Л. М. Потиха*, В. А. Ковтуненко, А. В. Туров

СИНТЕЗ, СТРОЕНИЕ И СВОЙСТВА 1,3,5-ТРИАРИЛПИРИДАЗИНОВ

При взаимодействи γ-бромдипнона с арилгидразинами образуются продукты различного строения: гидразоны γ-бромдипнона, 1-арил-3,5-дифенил-1,4-дигидропиридазины, 1-арил-3,5-дифенил-1,6-дигидропиридазины и ароматические соли 1,3,5-триарилпиридазиния. Изучены закономерности образования всех типов продуктов и их свойства. Нагревание спиртового раствора 1,3,5-трифенил-1,4-ди-гидропиридазина ведет к N,2,4-трифенил-1Н-пиррол-1-амину или к соли 1,3,5-три-фенилпиридазиния в зависимости от кислотности среды. Получен продукт присо-единения НВг к системе 1,6-дигидропиридазина – 5-бром-1-(4-нитрофенил)-3,5-дифенил-1,4,5,6-тетрагидропиридазин.

Ключевые слова: у-бромдипнон, бромид 1,3,5-триарилпиридазиния, 1,3,5триарил-1,4-дигидропиридазин, 1,3,5-триарил-1,6-дигидропиридазин, N,2,4трифе-нил-1Н-пиррол-1-амин.

Производные пиридазина представляют собой важный класс фармакологически интересных структур [1, 2]. Значительным стимулом для интенсификации исследований свойств и методов их получения послужило открытие в 70–80-х гг. биологически активных природных соединений, содержащих пиридазиновый цикл [3, 4]. Наиболее популярные методы синтеза пиридазинов основаны на применении в качестве исходных γ-дикарбонильных соединений [2, 3]. Известны примеры использования γ-галогенкарбонильных соединений [3], в том числе и ненасыщенных [5]. Ранее нами уже сообщалось, что производные 1,3,5-триарилпиридазина легко образуются при взаимодействии 1,3-дифенил-4-бром-2-бутен-1-она (γ-бромдипнона) (1) с арилгидразинами [6].

Реакция γ-бромдипнона 1 с арилгидразинами может приводить к различным продуктам в зависимости от условий и строения исходного гидразина [6, 7]. Простейший вариант реакции – образование гидразона 2а с открытым строением при взаимодействии бромдипнона 1 с 1-(2,4-динитрофенил)гидразином в спирте [7]. В случае арилгидразинов в тех же условиях получены производные пиридазина 3a,b, 4a [6] и 1H-пиррол-1амина 5 [7]. В настоящей работе выяснены закономерности изучаемой реакции и расширен круг как используемых арилгидразинов, так и условий реакции.

При взаимодействии γ-бромдипнона 1 с толилгидразинами, независимо от условий, образуются бромиды 1,3,5-триарилпиридазиния **За,b** [6]. В то же время результат реакции с фенилгидразином зависит от применяемых

2 a Ar = 2,4-(O₂N)₂C₆H₃, b Ar = Ph; 3 a Ar = 2-MeC₆H₄, b Ar = 3-MeC₆H₄, c Ar = Ph; 4a, 6a Ar = Ph, 4b, 6b, 9a Ar = 4-O₂NC₆H₄, 4c, 6c, 9b Ar = 4-HO₂CC₆H₄

условий. Основным продуктом взаимодействия γ-бромдипнона 1 с фенилгидразином в спирте является 1,3,5-трифенил-1,4-дигидропиридазин 4a [6, 7]. В спектре ЯМР ¹Н сырого продукта наблюдались также сигналы (4.72 м. д., 2H, с и 7.29 м. д., 1H, с), относящиеся к отличающемуся от соединения 4a веществу. Было замечено, что содержание указанного продукта возрастает при понижении температуры и сокращении длительности нагревания реакционной смеси как при проведении реакции в спирте, так и сплавле-нии в присутствии ацетата натрия. Наибольший эффект (по содержанию неизвестного продукта в смеси) наблюдался при проведении реакции в присутствии уксусной кислоты (AcOH–EtOH, 2 : 3, 25–40 °C).

