Д. Ю. Косулина, В. К. Василин, Т. А. Строганова, Е. А. Сбитнева, А. В. Бутин, Г. Д. Крапивин*

ФЕНИЛФУРИЛТИЕНО[2,3-*b*]ПИРИДИНИЛМЕТАНЫ: СИНТЕЗ И РЕАКЦИИ ТРАНСФОРМАЦИИ ФУРАНОВОГО ЦИКЛА

Впервые получены производные триарилметана с разными заместителями: фенильным, 5-метил-2-фурильным и 3-ациламинотиено[2,3-*b*]пиридин-2-ильным. Изучено поведение этих соединений в протолитических условиях. Показано, что характер защиты аминогруппы тиенопиридинового фрагмента влияет на тип трансформации фуранового кольца.

Ключевые слова: 3-амино-2-бензоилтиено[2,3-*b*]пиридины, N-[2-(2,5-диоксо-1-фенилгексил)тиено[2,3-*b*]пиридин-3-ил]бензамиды, (фенил)(2-ациламинотиено-[2,3-*b*]пиридин-2-ил)карбинолы, (фенил)(5-метилфур-2-ил)(2-ациламинотиено[2,3-*b*]пиридин-2-ил)метаны, 4-(3-фенил-1Н-пирроло[2',3':4,5]тиено[2,3-*b*]пиридин-2ил)-бутан-2-оны, алкилирование, ацилирование, восстановление, трансформация фу-ранового цикла.

Производные бензилфурана типа **A**, содержащие функциональную группу X в *орто*-положении бензольного кольца, привлекательны как полупродукты для получения самых разнообразных конденсированных карбо- и гетероциклических соединений [1]. В зависимости от характера заместителя X в принципе возможны два пути превращений: 1) замыкание гетеро- или карбоцикла между фурановым и бензольным кольцами с образованием продуктов типа **B** [2, 3]; 2) раскрытие гетероцикла и аннелирование бензольного ядра с образованием продукта типа **C** (схема 1).

Схема 1

По второму пути, названному нами "furan ring opening – heterocycle ring closing" [4], получены производные бензофурана [5, 6], индола [4, 7], изохромона [8], изохинолона [9, 10], бензопирана [11] и циннолина [12]. В частности, производные индола типа C (Z = NTs) синтезированы нами исходя из *орто*-аминоациларенов **D** (схема 2), превращенных через карбинолы **E** в соединения типа **A** (X = NHTs).

Схема 2

Задача настоящей работы – показать возможность использования аналогов соединений **A** с гетероциклическим ациламинозамещенным фрагментом в трансформациях по пути 2. Для ее решения в качестве исходных были выбраны легкодоступные аналоги соединений **D** – производные 3-амино-2-ацилтиено[2,3-*b*]пиридина **1**, получаемые по реакции Торпа из соответствующих 3-цианопиридин-2-тионов [13].

В работе [14] мы показали, что прямое превращение аминокетонов 1 в соответствующие карбинолы действием NaBH₄ невозможно: вместо них образуются производные 6-фенил-7,12-дитиа-1,5,8-триазаиндено[1,2-*a*]флуорена – продукты межмолекулярной димеризации, сопровождающейся элиминированием бензонитрила. Поэтому перед восстановлением карбонильной группы была проведена ацильная защита аминогруппы соединений 1. Известно [4, 7], что такая защита необходима и на следующей стадии алкилирования фурана карбинолами. Ациламинопроизводные 2 получены с высокими выходами (70–95%, табл. 1) кипячением аминокетонов 1 с соответствующими хлорангидридами карбоновых кислот в диоксане или толуоле по методике [15] (схема 3).

Схема 3

1 а $R = R^1 = Me$, b $R = CH_2OMe$, $R^1 = Me$, c $R = R^1 = Ph$, d R = 5-метил-2-фурил, $R^1 = Ph$, е $R = C_6H_4Br-4$, $R^1 = Ph$; 2, 3 а-е $R^2 = Ph$, а $R = R^1 = Me$, b $R = CH_2OMe$, $R^1 = Me$, c $R = R^1 = Ph$, d R = 5-метил-2-фурил, $R^1 = Ph$, е $R = C_6H_4Br-4$, $R^1 = Ph$, f $R = R^1 = Me$, $R^2 = 2$ -фурил, g $R = CH_2OMe$, $R^1 = Me$, $R^2 = 2$ -фурил, h $R = CH_2OMe$, $R^1 = Me$, $R^2 = 2$ -теноил, i $R = R^1 = R^2 = Me$, j $R = CH_2OMe$, $R^1 = R^2 = Me$

Отметим, что аминокетоны 1 не реагируют с ангидридами карбоновых кислот, например, кипячение соединений 1 в избытке уксусного ангидрида в течение 5–6 ч не приводит к образованию заметных количеств продуктов типа 2.

Ацилпроизводные **2а**–**ј** представляют собой бесцветные кристаллические вещества с четкими температурами плавления (табл. 1). В ИК спектрах этих соединений (табл. 2) имеются две узкие интенсивные полосы поглощения в области 1630–1635 и 1670–1680 см⁻¹, соответствующие валентным колебаниям амидной и кетонной карбонильных групп. Присутствует также широкая полоса поглощения в области 3230–3360 см⁻¹, отвечающая валентным колебаниям амидной связи N–H. В спектрах ЯМР ¹Н соединений **2** (табл. 3) наряду с сигналами H_{Ph} и H_{Het} имеются сигналы протонов введенного N-ацильного фрагмента и однопротонный синглет группы NHCO.

Общим для фрагментации (электронный удар, 70 эВ) молекулярных ионов соединений 1, 2 является образование на первом этапе катиона Φ_1 (схема 4), который имеет в масс-спектрах аминокетонов 1 максимальную интенсивность, а в спектрах их ацилпроизводных 2 составляет 60–80% от максимальной в этом случае интенсивности пика катиона R^2CO^+ .

Схема 4

Второй шаг фрагментации – термодинамически невыгодный процесс отрыва радикала PhCO от катиона Φ_1 – приводит к нечетноэлектронному фрагменту Φ_2 .

Восстановление карбонильной группы соединений **2** борогидридом натрия в этаноле при температуре 40–60 °С приводит к соответствующим спиртам **3** с выходами 75–90% (схема 3, табл. 1). Продукты **3а–j** – бесцветные кристаллические вещества с четкими температурами плавления. В ИК спектрах спиртов **3** имеются полосы валентных колебаний группы ОН в области 3381–3245 см⁻¹, а полоса поглощения амидной группы NH в сравнении с аналогичной полосой в спектрах соответствующих кетонов **2** 1382

смещена в длинноволновую область 3380-3417 см⁻¹. Спектры ЯМР ¹Н также свидетельствуют о наличии группировки СН-ОН, протоны которой имеют КССВ ~ 3.0-4.5 Гц (табл. 3). Синглетный сигнал группы CONH нахо-дится в слабом поле в области 9.4-10.1 м. д. Восстановление спиртовой приводит кетонной группы до к образованию асимметрического центра в молекулах спиртов, что четко проявляется в спектрах соединений **3b**,**g**,**h**,**j**, имеющих группу CH₂OCH₃: прохиральные метиленовые протоны в молекулах спиртов становятся диастереотопными и резонируют в виде пары однопротонных дублетов с общей геминальной КССВ J = 14.5 Гц.

