Посвящается академику РАН Борису Александровичу Трофимову в связи с 70-летием со дня рождения

С. А. Амитина, А. Я. Тихонов*, И. А. Григорьев, Ю. В. Гатилов, Б. А. Селиванов

СИНТЕЗ 2-АРОИЛ-1-ГИДРОКСИ-4,5-ДИМЕТИЛИМИДАЗОЛОВ ВЗАИМОДЕЙСТВИЕМ 3-ГИДРОКСИАМИНО-2-БУТАНОНОКСИМА С АРИЛГЛИОКСАЛЯМИ

При взаимодействии уксуснокислой соли 3-гидроксиамино-2-бутаноноксима с арилглиоксалями образуются α-ароилнитроны, которые циклизуются в кислотнокатализируемых условиях преимущественно с образованием 2-ароил-1-гидрокси-4,5-диметилимидазолов. Проведено исследование методом PCA 2-бензоил-1-гидрокси-4,5-диметилимидазола.

Ключевые слова: арилглиоксали, 2-ароил-1-гидроксиимидазолы, α-ароилнитроны, гидроксиламинооксим, пиразин-1,4-диоксиды, PCA.

Имидазолы представляют собой важный класс гетероциклических соединений с широким спектром биологической активности и практической значимости [1]. Для 1-гидрокси-2-[(4-фенокси)бензоил]-4,5,6,7тетрагидробензимидазола недавно обнаружена антибактериальная активность [2]. Ранее производные 2-ароил-1-гидрокси-4,5,6,7-тетрагидробензимидазола были получены конденсацией 2-гидроксиаминоциклогексаноноксима с арил- и гетарилглиоксалями, причем при использовании фенилглиоксаля был выделен в значительных количествах 5,6,7,8-тетрагидрохиноксалин-1,4-диоксид [3]. Следует отметить, что 4,5-диалкил-1гидроксиимидазолы или таутомерные им N-оксиды имидазолов не образуются при окислении имидазольного кольца [4].

В настоящей работе изучена конденсация уксуснокислой соли ациклического 3-гидроксиамино-2-бутаноноксима 1 с гидратами арилглиоксалей **2а-f** с целью установления направления циклизации. При этом предполагалось преимущественное образование производных имидазола, а не пиразина, так как отсутствие метиленового мостика должно было облегчать циклизацию промежуточных нитронов с образованием пятичленного гетероцикла.

При конденсации уксуснокислой соли 3-гидроксиамино-2-бутаноноксима 1 с гидратом фенилглиоксаля 2а в метаноле или в воде при комнатной температуре первичным продуктом реакции является α-бензоилнитрон 3а. В этих же условиях (в метаноле) взаимодействием соли

2–5 a–e R = H; **a** $R^1 = H$, **b** $R^1 = Cl$, **c** $R^1 = NO_2$, **d** $R^1 = OMe$, **e** $R^1 = OEt$, **f** $R = R^1 = OEt$

1-АсОН с гидратами арилглиоксалей 2b,с были получены соответствующие α-ароилнитроны 3b,с. Из реакционной смеси после получения бензоилнитрона 3b были выделены хроматографически бензоилимидазол 4b и пиразин-1,4-диоксид 5b.

Нагревание растворов нитронов **3а–с** в метаноле в присутствии уксусной кислоты или нитрона **3а** в уксусной кислоте привело к образованию 1-гидроксиимидазолов **4а–с**, при этом в реакционной смеси, по данным TCX, наблюдаются пиразин-1,4-диоксиды **5а–с**, изомерные по составу 1-гидроксиимидазолам **4а–с**. Пиразин-1,4-диоксид **5а** был идентифицирован по TCX сравнением с заведомым образцом, который количественно образуется при конденсации *E*-изомера 2-гидроксиамино-1-фенилэтаноноксима с диацетилом [5]. Проведение конденсации соли **1**-АсОН с гидратами арилглиоксалей **2d–f** в метаноле в присутствии уксусной кислоты при нагревании привело, как и ожидалось, к 1-гидроксиимидазолам **4d–f**. Характерным для спектров ЯМР ¹Н соединений **4a–f** является наличие слабопольного сигнала протона гидроксильной группы в области 13.7–14.4 м. д., а для пиразин-1,4-диоксидов **5b,с** – сигнала гетероароматического протона в области 8.1–8.7 м. д. (табл. 1) (ср. [4, 5]).