Структурно-значимые корреляции НМВС для соединений 4a (A) и 6a (B)

Данные элементного анализа, масс-спектрометрии, спектров ИК и ЯМР ¹Н неизвестного вещества, выделенного в индивидуальном состоянии, указывали на то, что оно является таутомером соединения 4а и имеет структуру 1,3,5-трифенил-1,6-дигидропиридазина (ба). С целью подтверждения данной гипотезы были изучены двумерные спектры HMQC, НМВС и NOESY соединений 4a и 6a. Анализ гетероядерных корреляций в спектрах HMBC (см. табл. 1 и рисунок) однозначно указывает на реализацию циклической структуры 1,3,5-трифенилпиридазина в исследуемых молекулах. Основные различия в спектрах, позволившие надежно отнести структуры таутомеров 4а и 6а, состоят в наличии (отсутствии) корреляций между сигналом атома С-3 (в области 142.2-141.1 м. д.) и протонами групп –CH₂– и =CH–. Для соединения **4**а наблюдается корреляция с сигналом протонов метиленовой группы (3.64 м. д.), а для соединения **6а-с** с сигналом метинового протона (7.29 м. д.). В УФ спектрах таутомеров 4а и 6а также найдены различия. В случае соединения 4а в области $\lambda > 300$ нм наблюдаются две полосы с максимумами при 318 $(\varepsilon = 27 \cdot 10^3)$ и 392 нм ($\varepsilon = 10^4$). В спектре соединения **6a** обе полосы (имеющие соизмеримую интенсивность) смещены на 35-36 нм, соответственно, в коротковолновую (282 нм) и длинноволновую области (427 нм). Последнее указывает на увеличение цепи сопряжения в молекуле, что согласуется со структурой 1,6-дигидропроизводного.

Дигидропиридазины 4a, 6a не изменяются при длительном хранении и в растворе (в растворителях различной полярности) в нейтральной среде при комнатной температуре. В присутствии кислоты (EtOH–HBr, 25 °C) в растворе 1,6-дигидропиридазина 6a не происходит заметных изменений (согласно данным TCX). В этих же условиях соединение 4a постепенно превращается в бромид 1,3,5-трифенилпиридазиния (3c). Строение продукта окисления 3c было установлено на основании его спектральных свойств, которые соответствуют данным, полученным ранее для бромидов пиридазиния 3a,b [6]. Анализ гетероядерных корреляций в спектрах HMQC и HMBC солей 3a, 3c (см. табл. 1) и бромида 1-метил-3,5-дифенилпиридазиния [7] полностью подтвердил правильность сделанных о строении солей 3a–c выводов.

Нагревание растворов 1,6-дигидропиридазина 6а в протонных растворителях приводит к образованию таутомера 4а (согласно данным

ТСХ и ЯМР ¹Н). Однако этот метод не может быть использован как препаративный, так как в этих условиях 1,4-дигидропиридазин **4a** легко ароматизуется или претерпевает более глубокие изменения. Так, при нагревании **4a** в спирте в присутствии кислоты (HBr, HClO₄) нами был выделен с невысоким выходом (17–20%) N,2,4-трифенил-1H-пиррол-1амин (**5**), ранее полученный из реакционной смеси при взаимодействии γ -бромдипнона **1** с фенилгидразином в спирте [7]. Механизм образования пиррола **5** включает стадию обратимого расщепления связи C(6)–N(1) [8, 9], которое является следствием катализируемого кислотой присоединения EtOH к олефиновой связи C(5)=C(6) [8]. Рециклизация промежуточного продукта **7** ведет к 1H-пиррол-1-амину **5**.

С целью нахождения оптимальной методики синтеза соединения **6a** мы попытались свести к минимуму нежелательный процесс превращения **6a** в **4a**. Но оказалось, что проведение реакции γ -бромдипнона **1** с фенилгидразином при комнатной температуре (EtOH–AcOH, 2 : 3) ведет к образованию N-фенилгидразона (*Z*)-4-бром-1,3-дифенил-2-бутен-1-она (**2b**). Спектральные характеристики полученного продукта полностью соответствуют наблюдавшимся ранее для N-(2,4-динитрофенил)гидразона **2a** [7]. В отличие от производного **2a**, соединение **2b** оказалось менее устойчивым – уже при попытке его перекристаллизации из спирта или AcOH, а также при хранении (в течение **3** недель) оно легко превращается в 1,6-дигидропиридазин **6a**.