Молекулярные ионы спиртов **3** крайне неустойчивы и не фиксируются при стандартных значениях энергии ионизирующих электронов. Первый шаг их фрагментации – перегруппировка с элимированием молекулы воды – является общим для всей серии исследованных соединений. Образовавшийся катион-радикал [M–18] распадается по двум направлениям: с отщеплением молекул R^2CN и R^2NCO . При $R^2 = Alk$ (соединения **3i**,**j**) параллельно происходит и простой отрыв радикала R^2 .

Фурилгетарилметаны 4a-i получены алкилированием 2-метилфурана спиртами 3a-i: кипячением эквимолярных количеств реагентов в диоксане (3–12 ч) в присутствии катализатора, представляющего собой смесь 70% хлорной кислоты, уксусного ангидрида и ледяной уксусной кислоты (схема 5).

Схема 5

Проведение реакции с помощью указанной каталитической системы дает возможность даже при длительном контакте с кислотным катализатором уменьшить осмоление фуранового субстрата и предотвратить побочные превращения как исходного метилфурана, так и продуктов реакции 4, содержащих ацидофобное фурановое кольцо. Выделенные из реакционной среды с выходами 65–95% продукты 4а–і представляют собой бесцветные кристаллические соединения, растворимые в хлористом метилене, этилацетате, спирте (табл. 1).

В спектрах ЯМР ¹Н метанов **4** (табл. 3) присутствуют сигналы двух β -протонов фуранового кольца в виде пары дублетов в области 6.0–6.1 м. д. с типичной КССВ ³J = 2.8–3.3 Гц и синглетный сигнал протонов метильной группы в положении 5 фуранового фрагмента. Метиновый протон у центрального *sp*³-гибридизованного атома углерода резонирует как синглет в области 5.8–6.0 м. д. Диастереотопные протоны метиленового звена группы CH₂OCH₃ соединений **4b**,**g**,**h**, также как и в спектрах соответствующих спиртов **3b**,**g**,**h**, резонируют как пара однопротонных дублетов с ${}^{2}J = \sim 14 \Gamma \mu$.

Молекулярные ионы метанов **4** мало интенсивны, а для соединений **4b**,**g**, имеющих метоксиметильный фрагмент, вообще отсутствуют: наибольшее значение m/z имеют пики катион-радикалов [М–СН₃OH]. Типичная последовательность реакций фрагментации молекулярного иона (или иона [М–СН₃OH]) – отщепление радикала R²CO и следующая за ним перегруппировка с экструзией молекулы кетена. Отметим во всех массспектрах этого ряда соединений наличие характеристичного пика (фенил)-(5-метил-2-фурил)метильного катиона с m/z 171.

Исследование поведения метанов 4 в кислой среде (уксусная кислота с добавлением соляной кислоты или этанол, насыщенный сухим HCl) показало, что характер протекающих превращений зависит от типа ацильного заместителя у атома азота. Длительное кипячение (до 8 ч) соединений 4b-d,g,h, имеющих арильный или гетарильный заместитель \mathbb{R}^2 , приводит только к продуктам гидролитического раскрытия фуранового кольца 5а-е, без образования продуктов рециклизации типа 6 (схема 6). Следует отметить, что в реакционной смеси устанавливается равновесие между исходными фуранами 4 и дикетонами 5, причем в уксусной кислоте заметно быстрее, чем в этаноле.

Схема 6

5 а $R = CH_2OMe$, $R^1 = Me$, $R^2 = Ph$, **b** $R = R^1 = R^2 = Ph$, **c** R = 5-метил-2-фурил, $R^1 = R^2 = Ph$, **d** $R = CH_2OMe$, $R^1 = Me$, $R^2 = 2$ -фурил, **e** $R = CH_2OMe$, $R^1 = Me$, $R^2 = 2$ -теноил

Факт равновесия между исходным и конечным продуктами реакции подтвержден нами экспериментально: в тех же условиях дикетон **5b** через небольшое время (~1 ч) образует, по данным спектров ЯМР ¹H, аналогичную равновесную смесь (~2 : 3) соединений **4c** и **5b**.

Дикетоны **5а–е** представляют собой бесцветные кристаллические вещества (табл. 1). В ИК спектрах этих соединений присутствуют полосы валентных колебаний трех карбонильных групп: двух кетонных в области 1701–1716 и амидной в области 1647–1682 см⁻¹ (табл. 2). В спектрах ЯМР ¹Н имеются два триплетных сигнала метиленовых протонов в области 2.6–2.9 м. д., имеющих вицинальную КССВ ³J = 5.8–6.4 Гц, и синглетный сигнал протонов ацетильной группы при 2.0–2.1 м. д. (табл. 3). Формально диастереотопные протоны метиленового звена 1384

метоксиметильной группы соединений **5**а,**d**,**e** резонируют в спектрах ЯМР как гомотопные в виде двухпротонного синглета при 4.7–4.8 м. д. Возможно, это следствие быстро протекающей инверсии асимметрического центра в результате кето-енольной таутомерии с участием атома водорода метинового звена и соседней с ним карбонильной группы.

Молекулярные ионы соединений **5** нестабильны и не фиксируются в масс-спектрах (табл. 4). Они распадаются двумя путями (схема 7) по одной и той же связи между метиновым атомом углерода и соседней карбонильной группой, что свидетельствует о локализации заряда и спина именно на атоме кислорода "внутренней" карбонильной группы.

Схема 7

В результате протекают две классические для масс-спектрометрии реакции: диссоциация с отщеплением ацильного радикала и образованием катиона [М–99] и перегруппировка с элиминированием молекулы кетена и образованием нечетноэлектронного фрагмента [М–98]. Последний выбрасывает ацильный радикал, давая устойчивый аминогетарилфенилметильный катион [М–98–R²CO].

В отличие от соединений **4b–d**,**g**,**h** ацетиламинопроизводное **4i** в тех же условиях гладко превращается в соответствующий продукт рециклизации и деацетилирования – производное пирролотиенопиридина **7a** (схема 8). Отметим, что подобную трансформацию, включающую две реакции, мы наблюдали ранее для ароматических аналогов [7, 16, 17]. Превращение **4i** \rightarrow **7a** происходит в этаноле за более короткое время и с более высоким выходом, чем в уксусной кислоте.

