И. В. Украинец*, Лю Янян, А. А. Ткач, О. В. Горохова, А. В. Туров^а

4-ГИДРОКСИХИНОЛОНЫ-2

165*. 1-R-4-ГИДРОКСИ-2-ОКСО-1,2-ДИГИДРОХИНОЛИН-3-КАРБАЛЬДЕГИДЫ И ИХ ТИОСЕМИКАРБАЗОНЫ. СИНТЕЗ, СТРОЕНИЕ И БИОЛОГИЧЕСКИЕ СВОЙСТВА

Рассмотрены два варианта синтеза β-N-тозилгидразидов 1-R-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот, которые по Макфейдиену– Стивенсу с высокими выходами трансформируются в 1-R-4-гидрокси-2-оксо-1,2дигидро- хинолин-3-карбальдегиды. Установлено, что полученные на их основе тиосеми- карбазоны в твердом состоянии существуют исключительно в *син*форме, тогда как в растворе наблюдается гидразон ↔ енгидразинная таутомерия. Приводятся результаты изучения противотуберкулезной активности синтезированных соединений.

Ключевые слова: 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбальдегиды, тиосемикарбазоны, изомерия, противотуберкулезная активность, PCA.

Тиосемикарбазоны обладают широким спектром фармакологических свойств. Среди соединений этого класса обнаружены вещества с антипролиферативной [2] и противоамебной [3] активностью. Эффективны они в борьбе с малярией [4], вирусом простого герпеса [5], карциномой предстательной железы [6], гормонозависимым раком груди [7] и другими типами злокачественных новообразований [8, 9]. Однако наиболее широкое использование тиосемикарбазоны все же нашли в лечении различных микробных инфекций [10–16]. Особый интерес представляет их способность активно подавлять рост микобактерий туберкулеза, что в условиях продолжающейся пандемии и появления мультирезистентных штаммов возбудителя этого коварного заболевания служит предпосылкой к поиску в данном ряду соединений новых антимикобактериальных агентов. Первый противотуберкулезный препарат из рассматриваемой группы – тиосемикарбазон *n*-ацетамидобензальдегида – используется практической медициной уже более 50 лет под торговым названием тиоацетазон (тибон) [17]. Он обладает выраженной бактериостатической активностью в отношении микобактерий туберкулеза, однако ввиду относительно высокой токсичности применяется ограниченно и обычно назначается в сочетании с другими препаратами для улучшения их терапевтического эффекта и предотвращения возможного появления резистентных форм [17, 18]. Химическая модификация альдегидной части молекулы тиоацетазона может проводиться в чрезвычайно широких пределах, что

^{*} Сообщение 164 см. [1].

1–6 a R = Me, **b** R = Et, **c** R = Pr, **d** R = Bu, **e** R = C_5H_{11} , **f** R = C_6H_{13}

используется многими химиками-синтетиками в поиске улучшенных аналогов этого препарата [18–22]. Такой подход положен в основу и нашего исследования, посвященного синтезу и изучению противотуберкулезных свойств тиосемикарбазонов 1-R-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбальдегидов **1а–f**.

Осуществить практически, на первый взгляд, очевидный путь синтеза исходных 1-R-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбальдегидов (4-гидрокси-3-формилкарбостирилов) **2а–f** формилированием 4-гидроксихинолонов-2 по Вильсмайеру не удается [23, 24]. Поэтому долгое время их получали методом Реймера–Тимана, хотя выходы целевых соединений не превышали 40% [25]. Более эффективен щелочной гидролиз 3-ариламинометиленхинолин-2,4(1H,3H)-дионов [23], которые, в свою очередь, синтезируют также реакцией 4-гидроксихинолонов-2, но уже с триэтилортоформиатом и анилинами [23, 26] или с формамидинами [26, 27]. Однако и в этом случае хороших выходов добиваются в основном только лишь на завершающей стадии. Учитывая это, мы предприняли попытку синтезировать альдегиды 2a-f другим хорошо известным способом – через β -N-тозилгидразиды 1-R-4гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот 3a-f, т. е. по Мак-Фадиену–Стивенсу. Разложение тозилгидразидов 3a-f карбонатом натрия в этиленгликоле проходит легко, после чего альдегиды 2a-fудается выделить с очень хорошими выходами (87–96%). Гидразинолиз эфиров 4, как известно [28], проходит практически количественно. Образующиеся при этом гидразиды 5 далее ацилируются тозилхлоридом тоже весьма эффективно (метод A), что позволяет рекомендовать рассмотренную синтетическую схему в целом как препаративную.