Снижение выхода продукта **6a** при нагревании реакционной смеси (EtOH–AcOH, 2 : 3) обусловлено, помимо указанного превращения **6a** в **4a**, также протеканием побочного процесса восстановления бромметильной группы гидразином. Из реакционной смеси с выходом менее 10% был выделен продукт внутримолекулярной циклизации N-фенилгидразона 1,3-дифенил-2-бутен-1-она, образующегося при восстановлении гидразона **2b** – 5-метил-1,3,5-трифенил-4,5-дигидро-1H-пиразол **(8)**. Спектры ЯМР ¹H и ¹³C и температуры плавления полученного вещества полностью совпали с таковыми образца, синтезированного по описанной ранее методике [10] из дипнона и фенилгидразина.

Далее нами было изучено взаимодействие γ -бромдипнона 1 с 4-нитрофенилгидразином и 4-гидразинобензойной кислотой. Реакция протекает при более длительном нагревании (30 мин, ср. с 15 мин в случае фенилгидразина [6]) раствора исходных веществ в спирте и приводит к 1-арил-3,5-дифенил-1,6-дигидропиридазинам **6b,c**. Образование заметных количеств 1,4-дигидропиридазинов **4b,c** наблюдалось только при проведении реакции сплавлением в присутствии NaOAc. Содержание соединений **4b,c** в полученных смесях составило 20% в случае реакции с 4-нитрофенилгидразином и 55% – в случае 4-гидразинобензойной кислоты. Общие выходы продуктов реакций (сплавлением) оказались почти в два раза ниже, чем при проведении ее в спирте. 1,6-Дигидропиридазины **6b,c**, в отличие от соединения **6a**, более устойчивы при нагревании в растворителях – в спектрах ЯМР ¹Н (ДМСО-d₆) наблюдаются лишь следовые количества

таутомеров строения **4** (сигналы H-4 – 3.71 м. д. для **4b** и 3.69 м. д. для **4c**). Только длительное (~1 ч) нагревание их растворов в AcOH в присутствии HBr приводит к частичному окислению, но при этом преимущественно происходит разрушение пиридазинового цикла и образуются продукты гидролиза (арилгидразины, согласно данным спектров ЯМР ¹Н).

ЯМР ¹ Н,	НМВС, δ, м. д.	ЯМР ¹ Н,	НМВС, б, м. д
δ, м. д.	3a	δ, м. д.	4a
2.41	127.95, 133.3, 144.2	3.64	108.87, 121.42, 137.89, 142.38
7.59	19.0, 127.05, 127.95, 132.55, 144.2	7.04	116.03, 129.9
7.68	129.0, 130.2, 131.55, 132.9, 133.1, 133.53	7.24	124.74
7.97	132.3, 133.3, 144.2	7.38	116.03, 124.74, 129.1, 129.9, 137.89, 144.82
8.42	129.0, 133.1, 133.53, 147.8, 161.4	7.45	126.38
9.56	131.55, 132.9, 149.0	7.48	129.1, 137.27
10.59	130.05, 131.55, 144.2, 147.8	7.65	116.03, 122.85, 142.38
		7.67	108.87, 126.38, 127.11
		7.72	24.72, 108.87, 137.89
		8.00	126.38, 129.9
	6a		9a
4.72	111.94, 134.76, 136.37	3.55	38.58, 72.56, 141.99, 151.24
7.00	115.33	3.99	38.58, 72.56, 141.99, 151.24
7.29	45.19, 136.37, 141.06	4.61	51.83, 72.56
7.35	125.47	4.75	51.83
7.38	129.63, 147.9	7.08	-
7.43	129.22, 137.12	7.34	126.07
7.49	129.38, 136.37	7.40	72.56, 126.07, 128.85, 130.12, 141.99
7.53	115.33, 121.65, 147.09	7.46	127.02, 129.52, 131.5
7.91	126.11, 129.93, 134.76	7.79	127.02, 130.65, 151.24
7.96	125.47, 128.67, 141.06	7.99	126.12, 139.01, 148.18

Протон-углеродные корреляции для соединений За, 4а, 6а, 9а

В структуре 1,6-дигидропиридазинов **6а-с** присутствует фрагмент родоначального соединения – дипнона, и оказалось, что подобно последнему [14] они способны присоединять полярные молекулы типа H–X к олефиновой связи C(4)=C(5). Так, при длительном выдерживании ук-1035

