырой продукт немедленно использовали в реакциях с аминами. Для этого к водной суспензии **2b** при температуре 8–10 °С прибавляли по каплям раствор соответствующего амина в ацетоне и после 2–4 ч перемешивания выделяли сульфониламиды **4h–l** с довольно высокими выходами (64–74%), следовательно в данных условиях сульфонилхлорид **2b** не успевает гидролизоваться.

1, 2 а R = Cl, b R = H; **4** а–g R = Cl; а R¹ = H, R² = 2-этилфенил; b R¹ = H, R² = 4-метил-3хлорфенил; c R¹ = H, R² = фурфурил; d R¹ = H, R² = 4-хлорбензил; e R¹ = Et, R² = Ph; f R¹R² = (CH₂CH₂)₂CHMe; g R¹R² = (CH₂CH₂)₂O; h–l R = H, h R¹ = H, R² = 2-этилфенил; i R¹ = H, R² = циклогексил; j R¹ = H, R² = изопропил; k R¹ = R² = аллил; l R¹ = Me, R² = Ph; 5 а R² = 2-этилфенил, b R² = 4-метил-3-хлорфенил

Сульфонилхлорид **2a** в отличие от соединения **2b** достаточно стабилен, поэтому после сушки и очистки его подвергали взаимодействию с аминами в традиционных условиях, а именно, синтез сульфониламидов **4a–g** осуществляли в среде безводного бензола в присутствии Et₃N. Оказалось, что реакция **2a** с первичными аминами протекает неоднозначно. В случае прибавления первичного амина к раствору сульфонилхлорида **2a** наряду с целевыми сульфониламидами **4a,b** образуются биссульфониламины **5a,b**. Найдены условия, позволяющие исключить протекание параллельной конкурирующей реакции, для этого раствор сульфонилхлорида **2a** прибавляли по каплям к раствору первичного амина при температуре 10–15 °C.

Результаты элементного анализа приведены в табл. 1. Структура синтезированных соединений подтверждена совокупностью ИК, ЯМР ¹Н и масс-спектров (табл. 2, 3, экспериментальная часть).

Спектр ЯМР ¹Н сульфонилхлорида **2а** содержит только сигналы двух метильных групп пиридина при 2.80 и 2.85 м. д. В масс-спектре имеется группа пиков молекулярного иона с относительной интенсивностью 15%. Для первичной фрагментации наблюдаются два направления: элиминирование группы SO_2 и потеря группы SO_2 Сl, причем доля последнего фрагмента в полном ионном токе является максимальной. Для вторичной диссоциативной ионизации характерна потеря групп HCN, Cl и др.

Сульфонилхлорид **2b** охарактеризован N-замещенными сульфониламидами **4h–l**, полученными на его основе. В ИК спектрах сульфонил-1312 амидов **4а–l** наблюдаются две характеристические полосы поглощения в областях 1134–1157 и 1358–1377 см⁻¹, что соответствует симметрическим и асимметрическим колебаниям группы SO₂, а также полоса поглощения цианогруппы при 2222–2231 см⁻¹ [7]. Спектры ЯМР ¹Н соединений **4а–l** содержат все необходимые сигналы (табл. 2).

