Н. П. Андрюхова, О. А. Пожарская, Г. А. Голубева, Л. А. Свиридова, А. В. Садовой*

СИНТЕЗ

2-АЛКИЛ-3-(ИНДОЛ-2(ИЛИ -3)-ИЛ)-1,3-ДИГИДРОИЗОИНДОЛ-1-ОНОВ РЕАКЦИЕЙ АМИДОАЛКИЛИРОВАНИЯ

При амидоалкилировании индолов 2-алкил-3-гидроксифталидами в хлороформе при комнатной температуре в присутствии каталитических количеств эфирата трехфтористого бора с хорошими выходами получены 2-алкил-3-(индол-3-ил)-1,3-дигидроизоиндол-1-оны, а при наличии заместителя в положении 3 индола атака направляется в положение 2 индольного ядра.

Ключевые слова: 2-алкил-3-гидроксифталиды, 2-алкил-3-(индол-3-ил)-1,3-дигидроизоиндол-2-оны, индолы, амидоалкилирование, поворотная изомерия.

Реакция амидоалкилирования широко применяется в синтетической органической химии [1]. В ряду индолов эта реакция приводит, в зависимости от строения субстрата и реагента и условий проведения, к замещению в положения 1 [2], 2 [3–5] или 3 [1–3] молекулы индола, а в сильнокислой среде амидоалкилирование направляется в положения 5 или 6 [6].

Мы нашли, что как сам индол, так и его 1- и/или 2-замещенные 1 вступают в реакцию с 2-алкил-3-гидроксифталидами 2 в хлороформе при комнатной температуре в присутствии каталитических количеств эфирата трехфтористого бора, причем атака направляется в положение 3 индольного ядра.

Полученные соединения **3** представляют собой устойчивые кристаллические вещества, в спектрах ЯМР ¹Н которых исчезает сигнал протона в положении **3** индольного ядра и появляется сигнал бензгидрильного протона. Свойства и спектральные характеристики полученных соединений обобщены в табл. 1 и 2.

В спектрах ЯМР ¹Н соединений **3а–d,h–** наблюдается двойной набор части сигналов со сравнимой интенсивностью, а наибольшая разность значений химических сдвигов двух наборов сигналов наблюдается для протонов в положении 3 изоиндолона и метильной группы в положении 2 индола (см. табл. 2). В спектрах соединений **3k–o** интенсивность второго набора сигналов значительно меньше, а в спектрах остальных соединений присутствует только один набор сигналов. Это удвоение нельзя объяснить конкурентной атакой в положение 1 индола, так как оно наблюдается и в случае N-метилпроизводных индола (соединения **3i–k,m,o**).

Известно, что в ряду производных индола в кислых средах могут протекать перегруппировки типа Вагнера–Меервейна, иногда в очень мягких условиях, в результате которых происходит миграция группы из положения 3 в положение 2 индола, а заместитель из положения 2 может

	R	\mathbb{R}^1	R^2	R ³
1a	Н	Me	Н	
1b	Me	Н	Н	
1c	Н	Н	Н	
1d	Ме	Ме	Н	
1e	Н	p-MeC ₆ H ₄	Н	
lf	Ме	<i>p</i> -MeC ₆ H ₄	Н	
1g	Н	$p-ClC_6H_4$	Н	
1h	Me	Ph	Н	
1i	Н	Н	Me	
2a				(CH ₂) ₂ CHMe ₂
2b				$c-C_{6}H_{11}$
2c				(CH ₂) ₃ OBu
2d				CH ₂ CH ₂ Ph
3 a	Н	Me		(CH ₂) ₂ CHMe ₂
3 b	Н	Me		$c-C_{6}H_{11}$
3c	Н	Me		(CH ₂) ₃ OBu
3d	Н	Me		CH ₂ CH ₂ Ph
3e	Me	Н		$(CH_2)_2 CHMe_2$
3f	Н	Н		$(CH_2)_2 CHMe_2$
3g	Н	Н		(CH ₂) ₃ OBu
3h	Me	Me		$(CH_2)_2 CHMe_2$
3i	Me	Me		$c-C_{6}H_{11}$
3ј	Me	Me		CH ₂ CH ₂ Ph
3k	Н	<i>p</i> -MeC ₆ H ₄		$(CH_2)_2 CHMe_2$
31	Н	<i>p</i> -MeC ₆ H ₄		$c-C_{6}H_{11}$
3m	Me	<i>p</i> -MeC ₆ H ₄		$(CH_2)_2 CHMe_2$
3n	Н	<i>p</i> -ClC ₆ H ₄		$c-C_{6}H_{11}$
30	Me	Ph		$c-C_{6}H_{11}$
4	Н	Me		CH ₂ CH ₂ Ph