Образование 1-гидроксиимидазолов 4a-f, видимо, происходит в результате легко протекающей реакции дегидратации промежуточных 2-ароил-1-гидрокси-3-имидазолин-3-оксидов **6** (ср. [6]). Строение и состав всех синтезированных соединений подтверждаются спектральными характеристиками (табл. 1) и данными элементного анализа (табл. 2).

Таблица 1

Соеди- нение	ИК спектр, v, см ⁻¹	УФ спектр, λ _{max} , нм (lg ε)	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)*		
3a	3318, 1649, 1520, 1242, 948	309 (4.14)	1.53 (3H, д, <i>J</i> = 6.5, CH ₃); 1.81 (3H, с, CH ₃); 5.15 (1H, кв, <i>J</i> = 6.5, C <u>H</u> –CH ₃); 7.50–7.59 (3H, м, H-3,4,5 Ar); 7.91 (2H, м, H-2,6 Ar); 8.56 (1H, с, =CH); 11.16 (1H, с, 1-OH)		
3b	3245, 1651, 1529, 1247, 953	314 (4.21)	1.54 (3H, д, <i>J</i> = 6.5, CH ₃); 1.83 (3H, с, CH ₃); 5.17 (1H, кв, <i>J</i> = 6.5, C <u>H</u> -CH ₃); 7.65 (2H, м, H-3,5 Ar); 7.95 (2H, м, H-2,6 Ar); 8.59 (1H, с, =CH); 11.25 (1H, уш. с, OH)		
3c	1657, 1525, 1347, 1231, 953	271 (4.06), 316 (4.15)	1.52 (3H, д, <i>J</i> = 6.9, CH ₃); 1.80 (3H, с, CH ₃); 5.18 (1H, кв, <i>J</i> = 6.9, C <u>H</u> –CH ₃); 8.09 (2H, м, H-2,6 Ar); 8.34 (2H, м, H-3,5 Ar); 8.63 (1H, с, =CH); 11.21 (1H, уш. с, OH)		
4a	1640, 1467, 1292, 909	258 (3.90), 328 (4.06)	2.28 (6H, c, 4,5-CH ₃); 7.40–7.60 (3H, м, H-3,4,5 Ar); 8.57 (2H, м, H-2,6 Ar); 14.15 (1H, c, 1-OH)		
4b	1637, 1587, 1463, 1298, 909	265 (3.88), 331 (3.97)	2.30 (6H, c, 4,5-CH ₃); 7.49 (2H, м, H-3,5 Ar); 8.60 (2H, м, H-2,6 Ar); 14.06 (1H, c, 1-OH)		
4c	1608, 1563, 1525, 1472, 1344, 1300, 918	268 (4.07), 340 (3.90)	2.26 (3H, c, 4- или 5-CH ₃); 2.28 (3H, c, 4- или 5-CH ₃); 8.30 (2H, м, H-2,6 Ar); 8.74 (2H, м, H-3,5 Ar); 13.71 (1H, c, 1-OH)		
4d	1603, 1456, 1296, 1259, 1170, 908	228 (3.84), 337 (4.45)	2.24 (6H, c, 4,5-CH ₃); 3.86 (3H, c, 4-OCH ₃); 6.97 (2H, м, H-3,5 Ar); 8.66 (2H, м, H-2,6 Ar); 14.39 (1H, c, 1-OH)		
4e	1606, 1451, 1293, 1254, 1164, 907	228 (3.80), 343 (4.18)	1.42 (3H, т, <i>J</i> = 6.9, 4-OCH ₂ C <u>H</u> ₃); 2.24 (6H, с, 4,5-CH ₃); 4.09 (2H, кв, <i>J</i> = 6.9, 4-OC <u>H₂CH₃</u>); 6.95 (2H, м, H-3,5 Ar); 8.64 (2H, м, H-2,6 Ar); 14.41 (1H, с, 1-OH)		
4f	1598, 1464, 1274, 1259, 1145, 1041	241 (3.91), 357 (4.13)	1.47 (6H, т, $J = 7.0$, 3,4-OCH ₂ C <u>H₃</u>); 2.24 (6H, c, 4,5-CH ₃); 4.17 (4H, кв, $J = 7.0$, 3,4- OC <u>H₂CH₃</u>); 6.93 (1H, д, $J = 8.4$, H-5 Ar); 8.09 (1H, д, $J = 1.8$, H-2 Ar); 8.50 (1H, д. д, $J = 1.8$, 8.4, H-6 Ar); 14.39 (1H, с, 1-OH)		
5b	1595, 1489, 1354, 1243, 1107, 1091	265 (4.37), 314 (4.24)	2.57 (6H, c, 2,3-CH ₃); 7.46 (2H, м, H-3,5 Ar); 7.69 (2H, м, H-2,6 Ar); 8.18 (1H, c, H-6)		
5c	1601, 1516, 1348, 1248, 1105	260 пл. (3.15), 294 (4.32)	2.46 (3H, c, 2- или 3-CH ₃); 2.47 (3H, c, 2- или 3-CH ₃); 8.07 (2H, м, H-2,6 Ar); 8.33 (2H, м, H-3,5 Ar); 8.69 (1H, c, H-6)		