Схема 8

Таблица 1

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %		Тлл °С	Выход,	
нение	формула	C	H	N	1. III., C	%
1	2	3	4	5	6	7
2c	$C_{33}H_{22}N_2O_2S$	<u>77.55</u> 77.62	<u>4.33</u> 4.34	<u>5.53</u> 5.49	153–154	85
2d	$C_{32}H_{22}N_2O_3S$	<u>74.63</u> 74.69	<u>4.25</u> 4.31	<u>5.54</u> 5.44	185–186	60
2e	$\mathrm{C}_{33}\mathrm{H}_{21}\mathrm{BrN}_{2}\mathrm{O}_{2}\mathrm{S}$	<u>67.33</u> 67.24	<u>3.50</u> 3.59	$\frac{4.58}{4.75}$	203–204	80
2h	$C_{22}H_{18}N_2O_3S_2$	<u>62.67</u> 62.54	<u>4.37</u> 4.29	<u>6.54</u> 6.63	169–170	70
2i	$C_{18}H_{16}N_2O_2S$	<u>66.75</u> 66.64	<u>5.06</u> 4.97	<u>8.77</u> 8.64	161–162	50
2j	$C_{19}H_{18}N_2O_3S$	<u>64.47</u> 64.39	<u>4.98</u> 5.12	<u>7.82</u> 7.90	166–167	45
3c	$C_{33}H_{24}N_2O_2S$	<u>77.43</u> 77.32	<u>4.58</u> 4.72	<u>5.39</u> 5.46	257–258	90
3d	$C_{32}H_{24}N_2O_3S$	<u>74.52</u> 74.40	$\frac{4.81}{4.68}$	<u>5.56</u> 5.42	200–201	70
3e	$C_{33}H_{23}BrN_2O_2S$	<u>67.13</u> 67.01	<u>3.99</u> 3.92	<u>4.59</u> 4.74	222–223	90
3f	$C_{21}H_{18}N_2O_3S$	<u>66.57</u> 66.65	<u>4.91</u> 4.79	<u>7.50</u> 7.40	137–138	85
3h	$C_{22}H_{20}N_2O_3S_2$	<u>62.33</u> 62.24	<u>4.68</u> 4.75	<u>6.68</u> 6.60	165–166	80
3i	$C_{18}H_{18}N_2O_2S$	<u>66.27</u> 66.23	<u>5.66</u> 5.58	<u>8.66</u> 8.58	178–179	73
3ј	$C_{19}H_{20}N_2O_3S$	<u>64.07</u> 64.02	<u>5.56</u> 5.66	<u>7.75</u> 7.86	133–134	72
4a	$C_{28}H_{24}N_2O_2S$	<u>74.25</u> 74.31	<u>5.21</u> 5.35	<u>6.30</u> 6.19	229–230	80
4b	$C_{29}H_{26}N_2O_3S$	<u>72.22</u> 72.17	<u>5.52</u> 5.43	<u>5.93</u> 5.80	204–205	75
4c	$C_{38}H_{28}N_2O_2S$	<u>79.27</u> 79.14	$\frac{4.85}{4.89}$	$\frac{4.71}{4.86}$	198–199	71
4d	$C_{37}H_{28}N_2O_3S$	<u>76.64</u> 76.53	<u>4.76</u> 4.86	<u>4.86</u> 4.82	218–219	60
4 e	$C_{38}H_{27}BrN_2O_2S$	<u>69.73</u> 69.62	<u>4.02</u> 4.15	<u>4.37</u> 4.27	>135 (разл.)	65
4f	$C_{26}H_{22}N_2O_3S$	<u>70.71</u> 70.57	<u>5.13</u> 5.01	<u>6.40</u> 6.33	229–230	95
4g	$C_{27}H_{24}N_2O_4S$	<u>68.57</u> 68.62	<u>5.01</u> 5.12	<u>5.83</u> 5.93	144–145	80
4h	$C_{27}H_{24}N_2O_3S_2$	<u>66.49</u> 66.37	<u>4.84</u> 4.95	<u>5.81</u> 5.73	197–198	82
4i	$C_{23}H_{22}N_2O_2S$	<u>70.65</u> 70.74	<u>5.78</u> 5.68	<u>7.26</u> 7.17	187–188	30
5a	$C_{29}H_{28}N_2O_4S$	<u>69.69</u> 69.58	<u>5.55</u> 5.64	<u>5.69</u> 5.60	132–133	27
				Око	 ончание 1	габлицы 1
1	2	3	4	5	6	7
1386						

d	Бизико-химицеские	Vanakte	пистики	синтери	NODAUULIX	соепинений
	ризнко лими исские	ларакте	pherman	chillesh	popannibia	сосдинении

5b	$C_{38}H_{30}N_2O_3S$	<u>76.78</u> 76.74	<u>4.99</u> 5.08	<u>4.63</u> 4.71	169–170	32
5c	$C_{37}H_{30}N_2O_4S$	<u>74.33</u> 74.23	<u>4.97</u> 5.05	<u>4.81</u> 4.68	181–182	25
5d	$C_{27}H_{26}N_2O_5S$	<u>66.22</u> 66.10	<u>5.23</u> 5.34	<u>5.64</u> 5.71	121–122	35
5e	$C_{27}H_{26}N_2O_4S_2$	<u>63.93</u> 64.01	<u>5.27</u> 5.17	<u>5.59</u> 5.53	171–172	40
7a	$C_{21}H_{20}N_2OS$	<u>72.49</u> 72.38	<u>5.91</u> 5.79	<u>7.94</u> 8.04	178–179	67
7b	$C_{22}H_{22}N_2O_2S$	<u>69.88</u> 69.81	<u>5.77</u> 5.86	<u>7.48</u> 7.40	>230 (возг.)	40

ИК спектры синтезированных соединений

ИК спектр, Соеди-ИК спектр, Соеди-<u>v</u>, см⁻¹ <u>v</u>, см⁻¹ нение нение 2c 3230 (NH), 1645 (C=O) 4c 3272 (NH), 1652 (C=O) 3267 (NH), 3147-3029 2d 3369 (NH), 1676 (C=O) 4d (С-Н аром), 1645 (С=О) 2e 3209 (NH), 1651 (C=O) 3636-3100 (NH), 4e 3057 (С-Н аром), 1665 (С=О) 2h 3354 (NH), 1666 (C=O), 4f 3471-3150 (NH), 3028 (С-Н аром), 1650 (С=О) 1625 (C=O) 2i 3245 (NH), 1662 (C=O), 3251 (NH), 3058 (С-Н аром), 4g 1645 (C=O) 1672 (C=O) 3431, 3134 (NH), 1697 (C=O), 3286 (NH), 3093-3027 2j 4h 1635 (C=O) (С-Н аром), 1637 (С=О) 3c 3232 (OH), 1630 (C=O) 4i 3272 (NH), 1654 (C=O) 3d 3380 (OH), 1647 (C=O) 3330 (NH), 1710 (С=О кетон), 5a 1668 (С=О амид) 3423 (NH), 1716 (С=О кетон), 3e 3384 (OH), 3217, 3185 (NH), 5b 1626 (C=O) 1701 (С=О кетон), 1682 (С=О амид) 3f 3245 (NH), 1655 (C=O) 3305 (NH), 1710 (С=О кетон), 5c 1647 (С=О амид) 3h 3240 (OH), 1633 (C=O) 5d 3270 (NH), 1714 (С=О кетон), 1673 (С=О амид) 3373 (NH), 1701 (С=О кетон), 3i 3280-3120 (уш. пик, 5e NH и OH), 1652 (C=O) 1655 (С=О амид) 3384 (OH), 3230, 3185 (NH), 3j 7a 3262 (NH), 1715 (C=O) 1654 (C=O) 3278 (NH), 3122-3093 7b 3485 (NH), 1712 (C=O) 4a (С-Н аром), 1648 (С=О) 4b 3278 (NH), 3122-3062 (С-Н аром), 1654 (С=О)