Таблица 1

Со- еди-	Брутто-	Брутто- Найдено, %					Вы- ход,
нение	формула	С	Н	N	S		%
2a	$C_8H_6Cl_2N_2O_2S$	<u>36.41</u> 36.24	$\frac{2.33}{2.28}$	<u>10.20</u> 10.57	$\frac{11.88}{12.09}$	79–80 (гексан)	85
3	C ₈ H ₇ ClN ₂	<u>57.82</u> 57.67	$\frac{4.38}{4.23}$	<u>17.01</u> 16.81	—	95–96 (гексан)	81
4a	$C_{16}H_{16}ClN_3O_2S$	<u>55.12</u> 54.93	<u>4.65</u> 4.61	<u>11.88</u> 12.01	<u>9.24</u> 9.17	181–182 (EtOAc)	71
4b	$C_{15}H_{13}Cl_2N_3O_2S$	$\frac{48.80}{48.66}$	<u>3.47</u> 3.54	<u>11.11</u> 11.35	<u>8.89</u> 8.66	198–200 (EtOH)	66
4c	$C_{13}H_{12}ClN_3O_3S$	<u>48.59</u> 47.93	<u>3.86</u> 3.71	<u>13.01</u> 12.90	<u>10.03</u> 9.84	138–139 (гексан + + EtOAc)	69
4d	$C_{15}H_{13}Cl_2N_3O_2S$	$\frac{48.41}{48.66}$	$\frac{3.31}{3.54}$	<u>11.18</u> 11.35	<u>8.74</u> 8.66	179–180 (EtOAc)	56
4e	$C_{16}H_{16}ClN_3O_2S$	<u>54.68</u> 54.93	<u>4.39</u> 4.61	<u>12.29</u> 12.01	<u>8.93</u> 9.17	129–131 (цикло- гексан)	69
4f	$C_{14}H_{18}ClN_3O_2S$	<u>51.02</u> 51.29	<u>5.67</u> 5.53	<u>12.56</u> 12.82	<u>9.61</u> 9.78	106–107 (гексан)	88
4g	$C_{12}H_{14}ClN_3O_3S$	<u>45.83</u> 45.64	<u>4.26</u> 4.47	<u>13.12</u> 13.31	<u>10.22</u> 10.15	154–156 (гексан + + EtOAc)	76
4h	$C_{16}H_{17}N_3O_2S$	<u>61.17</u> 60.93	<u>5.62</u> 5.43	$\frac{13.18}{13.32}$	<u>10.34</u> 10.17	147–148 (гексан + + EtOAc)	66
4 i	$C_{14}H_{19}N_3O_2S$	<u>57.12</u> 57.31	$\frac{6.41}{6.53}$	$\frac{14.17}{14.32}$	$\frac{11.08}{10.93}$	151–152 (гексан + + EtOAc)	74
4j	$C_{11}H_{15}N_3O_2S$	<u>51.89</u> 52.16	<u>5.64</u> 5.97	<u>16.72</u> 16.59	<u>12.43</u> 12.66	98–100 (гексан)	72
4k	$C_{14}H_{17}N_3O_2S$	<u>57.58</u> 57.71	<u>5.69</u> 5.88	<u>14.57</u> 14.42	<u>11.14</u> 11.00	52–53 (гексан)	70
41	$C_{15}H_{15}N_3O_2S$	<u>59.51</u> 59.78	<u>5.16</u> 5.02	<u>13.71</u> 13.94	<u>10.39</u> 10.64	111–112 (цикло- гексан)	64
5a	$C_{24}H_{21}Cl_2N_5O_4S_2\\$	<u>50.02</u> 49.83	<u>3.60</u> 3.66	<u>12.23</u> 12.11	<u>10.89</u> 11.09	248–251 (EtOH + + ДМФА)	56
5b	$C_{23}H_{18}Cl_3N_5O_4S_2$	<u>46.64</u> 46.13	<u>3.19</u> 3.03	<u>11.37</u> 11.69	<u>11.04</u> 10.71	262–265 (EtOH + + ДМФА)	44