Спектральные характеристики синтезированных соединений

 $\overline{}^{*}$ Спектры ЯМР ¹Н снимали в ДМСО-d₆ (соединения **3а–с** и **5с**) и CDCl₃ (соединения **4а–f** и **5b**).

Т	а	б	Л	И	Ц	а	2
---	---	---	---	---	---	---	---

	-	•	-			
Соеди-	Брутто-	В	Найдено, % ычислено, '	<u>)</u> %	T OCT	Выход**.
нение	формула	С	Н	Ν	1. пл., °С*	%
3a	$C_{12}H_{14}N_2O_3$	<u>61.72</u>	<u>6.06</u>	11.80	153–154	62
		61.52	6.02	11.96	(разл.)	(60)
3b	$C_{12}H_{13}CIN_2O_3***$	<u>54.10</u> 53.64	<u>4.85</u> 4.88	$\frac{10.68}{10.43}$	132 (paga)	41
30	C. H. N.O.	51.65	4.00	1/ 83	(pash.) 149	72
50	012111311305	<u>51.61</u>	4.69	15.05	(разл.)	12
4 a	$C_{12}H_{12}N_2O_2$	<u>66.65</u>	<u>5.84</u>	12.97	62–64	84
		66.65	5.59	12.96		(84)
4b	$C_{12}H_{11}CIN_2O_2^{*4}$	<u>57.40</u> 57.49	<u>4.34</u> 4.42	<u>11.43</u> 11.18	111–112	76
4c	$C_{12}H_{11}N_3O_4$	<u>54.94</u> 55.17	$\frac{4.03}{4.24}$	$\frac{16.03}{16.09}$	149–150	55
4d	$C_{13}H_{14}N_2O_3$	<u>63.58</u> 63.40	<u>5.73</u> 5.73	<u>11.33</u> 11.38	103–104	57
4e	$C_{14}H_{16}N_2O_3$	<u>64.52</u> 64.60	<u>6.21</u> 6.20	<u>10.73</u> 10.76	92–93	46
4f	$C_{16}H_{20}N_2O_4$	<u>63.48</u> 63.14	<u>6.72</u> 6.62	<u>9.16</u> 9.21	116–117	63
5b	$C_{12}H_{11}ClN_2O_2^{*4}$	<u>57.94</u> 57.49	<u>4.27</u> 4.42	<u>10.99</u> 11.18	192–193	8
5c	$C_{12}H_{11}N_3O_4$	<u>55.36</u> 55.17	<u>4.45</u> 4.24	<u>16.19</u> 16.09	249 (разл.)	12

Характеристики синтезированных соединений

* Растворитель для кристаллизации: MeOH (соединения 3c, 4c,f, 5b,c); гексан (соединения 4a,b); эфир (соединения 4d,e).