Спектры ЯМР ¹Н синтезированных соединений

Таблица З

Таблица 2

Соеди- нение	Химические сдвиги, δ, м. д., КССВ (Ј, Гц)
1	2
2c	6.95 (4H, д, <i>J</i> = 7.3, <i>o</i> -H 4-, 6-Ph); 7.11–7.60 (12H, м, <i>m</i> -, <i>p</i> -H 4-, 6-Ph, PhCO, PhCN); 7.75 (2H, д, <i>J</i> = 6.8, <i>o</i> -H PhCO); 7.92 (1H, c, H-5); 8.30 (2H, д, <i>J</i> = 7.8, <i>o</i> -H PhCON); 9.56 (1H, c, NH)
2d	1.81 (3H, c, CH ₃); 6.09 (1H, д, <i>J</i> = 2.9, H-4 метилфурил); 7.02 (1H, д, <i>J</i> = 2.9, H-3 метилфурил); 7.25–7.65 (11H, м, H аром); 7.78 (2H, д, <i>J</i> = 2.8, <i>o</i> -H PhCON); 8.13 (1H, c, H-5); 8.30 (2H, д, <i>J</i> = 8.3, <i>o</i> -H PhCO); 10.14 (1H, c, NH)
2e	6.96 (2H, д, $J = 7.3$, <i>o</i> -H C ₆ H ₄ Br-4); 7.22 (2H, т, $J = 8.1$, <i>m</i> -H 6-Ph); 7.30–7.46 (9H, м, H аром.); 7.55 (2H, д, $J = 7.3$, <i>m</i> -H C ₆ H ₄ Br-4); 7.74 (2H, д, $J = 7.3$, <i>m</i> -H PhCO); 7.95 (1H, c, H-5); 8.30 (2H, д, $J = 7.3$, <i>o</i> -H PhCON); 9.70 (1H, c, NH)
2h	2.50 (3H, с, 4-CH ₃); 3.32 (3H, с, OCH ₃); 4.92 (2H, с, OCH ₂); 7.10 (1H, т, <i>J</i> = 3.9, H-3 теноил); 7.32–7.49 (5H, м, 2 <i>m</i> -H, <i>p</i> -H PhCO, H-5, H-4 теноил); 7.57 (1H, д, <i>J</i> = 3.4, H-5 теноил); 7.77 (2H, д, <i>J</i> = 7.8, <i>o</i> -H PhCON); 10.24 (1H, с, NH)
2i	1.50 (3H, c, CH ₃ CO); 2.57 (3H, c, 4-CH ₃); 2.62 (3H, c, 6-CH ₃); 7.19 (1H, c, H-5); 7.52 (2H, т, <i>J</i> = 7.3, C ₆ H ₅); 7.62–7.74 (3H, м, C ₆ H ₅); 9.76 (1H, c, NH)
2j	1.52 (3H, c, CH ₃ CO); 2.63 (3H, c, 6-CH ₃); 3.95 (3H, c, OCH ₃); 4.92 (2H, c, OCH ₂); 7.43 (1H, c, H-5); 7.52 (2H, т, <i>J</i> = 8.1, C ₆ H ₅); 7.60–7.70 (3H, м, C ₆ H ₅); 9.82 (1H, c, NH)
3c	6.12 (1H, д, <i>J</i> = 4.4, <u>CH</u> OH); 6.44 (1H, д, <i>J</i> = 4.4, OH); 7.06–7.54 (18H, м, H аром.); 7.74 (1H, с, H-5); 8.15–8.26 (2H, м, H PhCO); 9.54 (1H, с, NH)
3d	1.96 (3H, c, CH ₃ метилфурил); 6.00 (1H, д, <i>J</i> = 4.39, C <u>H</u> OH); 6.22 (1H, уш. c, OH); 6.50 (1H, д, <i>J</i> = 2.4, H-4 метилфурил); 6.88 (1H, д, <i>J</i> = 2.4, H-3 метилфурил); 7.25 (2H, д, <i>J</i> = 7.3, <i>m</i> -H PhCON); 7.36–7.65 (9H, м, H аром.); 7.80 (2H, д, <i>J</i> = 7.3, <i>o</i> -H <u>Ph</u> CH)); 7.96 (1H, c, H-5); 8.20 (2H, д, <i>J</i> = 6.8, <i>m</i> -H 6-Ph); 9.97 (1H, c, NH)
3e	6.13 (1H, д, <i>J</i> = 4.4, <u>CH</u> OH); 6.50 (1H, д, <i>J</i> = 4.4, OH); 7.15–7.56 (17H, м, H аром.); 7.76 (1H, с, H-5); 8.19 (2H, д, <i>J</i> = 6.6, <i>m</i> -H PhCO); 9.62 (1H, с, NH)
3f	2.47 (6H, c, 4-, 6-CH ₃); 6.02 (1H, д, <i>J</i> = 4.4, C <u>H</u> OH); 6.36 (1H, д, <i>J</i> = 4.4, OH); 6.72 (1H, c, H-3 фуроил); 7.02 (1H, c, H-5); 7.17–7.34 (4H, м, 3H Ph, H-4 фуроил); 7.37 (2H, д, <i>J</i> = 6.6, <i>o</i> -H аром.); 7.95 (1H, c, H-2 фуроил); 9.97 (1H, уш. c, NH)
3h	2.6 (3H, c, 6-CH ₃); 3.27 (3H, c, OCH ₃); 4.74 (1H, д, $J = 14.4$, OCH ₂); 4.76 (1H, д, $J = 14.4$, OCH ₂); 6.03 (1H, д, $J = 2.9$, C <u>H</u> OH); 6.51 (1H, д, $J = 2.9$, OH); 7.21–7.41 (7H, м, 5 H Ph, <u>H</u> -5, H-4 теноил); 7.91 (1H, д, $J = 4.4$, H-3 теноил); 7.96 (1H, д, $J = 3.4$, H-5 теноил); 10.04 (1H, c, NH)
3i	2.03 (3H, c, CH ₃ CO); 3.35 (6H, c, 4-, 6-CH ₃); 5.98 (1H, д, <i>J</i> = 3.7, C <u>H</u> OH); 6.36 (1H, д, <i>J</i> = 3.7, OH); 7.00 (1H, c, H-5); 7.2 –7.4 (5H, м, C ₆ H ₅); 9.51 (1H, c, NH)
3ј	2.04 (3H, c, CH ₃ CO); 2.55 (3H, c, 6-CH ₃); 3.35 (3H, c, OCH ₃); 4.75 (1H, π , $J = 14.7$, OCH ₂); 4.77 (1H, π , $J = 14.7$, OCH ₂); 5.96 (1H, π , $J = 3.7$, CHOH); 6.40 (1H, π , $J = 3.7$, OH); 7.22–7.42 (6H, π , C ₆ H ₅ , H-5); 9.44 (1H, c, NH)
4a	2.21 (3H, c, CH ₃ метилфурил); 2.5 (6H, c, 4-, 6-CH ₃); 5.85 (1H, c, PhC <u>H</u>); 6.01 (1H, д, <i>J</i> = 3.1, H-4 метилфурил); 6.06 (1H, д, <i>J</i> = 3.1, H-3 метилфурил); 7.06 (1H, c, H-5); 7.26 (2H, д, <i>J</i> = 7.94, <i>o</i> -H PhCON); 7.30–7.35 (3H, м, <i>o</i> -, <i>p</i> -H PhCH); 7.51–7.65 (3H, м, <i>м</i> -, <i>p</i> -H PhCON); 7.97 (2H, д, <i>J</i> = 7.9, <i>м</i> -H <u>Ph</u> CH); 10.13 (1H, c, NH)
4b	2.22 (3H, c, CH ₃ метилфурил); 2.58 (3H, c, 6-CH ₃); 3.28 (3H, c, OCH ₃); 4.76 (1H, д, <i>J</i> = 14.0, OCH ₂); 4.79 (1H, д, <i>J</i> = 14.0, OCH ₂); 5.86 (1H, c, PhC <u>H</u>); 6.0 (1H, д, <i>J</i> = 2.8, H-4 метилфурил); 6.10 (1H, д, <i>J</i> = 2.8, H-3 метилфурил); 7.3 (6H, м, C ₆ H ₅ , H-5); 7.52–7.66 (3H, м, <i>м</i> -, <i>p</i> -H PhCON); 7.97 (2H, д, <i>J</i> = 7.4, <i>o</i> -H PhCH); 10.02 (1H, c, NH)
	Окончание таблицы 3