Физико-химические свойства синтезированных соединений

Таблица 2

Спектры ЯМР ¹Н соединений 2–5

1313

Соеди- нение	Химические сдвиги, б, м. д. (Ј, Гц)			
2a	2.85 (3H, c, 6-CH ₃); 2.80 (3H, c, 4-CH ₃)			
3	7.45 (1H, c, H-5); 2.62 (3H, c, 6-CH ₃); 2.55 (3H, c, 4-CH ₃)			
4 a	7.78 (1H, уш. с, NH); 7.62–7.30 (4H, м, Ar); 3.00 (3H, с, 6-CH ₃); 2.85 (3H, с, 4-CH ₃); 2.62 (2H, к, <i>J</i> = 7.6, C <u>H₂</u> CH ₃); 1.22 (3H, т, <i>J</i> = 7.6, CH ₂ C <u>H₃</u>)			
4b	8.02 (1H, уш. с, NH); 7.89 (1H, с, H-2 Ar); 7.64 (1H, д, <i>J</i> = 8.3, H-5 Ar); 7.55 (1H, д, <i>J</i> = 8.3, H-6 Ar); 2.94 (3H, с, 6-CH ₃ Py); 2.82 (3H, с, 4-CH ₃ Py); 2.35 (3H, с, 4-CH ₃ Ar)			
4c	8.85 (1H, c, NH), кольцо фурана: 7.45 (1H, д, $J_{5,4}$ = 1.8, H-5); 6.30 (1H, д. д, $J_{3,4}$ = 3.5, $J_{5,4}$ = 1.8, H-4); 6.20 (1H, д. $J_{3,4}$ = 3.5, H-3); 4.27 (2H, c, CH ₂); 2.65 (3H, c, 6-CH ₃ Py); 2.60 (3H, c, 4-CH ₃ Py)			
4d	8.70 (1H, уш. с, NH); 7.32–7.21 (4H, м, Ar); 4.25 (2H, с, CH ₂); 2.85 (3H, с, 6-CH ₃ Py); 2.75 (3H, с, 4-CH ₃ Py)			
4e	7.41–7.30 (5H, м, Ar); 3.95 (2H, к, <i>J</i> = 7.2, C <u>H</u> ₂ CH ₃); 2.80 (3H, с, 6-CH ₃ Py); 2.65 (3H, с, 4-CH ₃ Py); 1.15 (3H, т, <i>J</i> = 7.2, CH ₂ C <u>H₃</u>)			
4f	3.84 (1H, м, CH ₂ пиперидин.); 3.01 (1H, м, CH ₂ пиперидин.); 2.72 (3H, с, 6- CH ₃ Py); 2.62 (3H, с, 4-CH ₃ Py); 1.75 (1H, м, CH ₂ пиперидин.); 1.62 (1H, м, CH ₂ пиперидин.); 1.30 (1H, м, CH пиперидин.); 1.02 (3H, м, CH ₃)			
4g	3.73 (4H, м, OCH ₂); 3.43 (4H, м, NCH ₂); 2.78 (3H, с, 6-CH ₃ Py); 2.70 (3H, с, 4-CH ₃ Py)			
4h	10.24 (1H, уш. с, NH); 7.70 (1H, с, H-5 Py); 7.24–7.05 (4H, м, Ar); 2.66 (2H, к, <i>J</i> = 7.5, C <u>H</u> ₂ CH ₃); 2.60 (3H, с, 6-CH ₃ Py); 2.55 (3H, с, 4-CH ₃ Py); 1.08 (3H, т, <i>J</i> = 7.5, CH ₂ C <u>H₃</u>)			
4i	8.30 (1H, уш. с, NH); 7.65 (1H, с, H-5), кольцо циклогексана: 3.18 (1H, м, CHN); 1.81 (2H, м, He-2,6); 1.75 (3H, м, He-3,4,5); 1.48 (2H, м, Ha-2,6); 1.21 (1H, м, Ha-4); 1.10 (2H, м, Ha-3,5); 2.62 (3H, с, 6-CH ₃ Py); 2.55 (3H, с, 4-CH ₃ Py)			
4j	8.18 (1H, д, <i>J</i> = 6.8, NH); 7.66 (1H, с, H-5); 3.52 (1H, м, C <u>H</u> (CH ₃) ₂); 2.60 (3H, с, 6-CH ₃ Py); 2.55 (3H, с, 4-CH ₃ Py); 1.12 (6H, д, <i>J</i> = 6.8, CH(C <u>H₃</u>) ₂)			
4k	7.69 (1H, c, H-5); 5.77 (2H, \square , \square , \square , $J = 15.0$, $J = 11.0$, $J = 17.0$, CH ₂ C <u>H</u> =CH ₂); 5.26–5.15 (4H, \square , CH ₂ CH=C <u>H₂</u>); 3.93 (4H, \square , $J = 4.8$, C <u>H₂</u> CH=CH ₂); 2.62 (3H, c, 6-CH ₃ Py); 2.57 (3H, c, 4-CH ₃ Py)			
41	7.72 (1H, c, H-5); 7.40–7.25 (5H, м, Ar); 3.48 (3H, c, N–CH ₃); 2.68 (3H, c, 6-CH ₃ Py); 2.57 (3H, c, 4-CH ₃ Py)			
5a	7.55–7.25 (4H, м, Ar); 2.92 (2H, к, <i>J</i> = 7.6, C <u>H</u> ₂ CH ₃); 2.75 (6H, с, 6-CH ₃ Py); 2.70 (6H, с, 4-CH ₃ Py); 1.22 (3H, т, <i>J</i> = 7.6, CH ₂ C <u>H₃</u>)			
5b	7.82 (1H, c, H-2 Ar); 7.60 (1H, д, <i>J</i> = 8.3, H-5 Ar); 7.51 (1H, д, <i>J</i> = 8.3, H-6 Ar); 7.82–7.51 (3H, м, Ar); 2.82 (6H, c, 6-CH ₃ Py); 2.72 (6H, c, 4-CH ₃ Py); 2.41 (3H, c, 4-CH ₃ Ar)			