перейти в положение 3 [3]. Для проверки этого предположения мы провели взаимодействие изомерных 2-метилиндола (1а) и 3-метилиндола (1i), а также 1,2-диметилиндола (1d) с 3-гидрокси-2-фенетилфталидом (2d). В спектрах ЯМР ¹Н полученных соединений 3d, j наблюдаются два набора сигналов, а в спектре соединения 4 – только один набор сигналов, причем спектры изоиндолонов 3d и 4 значительно отличаются друг от друга и не содержат общих сигналов (см. табл. 2). Так, единственный сигнал метильной группы в спектре соединения 4 находится при 2.15–2.45 м. д. (уш. с), а в спектрах соединений 3d, j метильная группа проявляется в виде двух сигналов при 1.60–1.65 и 2.50–2.55 м. д. Таким образом, в ходе изученной реакции изомеризации не происходит.

Таблица 1

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Выход, %
нение	формула	С	Н	Ν		
3 a	$C_{22}H_{24}N_2O$	<u>79.69</u> 79.48	<u>7.08</u> 7.28	<u>8.31</u> 8.43	182–185	48
3b	$C_{23}H_{24}N_2O$	<u>80.04</u> 80.20	<u>7.24</u> 7.02	<u>8.00</u> 8.13	244–245	70
3c	$C_{24}H_{28}N_2O_2$	<u>76.77</u> 76.56	<u>7.30</u> 7.50	<u>7.32</u> 7.44	140–142	34
3d	$C_{25}H_{22}N_2O$	<u>82.03</u> 81.94	<u>6.15</u> 6.05	<u>7.75</u> 7.64	192–195	55
3e	$C_{22}H_{24}N_2O$	<u>79.75</u> 79.48	<u>7.05</u> 7.28	<u>8.37</u> 8.43	125–127	32
3f	$C_{21}H_{22}N_2O$	<u>79.54</u> 79.21	<u>7.10</u> 6.96	<u>8.78</u> 8.80	158–160	62
3g	$C_{23}H_{26}N_2O_2$	<u>76.54</u> 76.21	<u>7.37</u> 7.23	<u>7.71</u> 7.73	128–130	46
3h	$C_{23}H_{26}N_2O$	<u>79.75</u> 79.73	<u>7.92</u> 7.56	<u>8.13</u> 8.09	137–139	66
3 i	$C_{24}H_{26}N_2O$	<u>80.50</u> 80.41	<u>7.27</u> 7.31	<u>7.86</u> 7.81	176–178	40
3ј	$C_{26}H_{24}N_2O$	<u>82.40</u> 82.07	<u>6.57</u> 6.36	<u>7.28</u> 7.36	149–151	84
3k	$C_{28}H_{28}N_2O$	<u>82.14</u> 82.32	<u>6.99</u> 6.91	<u>6.85</u> 6.86	267–269	56
31	$C_{29}H_{28}N_2O$	<u>83.02</u> 82.82	<u>6.59</u> 6.71	<u>6.60</u> 6.66	302-304	70
3m	$C_{29}H_{30}N_2O$	<u>82.52</u> 82.43	<u>7.30</u> 7.16	<u>6.60</u> 6.63	138–140	50
3n	C ₂₈ H ₂₅ ClN ₂ O	<u>76.10</u> 76.27	<u>5.52</u> 5.71	<u>6.40</u> 6.35	297–298	58
30	$C_{29}H_{28}N_2O$	<u>82.99</u> 82.82	<u>6.97</u> 6.71	<u>6.58</u> 6.66	181–182	64
4	$C_{25}H_{22}N_2O$	<u>82.02</u> 81.94	<u>6.28</u> 6.05	<u>7.64</u> 7.64	198–201	54