4c	2.2 (3H, c, CH ₃ метилфурил); 5.92 (1H, c, PhC <u>H</u>); 6.04 (1H, д, J = 2.9, H-4
	метилфурил); 6.10 (1H, д, J = 2.9, H-3 метилфурил); 7.02-7.55 (18H, м,
	Н аром.); 7.76 (1H, c, H-5); 8.19 (2H, д, <i>J</i> = 6.4, <i>o</i> -H <u>Ph</u> CH); 9.65 (1H, c, NH)
4d	1.89 (3H, с, CH ₃ метилфурил-CH); 2.23 (3H, с, CH ₃ 4-метилфурил); 6.02
	(IH, с, PhC <u>H</u>); 6.10 (2H, д, $J = 2.9$, метилфурил-CH); 6.90 (2H, д, $J = 2.9$, CH, 4 состать (2H, 2, 2); 7.21, 7.25 (5H, со. 11 состать); 7.41, 7.50 ((H, со. 11 состать));
	CH_3 4-метилфурил); 7.21–7.55 (5H, M, H apom.); 7.41–7.59 (6H, M, H apom.); 7.77 (2H π $I = 7.3$ c.H PbCH): 7.07 (1H c.H.5): 8.18 (2H π $I = 6.6$ c.H
	PhCON): 10.08 (1H. c. NH)
4 e	2.23 (3H с CH ₂ метилфурил): 5.94 (1H с PhCH): 6.02 (1H л $J = 2.9$ H-4
	метилфурил); 6.10 (1H, д, $J = 2.9$, H-3 метилфурил); 7.22–7.58 (17H, м,
	Н аром.); 7.75 (1H, c, H-5); 8.18 (2H, д, J = 5.9, <i>o</i> -H PhCON); 9.57 (1H, c, NH)
4f	2.2 (3H, c, CH ₃ метилфурил); 2.5 (6H, c, 4,6-CH ₃); 5.81 (1H, c, PhC <u>H</u>);
	6.02 (1H, д, <i>J</i> = 2.9, H-4 метилфурил); 6.06 (1H, д, <i>J</i> = 2.9, H-3 метилфурил);
	6.71 (1H, д, $J = 3.5$, H-4 фуроил); 7.05 (1H, д. д, $J = 3.5$, $J = 1.9$, H-3 dynamics); 7.20, 7.28 (6H, у. С. H. Ц. 5); 7.04 (1H, д. $J = 1.0$, Ц.5 dynamics);
	ψ ypoun), 7.20–7.38 (on, M, C ₆ n ₅ , n-5), 7.94 (in, d, J – 1.9, n-5 ψ ypoun), 10.03 (iH c NH)
4σ	2 22 (3H с CH ₂ метилфурил): 2 6 (3H с 6-CH ₂): 3 27 (3H с ОСH ₂): 4 74
•ь	$(1H, d, J = 14.2, OCH_2);$ 4.78 $(1H, d, J = 14.2, OCH_2);$ 5.82 $(1H, c, PhCH);$
	6.00 (1H, д, <i>J</i> = 2.9, H-4 метилфурил); 6.06 (1H, д, <i>J</i> = 2.9, H-3 метилфурил);
	6.73 (1Н, д. д, <i>J</i> = 1.5, <i>J</i> = 3.9, Н-4 фуроил); 7.21–7.36 (7Н, м, 5Н Рh, H-5, H-3
	фуроил); 7.96 (1Н, д, <i>J</i> = 1.5, Н-5 фуроил); 9.98 (1Н, с, NH)
4h	2.22 (3H, c, CH ₃ Metundypun); 2.6 (3H, c, 6-CH ₃); 3.27 (3H, c, OCH ₃); 4.76 (1H $_{\rm T}$ $L = 14.2$ OCH); 5.82 (1H $_{\rm C}$ DbCH);
	$(111, 2, 3 = 14.2, 0011_2), 4.78 (111, 2, 3 = 14.2, 0011_2), 5.82 (111, 0, 1101_1), 6.03 (114 л. J = 2.9 H-4 метилфурил). 6.07 (114 л. J = 2.9 H-3 метилфурил).$
	7.21–7.37 (7Н, м, C ₆ H ₅ , H-5, H-4 теноил); 7.88 (1H, д, $J = 4.9$, H-3 теноил);
	7.97 (1H, д, J = 3.9, H-5 теноил); 10.08 (1H, с, NH)
4i	2.04 (6H, c, CH ₃ CO, CH ₃ метилфурил); 2.23 (6H, c, 4-, 6-CH ₃); 5.77 (1H, c,
	РhC <u>H</u>); 6.02 (1H, д, <i>J</i> = 3.2, H-4 метилфурил); 6.04 (1H, д, <i>J</i> = 3.2, H-3
_	метилфурил); 7.03 (1H, c, H-5); 7.21–7.38 (5H, м, C_6H_5); 9.57 (1H, c, NH)
5a	2.0/ (3H, c, CH ₃ CO); 2.63 (2H, T, $J = 6.4$, CH ₂ CO); 2.82 (2H, T, $J = 6.4$, CH CH CO); 2.3 (2H c OCH); 4.76 (2H c OCH); 5.71 (1H c PbCH);
	C_{112}
	J = 6.4, o-H PhCO); 10.09 (1H, c, NH)
5b	2.07 (3H, с, CH ₃); 2.64 (2H, т, J = 6.4, CH ₂ CO); 2.84 (2H, т, J=6.4,
	С <u>H</u> ₂ CH ₂ CO); 5.74 (1H, c, C <u>H</u> Ph); 7.02–7.58 (18H, м, H аром.); 7.75 (1H, c,
	H-5); 8.20 (2H, π , $J = 6.4$, o -H PhCO); 9.63 (1H, c, NH)
5c	1.86 (1H, с, CH ₃ метилфурил); 2.07 (3H, с, CH ₃ CO); 2.65 (2H, т, $J = 5.9$, CH CO) 2.05 (2H, τ , $J = 5.9$, CH CO) 2.05 (2H, {T} = 5.9, CH CO) 2.05 (
	(H_2CO) ; 2.85 (2H, T, $J = 5.9$, (H_2CH_2CO) ; 5.85 (1H, C, PICH); 6.01 (1H, J , $J = 3.7$ H-4 метинфурми); 6.9 (1H, $J = 3.7$ H-3 метинфурми); 7.28–7.37
	(2H, M, o-H, PhCH): 7.44–7.63 (9H, M, H anom): 7.87 (2H, T, $J = 6.6, o-H$
	6-Ph); 7.95 (IH, c, H-5); 8.18 (2H, д, J = 7.3, <i>о</i> -Н PhCO); 10.07 (1H, c, NH)
5d	2.07 (3H, c, CH ₃ CO); 2.63 (2H, T, J = 6.9, CH ₂ CO); 2.81 (2H, T, J = 6.9,
	CH ₂ CH ₂ CO); 3.28 (3H, c, OCH ₃); 4.74 (2H, c, OCH ₂); 5.69 (1H, c, PhC <u>H</u>);
	6.76 (1H, д. д. J = 3.0, J = 1.5, H-4 фуроил); 7.25–7.42 (7H, м, С ₆ H ₅ , H-5, H-3
-	фуроил); 8.00 (1H, д, $J = 1.5$, H-5 фуроил); 9.99 (1H, c, NH)
5e	2.06 (3H, c, CH ₃ CO); 2.03 (2H, T, $J = 5.9$, CH ₂ CO); 2.78 (2H, T, $J = 5.9$, CH ₂ CH ₂ CO); 3.3 (3H c OCH ₂); 4.75 (2H c OCH ₂); 5.69 (1H c PbCH);
	$7.24-7.39$ (7H M C ₄ H ₅ H-5 H-4 tenout): 7.92 (1H π J = 4.4 H-3 tenout):
	8.04 (1H, с, H-5 теноил); 10.09 (1H, с, NH)
7a	2.11 (3H, с, CH ₃ CO); 2.70 (6H, с, 6-, 8-CH ₃); 2.92 (2H, т, J = 7.3,
	<u>СН</u> ₂ CH ₂ CO); 3.12 (2H, т, <i>J</i> = 7.3, CH ₂ CO); 7.06 (1H, с, H-7); 7.25–7.29 (2H,
	м, C ₆ H ₅); 7.43–7.57 (3H, м, C ₆ H ₅); 11.46 (1H, с, NH)
7b	2.13 (3H, c, CH ₃ CO); 2.59 (3H, c, 8-CH ₃); 2.94 (2H, τ , $J = 6.6$, CH ₂ CH ₂ CO);
	5.09 (2H, T, $J = 0.0$, CH ₂ CO); 5.40 (5H, c, OCH ₃); 4.95 (2H, c, OCH ₂); 7.27–7.33 (2H, M, C, H ₂); 7.45–7.53 (4H, M, 2 H append H 7); 11.23 (1H, c, NH)
	1.27 - 1.33 (211, M, 0.6115), $1.43 - 1.33$ (411, M, 3 II apom., II-7), 11.33 (III, C, NII)