Молекулярные ионы сульфониламидов **4а–I** весьма нестабильны. У большинства соединений интенсивность пиков молекулярных ионов

составляет 2–5% и лишь в единичных случаях 10 (4a) и 23% (4i). В массспектрах сульфониламидов 4b,c,g,j и 4k пики молекулярных ионов отсутствуют. Дальнейшая фрагментация имеет много общего и может быть отражена следующей схемой:

Таблица З

Масс-спектры электронного удара соединений 2a, 3, 4a-l, 5a,b

Соеди- нение	<i>m/z (I</i> _{отн} ,%)
2a	264 [M] ⁺ (15), 200 [M–SO ₂] ⁺ (18), 165 [M–SO ₂ C1] ⁺ (100), 138 [165–HCN] ⁺ (34), 130 [165–C1] ⁺ (25), 102 [138–HC1] ⁺ (55)
3	166 [M] ⁺ (100), 130 [M–HCl] ⁺ (30), 104 [130–CN] ⁺ (24), 103 [130–HCN] ⁺ (26)
4 a	349 [M] ⁺ (10), 320 [M–C ₂ H ₅] ⁺ (22), 285 [F ₁] ⁺ (14), 270 [285–CH ₃] ⁺ (30), 256 [320–SO ₂] ⁺ (19), 165 [F ₂] ⁺ (11), 120 [F ₃] ⁺ (100)
4b	305 [F ₁] ⁺ (8), 270 [305–Cl] ⁺ (24), 165 [F ₂] ⁺ (51), 140 [F ₃] ⁺ (100), 105 [140–Cl] ⁺ (44)
4c	261 [F ₁] ⁺ (10), 232 [М–СN, –фурил] ⁺ (17), 165 [F ₂] ⁺ (100), 138 [165–HCN] ⁺ (18), 96 [F ₃] ⁺ (56)
4d	$369 [M]^{+}(2), 305 [F_1]^{+}(6), 165 [F_2]^{+}(51), 140 [F_3]]^{+}(100), 125 [F_3-NH]^{+}(23)$
4e	$349 [M]^{+}(2), 334 [M-CH_3]^{+}(4), 285 [F_1]^{+}(4), 165 [F_2]^{+}(11), 120 [F_3]^{+}(100)$
4 f	$327 [M]^{+}(2), 263 [F_{1}]^{+}(5), 165 [F_{2}]^{+}(23), 98 [F_{3}]^{+}(100)$
4g	251 $[F_1]^+(3)$, 165 $[F_2]^+(14)$, 130 $[165-Cl]^+(10)$, 86 $[F_3]^+(100)$
4h	315 $[M]^+(23)$, 251 $[F_1]^+(16)$, 236 $[251-CH_3]^+(23)$, 222 $[251-C_2H_5]^+(27)$, 131 $[F_2]^+(11)$, 120 $[F_3]^+(100)$
4i	293 $[M]^+(2)$, 250 $[M-C_3H_7]^+(57)$, 186 $[F_1]^+(28)$, 159 $[186-HCN]^+(38)$, 131 $[F_2]^+(49)$, 98 $[F_3]^+(100)$
4j	238 [M–CH ₃] ⁺ (61), 174 [F ₁] ⁺ (42), 131 [F ₂] ⁺ (84), 104 [131–HCN] ⁺ (37), 58 [F ₃] ⁺ (100)
4k	$186 [M-SO_2, -CH_2CH=CH_2]^+(8), 171 [186-CH_3]^+(5), 131 [F_2]^+(23), 96 [F_3]^+(100)$