Характеристики полученных соединений 3, 4

Спектры ЯМР ¹Н соединений 3, 4 при 20 °С

Соеди- нение	Химические сдвиги, δ, м. д. (<i>J</i> , Гц)
3 a	0.8–0.9 (6H, 2д, <i>J</i> ≈ 7, CH(C <u>H</u> ₃) ₂); 1.3–1.5 (2H, м, CCH ₂ C); 1.5–1.6 (1H, м, C <u>H</u> (CH ₃) ₂); 1.65, 2.65 (3H, 2c, ~1:4, CH ₃); 2.7–2.9 (1H, м, NCH ₂); 3.6–3.8 (1H, м, NCH ₂); 5.8, 6.1 (1H, 2c, ~4:1, H-3); 6.2–7.8 (8H, м, аром.); 11.0 (1H, уш. с, NH)
3b	0.8–2.0; 1.7 (10 + 0.6H, ш. м, 5CH ₂ + сильнопольная часть CH ₃ C); 2.7 (2.4H, с, слабопольная часть CH ₃ C); 3.6–3.8 (1H, ш. м, NC <u>H(CH₂)₅); 5.9, 6.15 (1H, 2 c, ~4:1, H-3); 6.3–7.8 (8H, м, аром.); 10.9 (1H, уш. с, NH)</u>
3c	0.85 (3H, т, <i>J</i> ≈ 7, CH ₃); 1.1–1.5 (4H, м, 2CH ₂); 1.5–1.85, 1.7 (~2.5H, м, CH ₂ + сильнопольная часть H-3); 2.6 (~2.5H, с, слабопольная часть CH ₃); 2.8–3.0 (1H, м, NCH ₂); 3.2–3.4 (4H, м, 2CH ₂ O); 3.6–3.9 (1H, м, NCH ₂); 5.8, 6.1 (1H, 2c, ~5:1, H-3); 6.2–7.8 (8H, м, аром.); 11.0 (1H, уш. с, NH)
3d	1.65, 2.5 (3H, 2c, ~1:5, CH ₃ C); 2.7 (1H, м, C <u>H</u> ₂ C ₆ H ₅); 3.0 (1H, м, C <u>H</u> ' ₂ C ₆ H ₅); 3.4 (1H, м, NCH ₂); 3.9 (1H, м, NCH' ₂); 5.5, 5.8 (1H, 2c, ~5:1, H-3), 6.2 – 7.9 (13H, м, аром.); 10.8 (1H, уш. с, NH)
3e	0.8–0.9 (6H, 2д, <i>J</i> ≈ 7, CH(C <u>H</u> ₃) ₂); 1.4 (2H, м, CCH ₂ C); 1.5 (1H, м, C <u>H</u> (CH ₃) ₂); 2.7–2.9 (1H, м, NCH ₂); 3.7–3.8 (1H, м, NCH' ₂); 3.85 (3H, с, CH ₃ N); 5.85 (1H, с, H-3); 6.55–7.8 (9H, м, аром.)
3f	0.8-0.9 (6H, 2д, <i>J</i> ≈ 7, CH(C <u>H</u> ₃) ₂); 1.4 (2H, м, CCH ₂ C); 1.45-1.6 (1H, м, C <u>H</u> (CH ₃) ₂); 2.7-2.9 (1H, м, NCH ₂); 3.7-3.9 (1H, м, NCH' ₂); 5.85 (1H, c, H-3); 6.5-7.8 (9H, м, аром.); 11.1 (1H, уш. с, NH)
3g	0.85 (3H, т, <i>J</i> ≈ 7, CH ₃ ,); 1.1–1.5 (4H, м, 2CH ₂); 1.5–1.85 (2H, м, CH ₂); 2.8–3.0 (1H, м, NCH ₂); 3.2–3.4 (4H, м, 2CH ₂ O); 3.6–3.9 (1H, м, NCH' ₂); 5.9 (1H, с, H-3); 6.5–7.8 (9H, м, аром.); 11.1 (1H, уш. с, NH)