-

Таблица 4

Масс-спектры синтезированных соединений

Соеди- нение	<i>m/z (I</i> _{отн} , %)
1	2
2c	510 (32), 405 (15), 105 (100), 76 (35), 43 (27)
2d	514 (30), 409 (17), 105 (100), 101 (38), 77 (27), 59 (38) 43 (24)
2e	588* (48), 483 (28), 105 (94), 77 (100), 60 (16), 55 (22), 43 (27)
2h	422 (57), 317 (48), 311 (24), 295 (10), 285 (15), 111 (100), 105 (81), 76 (29), 59 (21), 43 (18), 42 (11)
2i	324 (29), 281 (100), 121 (11), 105 (13), 59 (25), 43 (49)
2ј	354 (63), 312 (66), 311 (56), 298 (27), 297 (82), 279 (34), 249 (65), 175 (33), 105 (100), 77 (91), 59 (36), 43 (62), 42 (42)
3c	510 [M-H ₂] (1), 496 [M-16] (46), 391 [M-121] (48), 389 ([M-H ₂ -121]), 178 (13), 105 (100), 101 (30), 77 (51), 55 (24), 43 (53), 42 (44)
3d	500 [M-16] (28), 395 [M-121] (100), 393 [M-H ₂ -121] (20), 105 (82), 77 (38), 59 (40), 57 (17), 55 (12), 43 (41)
3e	574* [M–16] (15), 469* [M–121] (33), 105 (100), 91 (46), 77 (95), 59 (41), 43 (64)
3f	378 (5), 360 [M–H ₂ O] (3), 267 [M–111] (100), 190 [M–111] (61), 105 (38), 95 (73), 77 (36), 51 (12), 39 (35)
3h	406 [M–H ₂ O] (27), 392 [M–CH ₃ OH] (14), 376 [M–CH ₂ O] (24), 281 [M–CH ₃ OH–111] (13), 111 (100), 105 (48), 95 (10), 77 (11), 57 (19), 43 (38)
3i	326 (0.7), 308 [M–H ₂ O] (20), 293 [M–H ₂ O–CH ₃] (40), 267 [M–59] (100), 265 [M–59–H ₂] (98), 251 [M–H ₂ O–CH ₃ NCO] (12), 105 (21), 101 (10), 80 (38), 76 (17), 59 (24), 43 (59), 42 (43)
3ј	338 [M–H ₂ O] (15), 323 [M–H ₂ O–CH ₃] (45), 308 [M–H ₂ O–CH ₂ O] (25), 297 [M– 59] (28), 281 [M–H ₂ O–CH ₃ NCO] (100), 265 (43), 91 (45), 77 (45), 59 (71), 43 (69)
4 a	452 (7), 347 (42), 332 (19), 331 (13), 305 (13), 183 (10), 171 (14), 155 (11), 141 (12), 107 (14), 105 (100), 101 (21), 83 (13), 78 (13), 77 (74), 60 (14), 57 (36), 56 (13), 55 (25), 43 (19)
4b	450 [M–CH ₃ OH] (50), 407 (13), 377 [M–105] (6), 345 [M–CH ₃ OH–105] (13), 302 (10), 171 (5), 105 (100), 77 (34), 59 (40), 43 (35)
4c	576 (46), 472 (100), 457 (11), 180 (16), 105 (27), 101 (34), 95 (27), 76 (15), 59 (35), 57 (16), 55 (15), 43 (41), 42 (21), 41 (20)
4d	580 (8), 475 (100), 433 (23), 171 (17), 141 (12), 105 (97), 101 (36), 84 (20), 83 (25), 78 (10), 77 (61), 73 (13), 70 (10), 60 (12), 59 (35), 58 (14), 57 (29), 56 (25), 55 (26), 43 (43), 42 (27), 41 (18), 39 (19), 38 (14)
4e	654* (8), 613* (17), 549* (56), 507* (9), 171 (5), 105 (100), 101 (11), 59 (30), 58 (30), 57 (13), 56 (16), 51 (13), 45 (15), 44 (36), 43 (51)
4f	442 (71), 425 (11), 399 (19), 347 (86), 332 (69), 305 (22), 272 (13), 268 (13), 171 (17), 105 (13), 101 (55), 98 (31), 95 (98), 93 (15), 82 (14), 70 (15), 69 (17), 59 (100), 57 (55), 56 (36), 55 (26), 53 (15), 45 (10), 43 (88), 41 (37), 39 (47)
4g	440 [M–CH ₃ OH] (100), 411 (41), 397 (27), 377 (12), 372 (17), 370 (12), 329 (13), 301 (14), 171 (9), 149 (11), 105 (29), 95 (86), 76 (12), 59 (50), 57 (31), 56 (17), 55 (22), 43 (57), 42 (36), 41 (18), 39 (30), 38 (21)
4h	488 (0.5), 456 [M–CH ₃ OH] (78), 413 (24), 377 (16), 345 (15), 329 (14), 301 (10), 171 (8), 111 (100), 105 (15), 82 (16), 59 (15), 39 (11)
4i	390 (82), 374 (12), 347 (100), 332 (88), 305 (49), 303 (18), 291 (28), 289 (18), 271 (11), 265 (19), 229 (12), 184 (17), 183 (10), 178 (20), 171 (37), 165 (11), 155 (12), 141 (32), 139 (10), 127 (15), 115 (13), 105 (25), 101 (16), 76 (14), 59 (21), 53 (16), 51 (10), 44 (29), 43 (54), 42 (40), 41 (26)