41	301 [M] ⁺ (5), 237 [F ₁] ⁺ (27), 222 [237–CH ₃] ⁺ (11), 131 [F ₂] ⁺ (16), 106 [F ₃] ⁺ (100), 77
	$[C_6H_5]^+(87)$
5a	449 $[M-2SO_2]^+(3)$, 348 $[M-2SO_2-Het]^+(45)$, 284 $[M-HetSO_2]^+(100)$, 165 $[Het]^+$
	(20), 129 [Het–HCl] ⁺ (10), 119 [M–2HetSO ₂] ⁺ (80)
5b	469 $[M-2SO_2]^+(3)$, 368 $[M-2SO_2-Het]^+(18)$, 304 $[M-HetSO_2]^+(10)$, 260 $[M, H_2SO_2, O]^+(19)$, 165 $[H_2]^+(22)$, 120 $[M, 2]H_2SO_2]^+(102)$
גו ם	$209 \text{ [M-HetsU}_2-\text{Cl} (18), 165 \text{ [Het]} (32), 139 \text{ [M-2HetsU}_2 ((100))$

В ИК спектрах соединений **5а-b** в сравнении со спектрами **4а-b** исчезает полоса поглощения группы NH.

В масс-спектрах соединений 5а-b не содержатся пики молекулярных

ионов, но присутствуют пики фрагментов $[M-SO_2]^+$. Пути дальнейшей фрагментации **5а–b** отражены в табл. 3.

В числе вновь синтезированных сульфониламидов **4a**–**l** найдены соединения, обладающие антидотной и рострегулирующей активностью.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны для суспензий образцов в вазелиновом масле на спектро-фотометре Specord-71 UR-20. Спектры ЯМР ¹Н получены для растворов образцов в ДМСО-d₆ на радиоспектрометре Bruker WM-500 (500 МГц), внутренний стандарт ТМС. Масс-спектры ЭУ записаны на приборе Finnigan МАТ INCOS 50 (энергия ионизации 70 эВ). Элементный анализ на С, Н, N и S синтезированных соединений выполнен на анализаторе Carlo-Erba (модель 1106). Контроль за ходом реакции и чистотой получаемых продуктов осуществлялся методом ТСХ на пластинках Silufol UV-254 в системе гексан–ацетон, 1:1, проявитель – пары иода.

Используемый в синтезе в качестве растворителя бензол очищали от примесей и абсолютировали по известным методикам [8].

Исходные 3-цианопиридин-2-тионы **1а-b** получали по методу [6] из соответствующих 2-хлорникотинонитрилов, синтез которых описан в работе [9].