3h	0.8, 0.9 (6H, 2д, <i>J</i> ≈ 7, CH(C <u>H</u> ₃) ₂); 1.4 (2H, м, CCH ₂ C); 1.5 (1H, м, C <u>H</u> (CH ₃) ₂); 1.7, 2.7 (3H, 2c, ~1:4, CH ₃ C); 2.75 (1H, м, NCH ₂); 3.75 (1H, м, NCH' ₂); 3.6, 3.8 (3H, 2 c, ~1:4, CH ₃ N); 5.9, 6.1 (1H, 2 c, ~4:1, H-3); 6.2–7.8 (8H, м, аром.)
3i	0.8–2.0; 1.7 (10 + 0.6H, ш. м + с, 5CH ₂ + сильнопольная часть CH ₃ C); 2.7 (2.4H, с, слабопольная часть CH ₃ C); 3.6, 3.8 (3H, 2c, ~1:4, CH ₃ N); 3.7 (1H, ш. м, NC <u>H</u> (CH ₂) ₅); 5.9, 6.15 (1H, 2c, ~4:1, H-3); 6.3–7.8 (8H, аром.)
3ј	1.6, 2.55 (3H, 2c, ~1:4, CH ₃ C), 2.65–2.8 (1H, м, C <u>H</u> ₂ C ₆ H ₅), 2.85–3.0 (1H, м, C <u>H</u> ' ₂ C ₆ H ₅), 3.05–3.2 (1H, м, NCH ₂), 3.6–3.85 (3H, 2c, ~1:4, CH ₃ N), 3.85–3.95 (1H, м, NCH' ₂), 5.7, 6.0 (1H, 2c, H-3); 6.2–7.8 (13H, м, аром.)
3k	0.6-0.7 (6H, 2т, <i>J</i> ≈ 7, CH(C <u>H</u> ₃) ₂); 0.85-1.2 (2H, м, CCH ₂ C); 1.2-1.4 (1H, м, C <u>H</u> (CH ₃) ₂); 2.45 (3H, с, CH ₃); 2.55-2.65 (1H, м, NCH ₂); 3.55-3.75 (1H, м, NCH' ₂); 5.9, 6.2 (1H, 2 с, ~6:1, H-3); 6.3-7.9 (12H, м, аром.); 11.4 (1H, уш. с, NH)
31	0.7–1.6 (10H, ш. м, 5CH ₂); 2.4 (3H, с, CH ₃); 3.6–3.8 (1H, ш. м, NC <u>H</u> (CH ₂) ₅); 5.95, 6.2 (1H, 2c, ~40:1, H-3); 6.4–7.8 (12H, м, аром.); 11.3 (1H, уш. с, NH)
3m	0.7–0.8 (6H, 2_{H} , $J \approx 7$, CH(C <u>H_3</u>) ₂); 0.9–1.2 (2H, M, CCH ₂ C); 1.2–1.4 (1H, M, C <u>H</u> (CH ₃) ₂); 2.45 (3H, c, CH ₃ C); 2.55–2.7 (1H, M, NCH ₂); 3.7 (3H, c, CH ₃ N); 3.7–3.8 (1H, M, NCH' ₂); 5.55, 6.1 (1H, 2c, ~20:1); 6.3–7.8 (12H, M, apoM.)
3n	0.7–1.6 (10H, ш. м, 5CH ₂); 3.6–3.8 (1H, ш. м, NC <u>H(</u> CH ₂) ₅); 5.95, 6.25 (1H, 2 c, ~20:1, H-3); 6.4–7.8 (12H, м, аром.); 11.4 (1H, уш. с, NH)
30	0.8–1.7 (10H, ш. м, 5CH ₂); 3.6–3.8 (4H, ш. м + с, NC <u>H</u> (CH ₂) ₅) + CH ₃); 5.6, 6.25 (1H, 2 с, ~40:1), 6.5–7.8 (13H, ш. м, аром.)
4	2.15–2.45 (3H, уш. с, CH ₃); 2.7–2.8 (1H, м, C <u>H</u> ₂ C ₆ H ₅); 2.9–3.0 (1H, м, C <u>H</u> ' ₂ C ₆ H ₅); 3.05–3.15 (1H, м, NCH ₂); 3.95–4.1 (1H, м, NCH' ₂); 5.7 (1H, с, H-3); 6.9–7.8 (13H, м, аром.); 10.3 (1H, уш. с, NH)