Окончание таблицы 4

1	2
5a	402 [M–98] (65), 372 (12), 371 (29), 370 (16), 297 (7), 265 (13), 105 (100), 95 (21), 77 (8), 76 (75), 59 (31), 57 (13), 55 (13), 53 (12), 43 (33), 42 (11), 39 (12)
5b	496 [M–98] (44), 495 [M–99] (12), 391 [M–98–105] (22), 105 (100), 101 (15), 95 (11), 82 (16), 76 (38), 59 (24), 57 (16), 43 (35), 42 (24), 41 (18), 39 (16)
5c	500 [M–98] (12), 499 [M–99] (22), 396 (23), 395 (21), 105 (100), 101 (35), 99 (22), 83 (21), 78 (14), 77 (75), 59 (31), 57 (27), 56 (15), 55 (27), 43 (27), 42 (20), 40 (11), 39 (14), 38 (14)
5d	392 [M–98] (20), 391 [M–99] (16), 360 [M–98–CH ₃ OH] (100), 95 (42), 59 (13), 44 (12), 43 (16)
5e	408 [M–98] (12), 377 [M–98–CH ₃ O] (21), 376 [M–98–CH ₃ OH] (36), 297 [M–98–111] (18), 265 (15), 252 (11), 181 (10), 180 (14), 179 (29), 164 (21), 113 (21), 111 (100), 101 (17), 99 (24), 91 (11), 84 (15), 83 (16), 81 (12), 77 (11), 71 (17), 59 (29), 57 (19), 56 (17), 55 (10), 53 (13), 46 (12), 45 (44), 41 (20)
7a	348 (44), 291 (100), 151 (15), 145 (15), 128 (29), 115 (30), 101 (26), 89 (11), 76 (26), 66 (11), 59 (16), 58 (40), 57 (12), 51 (24), 45 (14), 44 (12), 43 (56), 42 (29), 41 (26)
7b	378 (100), 346 (5), 321 (98), 303 (37), 289 (66), 274 (29), 101 (44), 59 (62), 43 (72)

* Приведены пики легкого изотопа ⁷⁹Br.

Соединение 7b получено из соответствующего спирта 3j при попытке синтеза метана 4j в диоксане в присутствии HClO₄. При этом быстро образуется значительное количество продукта рециклизации и деацетилирования 7b в смеси с промежуточным метаном 4j, выделить который из реакционной смеси не удалось.

Пирролотиенопиридины 7а, b – бледно-желтые кристаллические вещества (табл. 1). В ИК спектрах имеется одна узкая интенсивная полоса поглощения валентных колебаний кетонной карбонильной группы в области 1700–1712 см⁻¹ (табл. 2). Метиленовые протоны 3-оксобутильного заместителя резонируют в виде двух триплетов с вицинальной КССВ 5.5–7.5 Гц в области 2.9–3.1 м. д., а протоны концевой метильной группы – в виде синглета (2.1 м. д.). Сигнал протона группы NH находится в слабом поле (11.3–11.5 м. д.).

Молекулярные ионы соединений 7 достаточно устойчивы (табл. 4). Характерный процесс их фрагментации – простой разрыв β-углерод–углеродной связи в 3-оксобутильном заместителе, который приводит к катиону "бензильного" типа [М–57] (схема 9), возможно, изомеризующемуся в еще более устойчивый ион Φ₄.

Схема 9

Интенсивность иона [M-57] в спектре максимальна, его фрагментация не приводит к сколько-нибудь сравнимым по устойчивости ионам. Конкурентный иону [М–57] ацетонильный катион с m/z 57 имеет интенсивность менее 20%.

Таким образом, рассмотренные выше превращения соединений **4** в кислой среде свидетельствуют о том, что характер защитной ацильной группы у аминного азота определяет возможность или невозможность протекания циклизации, следующей за протолитическим раскрытием фуранового кольца. Возможно, в данном случае проявляется различие в основности бензоил- и ацетиламидов, что в итоге приводит к разному результату реакций.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на спектрометре Инфралюм ФТ-2 (суспензия в вазелиновом масле), спектры ЯМР ¹Н – на приборе Bruker AC 200 (200 МГц) в ДМСО- d_6 и CDCl₃, внутренний стандарт ТМС. Масс-спектры получены на приборе Finnigan МАТ INCO S50 с прямым вводом образца в источник ионов (энергия ионизирующих электронов 70 эВ, температура ионизационной камеры 50–180 °C).

Контроль за ходом реакции и индивидуальностью веществ осуществлялся методом TCX на пластинах Sorbfil, элюент хлористый метилен–ацетон–петролейный эфир, 4.5 : 7 : 14, проявитель – пары иода или брома.

N-(2-Бензоил-4,6-дизамещенные[2,3-*b*]пиридин-3-ил)амиды 2a,b,f,g синтезируют как описано ранее [15].

N-(2-Бензоил-4,6-дифенилтиено[2,3-b]пиридин-3-ил)бензамид (2с). К горячему раствору 3 г (7.4 ммоль) амина **1с** в 50 мл хлорбензола добавляют 1.2 г (8.8 ммоль) хлористого бензоила. Реакционную смесь кипятят 16 ч. Выпавшие после охлаждения кристаллы отфильтровывают, сушат и перекристаллизовывают из этанола. Получают 3.2 г бесцветных кристаллов соединения **2с**.

Соединения 2d,е получают аналогично исходя из аминов 1d,е, теноилзамещенное 2h – из амина 1h и хлорангидрида тиофен-2-карбоновой кислоты, соединения 2i, j – из аминов 1i, j и ацетилхлорида в диоксане.

N-{2-[Гидрокси(фенил)метил]-4,6-дизамещенные[2,3-*b***]пиридин-3-ил}амиды 3a,b,g получают восстановлением кетонов 2a,b,g NaBH₄ по методике [15].**

N-{2-[Гидрокси(фенил)метил]-4,6-дифенилтиено[2,3-*b***]пиридин-3-ил}бензамид (3c). Растворяют 2.7 г (5.3 ммоль) соединения 2c в 50 мл этанола при нагревании и постоянном перемешивании. К полученному раствору порциями добавляют 0.24 г (6.4 ммоль) NaBH₄. Реакционную массу выдерживают 3 ч при 60–70 °C, затем охлаждают и выливают при интенсивном перемешивании в 250–300 мл H₂O. Выпавшие кристаллы отфильтровывают, сушат и перекристаллизовывают из этанола. Получают 2.4 г соединения 3c** в виде бесцветных кристаллов.

Соединения 3d-f,h-j получают аналогично из соответствующих ацилпроизводных 2d-f,h-j.