4,6-Диметил-5-хлор-3-цианопиридин-2-сульфонилхлорид (2а). В суспензию 2.0 г (10 ммоль) тиона **1а** в 20 мл 2 н. НСІ при перемешивании в течение 1 ч барбо-тируют Cl₂, поддерживая температуру реакционной смеси в интервале от -2 до 0 °C. После отключения тока хлора перемешивают при этой же температуре еще 20 мин. Осадок отфильтровывают, промывают на фильтре ледяной водой до ней-тральной реакции, отжимают и сушат в вакуумном эксикаторе при 5–10 мм рт. ст. После перекристаллизации из безводного гексана получают 2.27 г (85%) целевого продукта в виде светло-желтых блестящих кристаллов с т. пл. 79–80 °C.

4,6-Диметил-3-цианопиридин-2-сульфонилхлорид (2b) получают аналогично соединению **2a**, но исключают стадию высушивания и используют продукт сразу же в реакции с амином.

4,6-Диметил-2-хлорникотинонитрил (**3**). А. Продукт **2b** после промывания ледяной водой сушат в вакуумном эксикаторе при 5–10 мм рт. ст., получают нитрил **3** с выходом 81%.

Б. Продукт **2b** после промывания ледяной водой экстрагируют бензолом, вытяжку сушат безводным Na₂SO₄, растворитель отгоняют с помощью ротационного испарителя, получают нитрил **3** с выходом 73%.

Все физико-химические характеристики продукта 3 идентичны таковым соеди-нения, описанного в [9].

N-(2-Этилфенил)-4,6-диметил-5-хлор-3-цианопиридин-2-сульфониламид

(4а). К раствору 0.47 г (4.0 ммоль) 2-этиланилина и 0.38 г (3.8 ммоль) Et_3N в 15 мл безводного бензола при перемешивании добавляют по каплям раствор 1.0 г (3.8 ммоль) сульфонилхлорида 2а, поддерживая температуру реакционной смеси в интервале 10–15 °C. По окончании прибавления перемешивают 0.5 ч при той же температуре, затем при комнатной еще 2–3 ч. Осадок отфильтровывают, отмывают на фильтре водой от Et_3N •HCl, объединяют с остатком, полученным после упаривания маточного раствора, и перекристаллизовывают из EtOAc.

Получают 0.94 г (71%) целевого сульфониламида **4a** с т. пл. 181–182 °С. ИК спектр, v, см⁻¹: 1144, 1362 (SO₂), 1482, 1548, 1589 (С=С, С=N аром.), 2227 (С≡N), 1316

3348 (N–H).

Соединения 4b-d получают аналогично.

4,6-Диметил-5-хлор-3-цианопиридин-2-сульфонилморфолин (**4g**). К раствору 0.90 г (3.4 ммоль) соединения **2a** в 15 мл безводного бензола приливают раствор 0.31 г (3.57 ммоль) морфолина и 0.34 г (3.4 ммоль) Еt₃N в 10 мл безводного бензола и оставляют на 3–4 ч при комнатной температуре. Реакционную массу отфильтровывают от осадка (Et₃N•HCl), раствор упаривают, остаток перекристаллизовывают из смеси гексан–EtOAc, 1:1, получают 0.81 г (76%) сульфониламида **4g** в виде белых кристаллов с т. пл. 154–156 °C. ИК спектр, v, см⁻¹: 1162, 1373 (SO₂), 1562, 1558 (C=C, C=N аром.), 2230 (C=N).

Соединения 4е, f получают аналогично.

N-Метил-N-фенил-4,6-диметил-3-цианопиридин-2-сульфониламид (4I). К суспензии 1.0 г (4.3 ммоль) влажного сульфонилхлорида **2b** в 6 мл воды при температуре 8–10 °C прибавляют по каплям раствор 0.50 г (4.3 ммоль) N-метиланилина и 0.43 г (4.3 ммоль) Et_3N в 2 мл ацетона, поддерживая температуру постоянной. После прибавления аминов перемешивают при той же температуре 1.5–2 ч, затем температуру постепенно поднимают до комнатной и выдерживают еще 1.5–2 ч. Реакционную массу подкисляют конц. HCl до pH 3–4, осадок отфильтровывают, промывают водой, сушат. После перекристаллизации из циклогексана получают 0.84 г (64%) продукта 4I с т. пл. 111–112 °C. ИК спектр, v, см⁻¹: 1134, 1377 (SO₂), 1458, 1527, 1591 (C=C, C=N аром.), 2226 (C=N).