суснокислых растворов **6b**, с в присутствии HBr образуются 5-бром-1-(4-арил)-3,5-дифенил-1,4,5,6-тетрагидропиридазины 9а,b. Выход соединений невысокий – 18% для 9a и <8% для 9b. При этом нам не удалось получить аналитический образец тетрагидропиридазина 9b, так как вещество было сильно загрязнено примесями и, очевидно, имеет низкую резистентность к нагреванию в растворителях [3]. Характерной особенностью спектров ЯМР ¹Н соединений **9а,b** является присутствие сигналов двух метиленовых групп в области 4.8–3.5 м. д. в виде АВ-спиновых систем с геминальными КССВ 18.0 и 12.0 Гц. Для подтверждения вывода о структуре 5-бром-1,4,5,6-тетрагидропиридазинов 9а, в были изучены двумерные спектры НМОС, НМВС и NOESY соединения 9a (см. таблицу). Анализ молекулярной модели и протон-протонных корреляций в спектре NOESY позволяет также сделать определенный вывод о пространственной структуре 9а, b: эти соединения имеют структуру искаженной ванны с экваториальным расположением всех бензольных циклов. На экваториальное положение бензольного цикла при С-5 указывает наличие пространственной близости между его *о*-протонами и протонами группы С₍₆₎H₂.

Таким образом, реакция у-бромдипнона 1 с арилгидразинами является многостадийным процессом, результат которого определяется двумя факторами – условиями его проведения и строением арилгидразина. Образующиеся на первом этапе арилгидразоны строения 2 превращаются в циклические продукты – производные 1,3,5-триарилпиридазина 3, 4, 6. Скорость циклизации и строение пиридазина зависят от природы заместителей в бензольном цикле N-арильного фрагмента молекулы. Увеличение акцепторных свойств заместителя приводит к торможению процесса циклизации, с одной стороны, и к стабилизации таутомерной формы 1,6-дигидропиридазина 6 – с другой. С увеличением донорных свойств заместителя увеличивается скорость циклизации и склонность к образованию таутомерной формы 1,4-дигидропиридазина 4, который далее может перегруппироваться (при участии нуклеофила – спирта) в N,2,4-триарил-1Н-пиррол-1-амин 5 или окислиться (кислородом воздуха) с образованием ароматической соли пиридазиния 3. Склонность к образованию солей 3 усиливается с увеличением донорности заместителя в N-арильном фрагменте. Правильность сделанных нами выводов относительно наблюдаемых закономерностей подтверждается данными о свойствах 1-замещенных дигидропиридазинов [3]. В частности ранее [9, 11–13] были отмечены их склонность к окислению кислородом воздуха при нагревании и зависимость устойчивости к окислению от природы заместителя при атоме N(1), а именно – повышение стабильности 1,6-дигидропиридазинов с увеличением электроотрицательности указанного заместителя [11, 13].

Ускорению последовательности превращений $2 \rightarrow 6 \rightarrow 4$ способствует повышение температуры и основности реакционной среды. Нагревание в присутствии кислоты стимулирует процесс перегруппировки образующегося пиридазина 4 в N-аминопиррол 5, а также превращение его в соль 3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С записаны на приборе Varian Mercury 400 (400 и 100 МГц соответственно) в ДМСО- d_6 , внутренний стандарт ТМС. УФ спектры получены на приборе UV/VIS Spectrometer Lambda 20 в метаноле. ИК спектры зарегистрированы на приборе Руе Unicam SP3-300 в таблетках КВг. Масс-спектры

получены методом ВЖХ на приборе AGILENT 1200 SL (ХИ, ацетонитрил, 0.05% муравьиной кислоты). Температуры плавления синтезированных соединений определены на нагревательном приборе типа Boetius и не подвергались коррекции. Контроль за ходом реакций и чистотой полученных соединений осуществлял-ся с помощью TCX на пластинках Silufol UV-254. Данные элементного анализа и спектров ЯМР ¹Н (ДМСО-d₆) бромида 1-(2-метилфенил)-3,5-дифенилпирида-зиния (**3a**) и 1,3,5-трифенил-1,4-дигидропиридазина (**4a**) приведены в работе [6], N,2,4-трифенил-1Н-пиррол-1-амина **5** – в работе [7]. Отнесения сигналов в спек-трах ЯМР ¹Н и ¹³С 5-метил-1,3,5-трифенил-4,5-дигидро-1Н-пиразола **8** сделаны на основании данных экспериментов HMBC, HMQC и NOESY.