** В скобках приведен выход по соответствующему методу Б.

*** Найдено, %: Cl 13.19. Вычислено, %: Cl 13.20.

*⁴ Найдено, %: Cl 14.15. Вычислено, %: Cl 14.15.

При строения 2-бензоил-1-гидрокси-4,5-диметилисследовании имидазола 4а методом РСА было установлено, что фрагмент N(1)-C(7) и атомы O(1), O(2), C(13), C(14) молекулы лежат в одной плоскости в пределах ±0.080 Å. Бензольное кольцо немного выведено из этой плоскости, двугранный угол равен 14.58(5)°. В Кембриджской базе структурных данных [7] отсутствует информация о строении 1-гидроксиимидазолов, содержащих ароильную или ацетильную группу в положении 2 гетероцикла. В табл. 3 приведены избранные длины связей молекулы соединения 4a и рассчитанные методом DFT/PBE/3z для изолированной молекулы 4а. Отметим большую выравненность длин связей имидазольного цикла в кристалле по сравнению с расчетами. Параметры внутримолекулярной водородной связи О(1)-Н...О(2) следующие: О-Н 1.03(3), H...O 1.60(3), O...O 2.536(2) Å, ∠O-H...O 150(2)°. В кристалле соединения 4а образуются стопки молекул вдоль оси *а* благодаря π-стекинг взаимодействию между имидазольными циклами (межцентроидное и межплоскостное расстояния 3.488(1) и 3.410 Å), а также между группой C=O и имидазольным циклом (расстояния центроид-С(6) 3.477, межплоскостное 3.356 Å).

Молекулярная структура и нумерация атомов соединения **4a**. Тепловые эллипсоиды показаны с 30% уровнем вероятности

Таблица З

Избранные длины связей (1) в молекулах соединения 4а

Связь	l, Å	DFT/PBE/3z	Связь	l, Å	DFT/PBE/3z
N(1)–C(2)	1.374(2)	1.391	N(1)–O(1)	1.376(2)	1.370
C(2)–N(3)	1.338(2)	1.353	C(2)–C(6)	1.442(2)	1.443
N(3)–C(4)	1.353(2)	1.353	C(6)–O(2)	1.249(2)	1.272
C(4)–C(5)	1.387(2)	1.416	C(6)–C(7)	1.484(2)	1.485
C(5)–N(1)	1.344(2)	1.354			

Согласно расчетам DFT/PBE/3z для газовой фазы возможный таутомер соединения **4a** – 2-бензоил-4,5-диметил-1Н-имидазол-3-оксид – на 8.0 ккал/моль менее стабилен, а другой таутомер – 2-(1-гидрокси-1-фенил-метилиден)-4,5-диметил-2Н-имидазол-1-оксид – не является локальным минимумом и безбарьерно переходит в **4a**.

Таким образом, образующиеся при конденсации ациклического 1,2-гидроксиламинооксима с арилглиоксалями α -бензоилнитроны претерпевают циклизацию с преимущественным образованием 2-ароил-1-гидроксиимидазолов, которые могут быть получены в одну стадию, без выделения α -бензоилнитронов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры, таблетки КВг, зарегистрированы на спектрофотометре Bruker Vector 22, УФ спектры – в этаноле на спектрофотометре Hewlett Packard 8453. Спектры ЯМР ¹Н записаны на приборе Bruker AC-300 (300 МГц), внутренний стандарт – остаточные протоны растворителя CDCl₃ (7.24 м. д.) и ДМСО-d₆ (2.50 м. д.). Контроль за ходом реакций и чистотой полученных соединений осуществлялся с помощью TCX на пластинках Silufol UV-254, элюент хлороформ-метанол, 10:1.

Уксуснокислую соль гидроксиламинооксима **1** получали по методике [8], арилглиоксали – реакцией Райли [9]. Температуры плавления гидратов арилглиоксалей **2а–f** идентичны приведенным в литературе [10–12].