По-видимому, в данном случае мы имеем дело с заторможенным внутренним вращением вокруг σ -связи C-3 индола–C-3 изоиндолона. Действительно, в спектрах соединений, у которых в положении 2 индольного ядра заместитель отсутствует (**3e–g**), пространственные затруднения, по-видимому, незначительны, и мы наблюдаем единственный набор сигналов в спектрах. Если в положении 2 индола находится объемная арильная группа (соединения **3k–o**), вращение заторможено или невозможно, и, вероятно вследствие значительных пространственных затруднений, реализуется преимущественно один из возможных поворотных изомеров, поэтому интенсивность сигналов второго поворотного изомера в спектрах ЯМР ¹Н невелика. При наличии в положении 2 индола метильной группы (соединения **3a–d,h–j**) возможно существование обоих поворотных изомеров, но внутреннее вращение затруднено или невозможно, и в спектрах в сравнимых количествах отчетливо проявляются оба поворотных изомера.

Температурная зависимость в спектрах соединений **3**a,**b**,**d**,**h**,**j**, полученных в ДМСО-d₆ при температурах 20, 40 и 60 °С, отсутствует, таким образом барьер вращения вокруг σ -связи С-3 индола–С-3 изоиндолона достаточно высок.

Нам не удалось ввести в реакцию в данных условиях 2-(*м*- и *n*-нитрофенил)индолы вследствие их низкой активности, а в случае 2-(*м*- и *n*-метоксифенил)индолов продукты реакции оказываются в значительной степени загрязнены исходными индолами из-за низкой растворимости как продуктов реакции, так и исходных соединений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н получены на приборе Bruker AM-360 (360 МГц) в ДМСО- d_6 , внутренний стандарт ТМС. Контроль за ходом реакции и чистотой полученных соединений осуществлялся методом TCX на пластинках Merck Silicagel 60 F_{254} .

Исходные 2-алкил-3-гидроксифталиды 2а-d получали по методу [7].

Получение соединений 3 и 4 (общая методика). К раствору или суспензии 1 ммоль индолов 1а-і в 10 мл СНСІ₃ при комнатной температуре и перемешивании в один прием прибавляют небольшой избыток (~5%) 2-алкил-3-гидроксифталидов 2а-d и затем ~10 мол. % эфирата трехфтористого бора. Суспензия исходного индола, если она имеет место, растворяется через несколько минут, раствор окрашивается и отделяется вода в виде эмульсии. Смесь перемешивают 2–3 ч, затем оставляют на ночь. В случае, если продукт реакции выпадает в осадок, его отфильтровывают, промывают СНСІ₃, спиртом, эфиром и высушивают. В про-тивном случае реакционную смесь пропускают через слой силикагеля (Merck, для колоночной хроматографии, 0.035–0.070 нм, диаметр пор 6 нм, 500 м²/г) (элюент СНСІ₃), элюат упаривают в вакууме, остаток растирают с эфиром (а в случае N-метилиндолов – с гексаном), осадок отфильтровывают, промывают эфиром или гексаном, высушивают.

СПИСОК ЛИТЕРАТУРЫ

- 1. H. E. Zaugg, Synthesis, 85 (1984).
- В. Г. Карцев, в кн.: Химия и биологическая активность синтетических и природных соединений. Азотистые гетероциклы и алкалоиды, под ред. В. Г. Карцева, Г. А. Толстикова, Иридиум-пресс, Москва, 2001, т. 1, с. 97.
- 3. Л. А. Свиридова, С. В. Афанасьева, Г. А. Голубева, П. Б. Терентьев, Ю. Г. Бундель, *XГС*, 1207 (1990). [*Chem. Heterocycl. Comp.*, **26**, 1008 (1990)].
- 4. H. Heaney, K. F. Shuhaibar, Synlett, 47 (1995).
- 5. V. Bocchi, G. Casnati, G. Gardini, Tetrahedron Lett., 683 (1971).
- 6. А. Муминов, А. Г. Юдин, Е. Я. Зинченко, Н. Н. Романова, А. Н. Кост, *XГС*, 1218 (1985). [*Chem. Heterocycl. Comp.*, **21**, 1012 (1985)].
- 7. R. Scheffold, P. Dubbs, Helv. Chim. Acta, 50, 798 (1967).

Московский государственный университет им. М. В. Ломоносова, Москва 119992, Россия e-mail: sadovoy@mail.ru Поступило 11.03.2008