N-Фенилгидразон (*Z*)-4-бром-1,3-дифенил-2-бутен-1-она (2b). Растворяют при нагревании 1 г (3.32 ммоль) γ -бромдипнона 1 в смеси 20 мл спирта и 30 мл уксусной кислоты. К охлажденному раствору добавляют 0.33 мл (3.32 ммоль) фенилгидразина и выдерживают при комнатной температуре 36 ч. Образовавшийся осадок отфильтровывают, промывают спиртом. Выход 0.52 г (40%). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 10.32 (1H, с, NH); 8.10 (2H, д, ³*J* = 9.0, H-2',6'); 7.78 (4H, д, ³*J* = 7.5, H-2",6", H-2"',6"); 7.49 (2H, т, ³*J* = 8.0, H-3',5'); 7.45–7.38 (7H, м, H-4', H-3"–H-5", H-3""–H-5"); 6.80 (1H, с, H-2); 4.28 (2H, с, H-4).

Бромид 1-(2-метилфенил)-3,5-дифенилпиридазиния (3а). ИК спектр, v, см⁻¹: 3050, 1597 (С=N), 1390, 1260, 1155, 755, 665. Спектр ЯМР ¹³С, δ, м. д.: 161.4 (С-3); 149.0 (С-6); 147.8 (С-5); 144.2 (С-1'); 133.5 (С-4''); 133.3 (С-2'); 133.1 (С-4'''); 132.9 (С-1''); 132.6 (С-6'); 132.3 (С-4'); 131.6 (С-1'''); 130.22 (С-3'',5''); 130.18 (С-3''',5'''); 130.05 (С-4); 129.5 (С-2'',6''); 129.0 (С-2''',6'''); 127.9 (С-3'); 127.0 (С-5'); 19.0 (СН₃). Масс-спектр, *m/z* (*I*_{0TH}, %): 323 [М–Вг]⁺ (100), 325 (40).

Бромид 1,3,5-трифенилпиридазиния (3c). К раствору 0.3 г (1 ммоль) соединения 4а в 20 мл этанола прибавляют 3 мл раствора концентрированной бромводородной кислоты и выдерживают при комнатной температуре 48 ч. Растворитель упаривают в вакууме без нагревания. Остаток перекристаллизовывают из уксусной кислоты. Выход 0.25 г (65%). Т. пл. 165–168 °C (из AcOH). ИК спектр, v, см⁻¹: 3050, 1595 (C=N), 1390, 1255, 1155, 760, 670. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 10.59 (1H, д, ⁴*J* = 1.2, H-6); 9.47 (1H, д, ⁴*J* = 1.2, H-4); 8.45 (2H, д, ³*J* = 8.0, H-2',6'); 8.38 (2H, м, H-2",6"); 8.28 (2H, м, H-2",6"); 7.79 (3H, м, H-3'–H-5'); 7.70–7.65 (6H, м, H-3"–H-5", H-3"–H-5"). Найдено, %: С 67.97; H 4.51; Br 20.52; N 7.22. С₂₂H₁₇BrN₂. Вычислено, %: С 67.88; H 4.40; Br 20.53; N 7.20.

1,3,5-Трифенил-1,4-дигидропиридазин (4а). Смесь 1 г (3.32 ммоль) γ -бромдипнона **1**, 0.33 г (4.0 ммоль) AcONa и 0.33 мл (3.32 ммоль) фенилгидразина сплавляют на масляной бане при 140 °C в течение 1 ч. После охлаждения к сплаву добавляют 10 мл воды и тщательно растирают. Отфильтровывают твердый остаток, тщательно промывают водой, 2-пропанолом и перекристаллизовывают. Выход 0.67 г (65%). Т. пл. 131–133 °C (EtOH) (т. пл. 133 °C [6]); R_f 0.59 (Silufol UV-254, гексан–бензол, 2 : 1). ИК спектр, v, см⁻¹: 3040, 1590 (C=N), 1490, 1335, 1247, 1200, 745, 680. УФ спектр, λ_{max} , нм (ϵ •10⁻³): 202 (50.49), 240 (23.62), 318 (27.23), 392 (10.08). Спектр ЯМР ¹³С, δ , м. д.: 144.82 (C-1'); 142.38 (C-3); 137.89 (C-1'''); 137.27 (C-1''); 129.88 (C-3',5',4''); 129.11 (C-3'',5''); 129.08 (C-3''',5'''); 127.11 (C-4'''); 126.38 (C-2'',6''); 124.74 (C-2''',6'''); 122.85 (C-4'); 121.42 (C-6); 116.03 (C-2',6'); 108.87 (C-5); 24.72 (C-4). Масс-спектр, *m/z* ($I_{\text{отн}}$, %): 311 [M + 1]⁺ (20), 310 [M]⁺ (40), 309 [M–1]⁺ (100).