N-(2-Гидроксиимино-1-метилпропил)-α-ароилнитроны За-с (общая методика). А. Растворяют при нагревании 5 ммоль уксуснокислой соли гидроксиламинооксима 1 в 7 мл МеОН, охлаждают до комнатной температуры, прибавляют при перемешивании 5 ммоль гидрата арилглиоксаля **2а-с**, при этом происходит полное растворение. Раствор желтеет через 5–10 мин, выпадает осадок, смесь оставляют на ночь. Осадок ароилнитронов **3а-с** отфильтровывают, промывают MeOH, сушат.

Фильтрат после выделения бензоилнитрона **3b** упаривают, к остатку прибавляют воду, затем NaHCO₃ до нейтральной среды, экстрагируют хлороформом. Хлороформный раствор промывают водой, сушат MgSO₄, растворитель упаривают, остаток хроматографируют на колонке с силикагелем (элюент хлороформ), выделяют 0.45 г (36%) ароилимидазола **4b**, а затем элюированием (хлороформ–MeOH, 10:1) получают 0.10 г (8%) пиразина **5b**.

N-Бензоилметилиден-N-(2-гидроксиимино-1-метилпропил)амин-N-оксид (**3a**). Б. К раствору 1.78 г (10 ммоль) уксуснокислой соли гидроксиламинооксима **1** в 7 мл воды прибавляют порциями по мере растворения 1.60 г (10.5 ммоль) гидрата фенилглиоксаля **2a**. Через 5–7 мин раствор мутнеет и начинает выпадать желтый осадок. Реакционную смесь оставляют на ночь при комнатной температуре, затем охлаждают до 5 °C. Осадок отфильтровывают, промывают на фильтре водой, сушат на воздухе. Получают 1.40 г (60%) соединения **3a**.

2-Ароил-1-гидрокси-4,5-диметилимидазолы 4а-с (общая методика). А. Нагревают 5 ммоль ароилнитронов **3а-с** 2 ч при 80–90 °С в смеси 10 мл МеОН и 3 мл ледяной АсОН. Растворитель упаривают, остаток смешивают с водой, нейтрализуют NaHCO₃, экстрагируют хлороформом. Хлороформный раствор промывают водой, сушат MgSO₄, растворитель упаривают. Из остатка после кристаллизации из гексана получают имидазолы **4а,b**. В случае циклизации ароилнитрона **3с** из реакционной смеси при охлаждении выпадает пиразин **5с**, а из фильтрата при разбавлении водой получают имидазол **4с**.

2-Бензоил-1-гидрокси-4,5-диметилимидазол (4а). Б. Растворяют при нагревании 1.03 г (4.4 ммоль) бензоилнитрона **За** в 12 мл АсОН и выдерживают ночь при комнатной температуре. Растворитель упаривают, остаток растворяют в EtOAc. Раствор промывают 3% раствором гидрокарбоната натрия, водой, сушат MgSO₄, растворитель упаривают. Остаток хроматографируют на колонке с силика-гелем (элюент пентан–эфир), получают 0.80 г (84%) соединения **4а**.

2-Ароил-1-гидрокси-4,5-диметилимидазолы 4d–**f** (общая методика). К раствору 10.5 ммоль уксуснокислой соли гидроксиламинооксима **1** в смеси 20 мл МеОН и 3 мл ледяной АсОН прибавляют 10 ммоль гидрата арилглиоксаля **2d**–**f** и полученный раствор нагревают 2 ч при 80–90 °C. Растворитель упаривают, остаток смешивают с водой, нейтрализуют NaHCO₃, экстрагируют хлороформом. Экстракт промывают водой, затем сушат MgSO₄, растворитель упаривают. Из кристаллического остатка обработкой серным эфиром получают имидазолы **4d**–**f** с выходом 30–60%. Эфирный раствор упаривают, остаток хроматографируют на колонке с силикагелем (элюент хлороформ), получают дополнительные количества имидазолов **4d**–**f**.