N-{2-[(5-Метил-2-фурил)(фенил)метил]-4,6-диметилтиено[2,3-*b***]пиридин-3-ил}бензамид (4а)**. К раствору 0.2 г (5 ммоль) спирта **3а** и 0.67 мл (7.5 ммоль) сильвана в 20 мл диоксана добавляют 0.3 мл катализатора, приготовленного из 2 мл (3.3 ммоль) 70% хлорной кислоты, 5.3 мл (5.6 ммоль) уксусного ангидрида и 3 мл (5.2 ммоль) уксусной кислоты. Полученную смесь кипятят 4 ч до полного расхода исходного спирта (контроль – TCX), затем выливают в 100 мл воды и нейтрализуют сухим NaHCO₃ до pH ≈ 7. Выпавший кристаллический осадок

отфильтровывают, сушат и перекристаллизовывают с силикагелем из смеси этилацетат-петролейный эфир, 2 : 1. Получают 0.18 г соединения **За** в виде бесцветных кристаллов.

Соединения 4b-і получают аналогично из спиртов 3b-і.

N-[2-(2,5-Диоксо-1-фенилгексил)-4,6-дифенилтиено[2,3-b]пиридин-3-ил]-

бензамид (5b). К раствору 1.0 г (1.7 ммоль) соединения **4c** в 20 мл ледяной уксусной кислоты приливают 1 мл конц. НСl и смесь кипятят 3 ч. После установления равновесия **4c** \leftrightarrow **5b** (контроль – TCX) реакционную массу выливают в 50 мл воды и нейтрализуют сухим NaHCO₃ до pH \approx 7. Выпавший кристаллический осадок отфильтровывают и сушат. Получают 0.96 г бесцветных кристаллов смеси соединений **4c** и **5b** (по данным ЯМР ¹H), из которой хроматографией на колонке (2 × 20 см, силикагель 40–100 меш, элюент ацетон–петролейный эфир–хлористый метилен, 7 : 28 : 4.5) выделяют 0.32 г продукта **5b** в виде бесцветных кристаллов.

Соединения 5а,с-е получают аналогично из амидов 4b,d,g,h.

4-(6,8-Диметил-3-фенил-1Н-пирроло[2',3':4,5]тиено[2,3-b]пиридин-2-ил)бутан-2-он (7а). А. Раствор 0.5 г (1.28 ммоль) соединения **4i** в 10 мл уксусной кислоты и 0.5 мл HCl выдерживают 18 ч при 40–50 °С (контроль – TCX). Затем реакционную массу выливают в 100 мл воды и нейтрализуют сухим NaHCO₃ до рН \approx 7. Выпавший кристаллический осадок отфильтровывают, сушат и перекристаллизовывают из спирта с добавлением активированного угля. Получают 0.2 г (45%) соединения **7a** в виде бесцветных кристаллов.

Б. Раствор 0.7 г (1.8 ммоль) соединения 4i в 20 мл этилового спирта, насыщенного сухим HCl, кипятят 5 ч (контроль – TCX), затем выливают в 70 мл воды и нейтрализуют сухим NaHCO₃ до pH \approx 7. Выпавший кристаллический осадок отфильтровывают, сушат и перекристаллизовывают из хлороформа с добавлением силикагеля. Получают 0.42 г (67%) соединения 7а в виде бледножелтых кристаллов.

4-(6-Метил-8-метоксиметил-3-фенил-1Н-пирроло[2',3':4,5]тиено[2,3-b]пиридин-2-ил)бутан-2-он (7b). Раствор 0.8 г (2.2 ммоль) спирта **3j**, 0.3 мл (3.4 ммоль) сильвана, 0.3 мл катализатора (см. синтез соединения **4a**) в 30 мл диоксана кипятят 5 ч до исчезновения исходного спирта. Реакционную массу выливают в 100 мл воды, нейтрализуют сухим NaHCO₃. Выпавший осадок – смесь метана **4j** и индолотиенопиридина **7b** – растворяют в 20 мл спирта, насыщенного сухим HCl, и кипятят 12 ч до исчезновения метана **4j**. После охлаждения раствор выливают в 100 мл воды, нейтрализуют сухим NaHCO₃. Выпавший осадок отфильтровывают, перекристаллизовывают из этанола и получают 0.33 г целевого продукта **7b** в виде бледно-желтых кристаллов.

СПИСОК ЛИТЕРАТУРЫ

- 1. А. В. Бутин, В. Т. Абаев, Изв. АН, Сер. хим., 1436 (2001).
- 2. А. В. Бутин, Т. А. Строганова, В. Т. Абаев, В. Г. Кульневич, *XГС*, 1250 (1998). [*Chem. Heterocycl. Comp.*, **34**, 1073 (1998)].
- 3. A. V. Butin, V. V. Mel'chin, V. T. Abaev, W. Bender, A. S. Pilipenko, G. D. Krapivin, *Tetrahedron*, **62**, 8045 (2006).
- 4. A. V. Butin, T. A. Stroganova, I. V. Lodina, G. D. Krapivin, *Tetrahedron Lett.*, **42**, 2031 (2001).
- 5. А. В. Бутин, Г. Д. Крапивин, В. Е. Заводник, В. Г. Кульневич, *XГС*, 616 (1993). [*Chem. Heterocycl. Comp.*, **29**, 524 (1993)].
- 6. В. Т. Абаев, А. В. Гутнов, А. В. Бутин, *ХГС*, 603 (1998). [*Chem. Heterocycl. Comp.*, **34**, 529 (1998)].
- 7. A. V. Butin, S. K. Smirnov, T. A. Stroganova, W. Bender, G. D. Krapivin, *Tetrahedron*, **63**, 474 (2007).

- V. T. Abaev, A. S. Dmitriev, A. V. Gutnov, S. A. Podelyakin, A. V. Butin, J. Heterocycl. Chem., 43, 1195 (2006).
- 9. A. S. Dmitriev, V. T. Abaev, W. Bender, A. V. Butin, *Tetrahedron*, **63**, 9437 (2007).
- 10. A. V. Butin, A. S. Dmitriev, O. N. Kostyukova, V. T. Abaev, I. V. Trushkov, Synthesis, 2208 (2007).
- 11. A. V. Butin, V. T. Abaev, V. V. Mel'chin, A. S. Dmitriev, *Tetrahedron Lett.*, **46**, 8439 (2005).
- 12. V. T. Abaev, A. V. Gutnov, A. V. Butin, V. E. Zavodnik, *Tetrahedron*, **56**, 8933 (2000).
- V. P. Litvinov, L. A. Rodinovskaya, Yu. A. Sharanin, A. M. Shestopalov, A. Senning, *Sulfur Reports*, 13, 1 (1992).
- В. К. Василин, М. М. Липунов, Л. Д. Конюшкин, Е. А. Кайгородова, Г. Д. Крапивин, XГС, 1582 (2006). [Chem. Heterocycl. Comp., 42, 1368 (2006)].
- 15. М. М. Липунов, Е. С. Костенко, Е. А. Кайгородова, С. И. Фирганг, Г. Д. Крапивин, Изв. вузов, Химия и химическая технология, **48**, 81 (2005).
- A. V. Butin, S. K. Smirnov, T. A. Stroganova, J. Heterocycl. Chem., 43, 623 (2006).
- 17. A. V. Butin, S. K. Smirnov, I. V. Trushkov, Tetrahedron Lett., 49, 20 (2008).

Кубанский государственный технологический университет, Краснодар 350072, Россия e-mail: organics@kubstu.ru Поступило 01.04.2008 После доработки 30.07.2008