N,2,4-Трифенил-1Н-пиррол-1-амин (5). Растворяют при нагревании 0.3 г (1 ммоль) 1,4-дигидропиридазина **4a** в 5 мл этанола. Добавляют 1 мл 60% раствора HClO₄ и нагревают до кипения. Растворитель упаривают до половины объема и оставляют при комнатной температуре на 3 ч. Выпавший осадок отфильтровывают и перекристаллизовывают. Выход 0.06 г (20%). Т. пл. 164–165 °C

(2-PrOH) (т. пл. 165 °С [7]).

1,3,5-Трифенил-1,6-дигидропиридазин (6а). Растворяют при нагревании 1 г (3.32 ммоль) у-бромдипнона 1 в смеси 30 мл спирта и 20 мл уксусной кислоты. К теплому раствору добавляют 0.33 мл (3.32 ммоль) фенилгидразина и полученный раствор выдерживают при комнатной температуре 10 ч. Образовавшийся осадок отфильтровывают, промывают спиртовым раствором соды (15%) и перекристаллизовывают. Выход 0.52 г (51%). Т. пл. 143–145 °С (ЕtOH–AcOH, 1 : 1); R_f 0.47 (Silufol UV-254, гексан-бензол, 2 : 1). ИК спектр, v, см⁻¹: 3040, 1590 (C=N), 1485, 1335, 1273, 1190, 915, 735, 670. УФ спектр, λ_{max} , нм (ε•10⁻³): 204 (45.83), 228 (17.58), 256 (27.54), 282 (33.06), 427 (10.37). Спектр ЯМР ¹Н, б, м. д. $(J, \Gamma \mathfrak{u})$: 7.96 (2H, $\mathfrak{g}, {}^{3}J = 8.0, H-2", 6"$); 7.91 (2H, $\mathfrak{g}, {}^{3}J = 8.0, H-2", 6"$); 7.53 (2H, $\mathfrak{g}, \mathfrak{g})$ ${}^{3}J = 8.0, \text{ H-2',6'}); 7.49 (2\text{H}, \text{T}, {}^{3}J = 8.0, \text{ H-3''',5'''}); 7.43 (3\text{H}, \text{M}, \text{H-3'',5''}, \text{H-4'''}); 7.38 (2\text{H}, \text{T}, {}^{3}J = 8.0, \text{H-3',5'}); 7.35 (1\text{H}, \text{T}, {}^{3}J = 8.0, \text{H-4''}); 7.29 (1\text{H}, \text{c}, \text{H-4}); 7.00 (1\text{H}, \text{T}, \text{T})$ ³*J* = 8.0, H-4'); 4.72 (2H, с, H-6). Спектр ЯМР ¹³С, б, м. д.: 147.08 (С-1'); 141.06 (С-3); 137.12 (C-1"); 136.36 (C-1""); 134.76 (C-5); 129.93 (C-4""); 129.63 (C-3',5'); 129.38 (C-3",5"); 129.22 (C-3",5"); 128.67 (C-4"); 126.11 (C-2",6"); 125.47 (C-2",6"); 122.65 (C-4'); 115.33 (C-2',6'); 11.94 (C-4); 45.19 (C-6). Масс-спектр, *m/z* (*I*_{отн}, %): 311 [М + 1^{+} (100), 309 [M-1]⁺ (40). Найдено, %: С 85.40; Н 5.90; N 9.09. С₂₂H₁₈N₂. Вычислено, %: С 85.13; Н 5.85; N 9.03.