Рентгеноструктурное исследование. Монокристаллы соединения 4а (гексан). Рентгенодифракционный эксперимент кристалла размером $0.56 \times 0.44 \times 0.32$ мм проводили на дифрактометре Bruker P4 (графитовый монохроматор, λ (Мо $K\alpha$) = = 0.71073 Å, температура 296 K, $\theta/2\theta$ -сканирование, $2\theta_{max} = 55^{\circ}$). Кристаллографические данные соединения 4a: C₁₂H₁₂N₂O₂, триклинная сингония, пространственная группа $P\bar{1}$, a = 7.4321(5), b = 8.0943(6), c = 9.6860(7) Å, $\alpha = 90.999(6)$, $\beta = 107.164(5)$, $\gamma = 98.264(6)^{\circ}$, V = 549.85(7) Å³, Z = 2, $M_r = 216.24$, $D_x = 1.306$ г/см³, $\mu = 0.091$ мм⁻¹. Учет поглощения проведен по экспериментальным кривым азимутального сканирования ($T_{min}/T_{max} = 0.9262/0.9693$). Структура расшифрована

прямым методом. Позиции и температурные параметры атомов уточнены в анизотропно-изотропном (для атомов H) приближении полноматричным МНК. Атомы водорода локализованы из разностных синтезов. Параметры уточнения: $wR_2 = 0.1400, S = 1.041$ для всех 2535 независимых отражений, R = 0.0463 для 1895 наблюдаемых отражений ($I > 2\sigma(I)$). Все расчеты выполнены с использованием комплекса программ SHELX-97 [13]. Полученные данные депонированы в Кембриджском банке структурных данных (депонент № ССDC 688298).

Квантово-химические DFT/PBE/3z расчеты проведены по программе PRIRODA [14].

СПИСОК ЛИТЕРАТУРЫ

- 1. M. R. Grimmett, in: *Best Synthetic Methods*, O. Meth-Cohn, A. R. Katritzky (Eds.), Acad. Press, London, San Diego, 1997.
- 2. L. M. Junker, J. Clardy, Antimicrob. Agents Chemother., 51, 3582 (2007).
- 3. Л. Н. Григорьева, С. А. Амитина, Л. Б. Володарский, *XГС*, 1387 (1983). [*Chem. Heterocycl. Comp.*, **19**, 1104 (1983)].
- M. R. Grimmett, in: Comprehensive Heterocyclic Chemistry. The Structure, Reactions, Synthesis and Uses of Heterocyclic Compounds, A. R. Katritzky, C. W. Rees (Eds.), Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt, 1984, vol. 5, p. 405.
- 5. Л. Н. Григорьева, А. Я. Тихонов, С. А. Амитина, Л. Б. Володарский, И. К. Коробейничева, *XTC*, 331 (1986). [*Chem. Heterocycl. Comp.*, **22**, 268 (1986)].
- 6. Н. В. Дулепова, Д. Г. Мажукин, А. Я. Тихонов, Л. Б. Володарский, *XГС*, 1060 (1986). [*Chem. Heterocycl. Comp.*, **22**, 856 (1986)].
- 7. Cambridge Structural Database. Version 5.29. Univ. of Cambridge, UK.
- 8. Л. Н. Григорьева, Л. Б. Володарский, А. Я. Тихонов, *Изв. СО АН СССР. Сер. хим.*, вып. 3, 125 (1989).
- 9. Н. Н. Мельников, в кн. *Реакции и методы исследования органических соединений*, кн. 1, под ред. С. С. Наметкина, В. М. Родионова, Н. Н. Мельникова, Госхимиздат, Москва, Ленинград, 1951, с. 99.
- 10. Beilst., *Handbuch der Organischen Chemie*, 4. Aufl. Springer-Verlag, Berlin, Heidelberg, New York, 1969, Bd. 7, E III, 3443, 3451; 1970, Bd. 8, E III, 2325.
- 11. L. Steinbach, E. J. Becker, J. Am. Chem. Soc., 76, 5808 (1954).
- 12. B. J. McLoughlin, Brit. Pat. 975291; Chem. Abstr., 62, 2737 (1965).
- 13. G. M. Sheldrick, SHELX-97, release 97-2, Univ. of Göttingen, Germany, 1998.
- 14. D. N. Laikov, Chem. Phys. Lett., 281, 151 (1997).

Новосибирский институт органической химии им. Н. Н. Ворожцова СО РАН, Новосибирск 630090, Россия e-mail: alyatikh@nioch.nsc.ru Поступило 30.05.2008