Соединения 4h-к получают аналогично.

N-(2-Этилфенил)-4,6-диметил-5-хлор-3-цианопиридин-2-сульфониламид (4а) и **N-(2-этилфенил)-N,N-бис(4,6-диметил-5-хлор-3-цианопиридин-2-сульфонил)**амин (5а). К раствору 1.20 г (4.5 ммоль) сульфонилхлорида 2а в 15 мл безводного бензола при температуре 10–15 °С добавляют по каплям раствор 0.57 г (4.7 ммоль) 2-этиланилина и 0.48 г (4.5 ммоль) Et₃N в 10 мл безводного бензола. После прибавления аминов перемешивают при той же температуре 0.5 ч, затем при комнатной еще 2–3 ч. Осадок отфильтровывают, обильно промывают водой, сушат. Получают смесь продуктов с R_f 0.46 (4а) и 0.21 (5а) по TCX. Осадок нагревают до кипения с 15 мл EtOAc, отфильтровывают от нерастворившейся части, вытяжку объединяют с остатком, полученным после упаривания маточного раствора и дважды перекристаллизовывают из EtOAc. Получают 0.38 г (29%) продукта 4а с т. пл. 181–182 °С. Осадок, не растворившийся в EtOAc, перекристаллизовывают из смеси EtOH–ДМФА, 1 : 1, получают 0.55 г (56%) продукта 5а в виде белых кристаллов с т. пл. 248–251 °С. ИК спектр, v, см⁻¹: 1138, 1360 (SO₂), 1464, 1541, 1580 (С=С, С=N аром.), 2226 (С=N).

Соединение 5b получают аналогично.

СПИСОК ЛИТЕРАТУРЫ

- 1. Заявка ЕПВ № 1402890, 2004; РЖХим, 18О60П (2004).
- 2. Заявка Японии № 1211567, 1989; РЖХим, 11О48П (1991).
- 3. Пат. США 4761173, 1988; РЖХим, 4О419П (1990).
- 4. Заявка Японии № 1272566, 1989; РЖХим, 40390П (1991).
- 5. Вейганд-Хильгетаг, Методы эксперимента в органической химии, Химия, Москва, 1969, с. 613.
- 6. Е. А. Кайгородова, Л. Д. Конюшкин, М. Е. Ниязымбетов, С. Н. Квак, В. Н. Заплишный, В. П. Литвинов, *Изв. АН, Сер. хим.*, 2215 (1994).

- 7. Л. Беллами, *Инфракрасные спектры сложсных молекул*, Изд-во иностр. лит., Москва, 1963, с. 515.
- 8. А. Вайсбергер, Э. Проскауэр, Дж. Риддик, Э. Тупс, *Органические растворители*, Изд-во иностр. лит., Москва, 1958.
- 9. Л. В. Дядюченко, В. Д. Стрелков, С. Н. Михайличенко, В. Н. Заплишный, *XIC*, 381 (2004). [*Chem. Heterocycl. Comp.*, **40**, 308 (2004)].

Кубанский государственный аграрный университет, Краснодар 350044, Россия e-mail: chem._dmitrieva@mail.ru Поступило 21.04.2006 После доработки 10.06.2008

^аВсероссийский научно-исследовательский институт биологической защиты растений, Краснодар 350039, Россия e-mail: vladstrelkov@yandex.ru

⁶Кубанский государственный технологический университет, Краснодар 350072, Россия e-mail: e_kaigorodova@mail.ru