1-(Арил)-3,5-дифенил-1,6-дигидропиридазины 6b,с (общая методика). Смесь 1 г (3.32 ммоль) γ-бромдипнона 1 и 3.32 ммоль 4-нитрофенилгидразина или 4-гид-разинобензойной кислоты в 50 мл нитрометана кипятят 30 мин. Раствор охлаж-дают и выпавший осадок отфильтровывают. Промывают спиртом и перекристал-лизовывают из уксусной кислоты.

Соединение 6b. Выход 0.79 г (67%). Т. пл. 190–192 °С (из MeNO₂). ИК спектр, v, см⁻¹: 3070, 1590 (С=N), 1495 (NO₂^{*as*}), 1317 (NO₂^{*s*}), 1285, 1185, 1110, 915, 830, 745, 685. УФ спектр, λ_{max} , нм (ε •10⁻³): 202 (37.93), 274 (27.13), 450 (24.28). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 8.18 (2H, д, ³*J* = 9.0, H-3',5'); 7.96 (2H, д, ³*J* = 7.5, H-2",6"); 7.88 (2H, д, ³*J* = 7.5, H-2",6"); 7.63 (2H, д, ³*J* = 9.0, H-2',6'); 7.50–7.37 (6H, м, H-3"–H-5", H-3"–H-5"); 7.24 (1H, с, H-4); 4.86 (2H, с, H-6). Масс-спектр, *m/z* ($I_{\text{отн}}$, %): 355 [М–Вг]⁺ (30), 354 [М–Вг–1]⁺ (100). Найдено, %: С 74.48; H 4.93; N 11.81. С₂₂H₁₇N₃O₂. Вычислено, %: С 74.35; H 4.82; N 11.82.

Соединение 6с. Выход 0.58 г (68%). Т. пл. 193–195 °С (из AcOH). ИК спектр, v, см⁻¹: 3000 (уш. CH, OH), 1680 (С=О), 1593 (С=N), 1420, 1270 (уш. & OH), 1170, 910, 745, 675. УФ спектр, λ_{max} , нм (ϵ •10⁻³): 202 (53.14), 288 (31.52), 430 (15.64). Спектр ЯМР ¹H, & м. д. (*J*, Гц): 12.23 (1H, уш. с, OH); 7.93 (4H, м, H-3',5',2",6"); 7.85 (2H, д, ³*J* = 8.0, H-2"',6"); 7.54 (2H, д, ³*J* = 8.8, H-2',6'); 7.49–7.41 (5H, м, H-3"–H-5", H-3"',5"); 7.35 (1H, т, ³*J* = 8.0, H-4"'); 7.21 (1H, с, H-4); 4.80 (2H, с, H-6). Найдено, %: С 78.00; H 5.23; N 7.92. С₂₃H₁₈N₂O₂. Вычислено, %: С 77.95; H 5.12; N 7.90.

5-Метил-1,3,5-трифенил-4,5-дигидро-1Н-пиразол (8). Реакцию бромдипнона **1** с фенилгидразином проводят по описанной выше методике синтеза дигидропиридина **6a**. Фильтрат, образовавшийся после отделения твердого продукта **6a**, упаривают при комнатной температуре. Остаток промывают небольшим количеством 2-пропанола и перекристаллизовывают несколько раз из 2-пропанола. Выход 0.1 г (9.5%). Т. пл. 177–179 °C (2-PrOH) (т. пл. 180 °C [10]). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 7.69 (2H, д. ³*J* = 8.0, H-2",6"); 7.48 (2H, д. ³*J* = 8.0, H-2",6"'); 7.38 (4H, т. ³*J* = 8.0, H-3",5",3"',5"); 7.30 (1H, т. ³*J* = 8.0, H-4"); 7.28 (1H, т. ³*J* = 8.0, H-4"); 7.03 (2H, т. ³*J* = 8.0, H-3',5'); 6.91 (2H, д. H-2',6'); 6.69 (1H, т. ³*J* = 8.0, H-4'); 3.54 (1H, д. ²*J* = 17.2, H_A-4); 3.33 (1H, д. ²*J* = 17.2, H_B-4); 1.79 (3H, с. CH₃). Спектр ЯМР ¹³С, δ, м. д.: 146.5 (С-3); 146.2 (С-1"'); 143.9 (С-1'); 133.2 (С-1"); 129.6 (С-4"); 129.3 (С-3',5',3",5",3"',5"'); 7.23 (С-4); 22.36 (<u>C</u>H₃).

5-Бром-1-(4-нитрофенил)-3,5-дифенил-1,4,5,6-тетрагидропиридазин **(9a)**. По описанной выше методике синтеза соединений **6b**, с из 1 г (3.32 ммоль) у-бромдипнона 1 и 1.18 г (3.32 ммоль) 4-нитрофенилгидразина получают продукт 6b. Уксуснокислый фильтрат, полученный после перекристаллизации соединения 6b, выдерживают 5 сут, отфильтровывают выпавший осадок соединения 9а. Выход 0.26 г (18%). Т. пл. 192–194 °С (из АсОН). ИК спектр, v, см⁻¹: 1580 (С=N), 1480, 1295, 1100, 835, 752, 675. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 7.99 (2Н, д, ³*J* = 8.0, Н-3',5'); 7.79 (2Н, м, Н-2",6"); 7.46 (3Н, м, Н-3"-Н-5"); 7.40 (4Н, м, Н-2"',3"',5"',6"'); 7.34 (1H, т, ³*J* = 7.5, H-4"); 7.09 (2H, уш. м, H-2',6'); 4.75 (1H, д, ²*J* = 12.0, H_A-6); 4.61 (1H, π , ²J = 12.0, H_B-6); 3.99 (1H, π , ²J = 18.0, H_A-4); 3.55 (1H, π , ²J = 18.0, Н_в-4). Спектр ЯМР ¹³С, δ, м. д.: 151.24 (С-3); 148.18 (С-4'); 141/99 (С-1""); 139.01 (C-1'); 131.50 (C-1"); 130.65 (C-4"); 130.12 (C-3"",5""); 129.52 (C-3",5"); 128.85 (C-4"'); 127.02 (C-2",6"); 126.12 (C-3',5'); 126.07 (C-2",6"'); 113.51 (C-2',6'); 72.56 (С-5); 51.83 (С-4); 38.58 (С-6). Найдено, %: С-60.62; Н 4.20; Вг 18.30; N 9.65. С₂₂Н₁₈BrN₃O₂. Вычислено, %: С 60.56; Н 4.16; Br 18.31; N 9.63.

СПИСОК ЛИТЕРАТУРЫ

- D. W. Combs, K. Reese, L. A. M. Cornelius, J. W. Gunnet, E. V. Cryan, K. S. Granger, J. J. Jordan, K. T. Demarest, *J. Med. Chem.*, 38, 4880 (1995).
- 2. G. Cignarella, D. Barlocco, S. Villa, J. Heterocycl. Chem., 35, 1161 (1998).
- 3. M. Tišler, P. Kolar, Adv. Heterocycl. Chem., 75, 167 (2000).
- 4. J. P. Hieble, R. R. Ruffolo, Progr. Drug Res., 47, 81 (1996).
- 5. D. Wensbo, S. Gronowitz, Tetrahedron, 52, 14975 (1996).
- 6. Л. М. Потиха, В. А. Ковтуненко, *XГС*, 626 (2007). [*Chem. Heterocycl. Comp.*, **43**, 523 (2007)].
- Л. М. Потиха, В. А. Ковтуненко, А. В. Туров, Г. В. Паламарчук, Р. И. Зубатюк, О. В. Шишкин, XTC, 404 (2009). [Chem. Heterocycl. Comp., 45, 327 (2009)].
- 8. D. M. Lemal, T. W. Rave, *Tetrahedron*, **19**, 1119 (1963).
- M. T. Cocco, C. Congiu, A. Maccioni, A. Plumitallo, *Gazz. Chim. Ital.*, **118**, 187 (1988).
- А. С. Морковник, О. Ю. Охлобыстин, *ХГС*, 551 (1985). [*Chem. Heterocycl. Comp.*, **21**, 461 (1985)].
- 11. M. E. Scott, Y. Bethuel, M. Lautens, J. Am. Chem. Soc., 129, 1482 (2007).
- 12. M. Hartnagel, K. Grimm, H. Mayr, Liebigs Ann. Chem., 71 (1997).
- 13. B. A. Carson, W. A. Sheppard, O. W. Webster, J. Am. Chem. Soc., 97, 5291 (1975).
- 14. H. H. Wasserman, N. E. Aubrey, H. E. Zimmerman, J. Am. Chem. Soc., 75, 96 (1953).

Киевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: potikha_l@mail.ru Поступило 23.04.2008

1039