Таблица 1

Соеди-	Брутто-	<u>Н</u> Ві	<u>Найдено, %</u> ычислено,	<u>%</u> %	Т. пл., °С (растворител	Выход,*
нение	формула	С	Н	Ν	ь для крист.)	76 (метод)
1 a	$C_{12}H_{12}N_4O_2S$	<u>52.31</u> 52.16	<u>4.49</u> 4.38	<u>20.14</u> 20.28	269–271 (ДМФА)	83
1b	$C_{13}H_{14}N_4O_2S$	<u>53.90</u> 53.78	<u>4.95</u> 4.86	<u>19.42</u> 19.30	233–235 (ДМФА)	80
1c	$C_{14}H_{16}N_4O_2S$	<u>55.18</u> 55.25	<u>5.36</u> 5.30	<u>18.34</u> 18.41	238–240 (бутанол)	85
1d	$C_{15}H_{18}N_4O_2S$	<u>56.74</u> 56.59	<u>5.83</u> 5.70	<u>17.71</u> 17.60	222–224 (этанол)	82
1e	$C_{16}H_{20}N_4O_2S$	<u>57.70</u> 57.81	<u>6.15</u> 6.06	<u>16.94</u> 16.85	218–220 (этанол)	76
1f	$C_{17}H_{22}N_4O_2S$	<u>59.08</u> 58.94	<u>6.52</u> 6.40	<u>16.09</u> 16.17	225–227 (этанол)	77
3 a	$C_{18}H_{17}N_3O_5S$	<u>55.71</u> 55.81	<u>4.34</u> 4.42	<u>10.77</u> 10.85	196–198	96 (A)
3b	$C_{19}H_{19}N_3O_5S$	<u>56.92</u> 56.85	<u>4.70</u> 4.77	<u>10.35</u> 10.47	178–180	92 (A)
3c	$C_{20}H_{21}N_3O_5S$	<u>57.73</u> 57.82	<u>5.16</u> 5.09	<u>10.19</u> 10.11	185–187	95 (А) 53 (Б)
3d	$C_{21}H_{23}N_3O_5S$	<u>58.60</u> 58.73	<u>5.31</u> 5.40	<u>9.67</u> 9.78	181–183	90 (A)
3e	$C_{22}H_{25}N_3O_5S$	<u>59.48</u> 59.58	<u>5.56</u> 5.68	<u>9.39</u> 9.47	174–176	88 (A)
3f	$C_{23}H_{27}N_3O_5S$	<u>60.45</u> 60.38	<u>6.07</u> 5.95	<u>9.26</u> 9.18	153–155	93 (A)

Характеристики синтезированных соединений 1а-f и 3а-f

* Выходы тиосемикарбазонов 1a-f приведены в пересчете на соответствующие β -N-тозилгидразиды 3a-f.

В принципе, получить промежуточные тозилгидразиды **3а-f** можно и в одну стадию – взаимодействием эфиров **4** непосредственно с *n*-толуол-

сульфонилгидразидом (метод Б). Однако, как было показано на примере гидразидов бензойных кислот [29], для осуществления подобных реакций необходима температура порядка 140–160 °С, при которой *n*-толуолсульфонилгидразид претерпевает заметное разложение. Как результат, выходы тозилгидразидов **3a**–**f** по этому методу сравнительно низкие, тогда как в более мягких условиях (например, кипячение в этаноле в течение 20 ч) эфиры **4** с *n*-толуолсульфонилгидразидом не реагируют вовсе.

Конденсация альдегидов **2а-f** с тиосемикарбазидом проходит в кипящем этаноле без добавления каких-либо катализаторов и приводит к тиосемикарбазонам **1а-f**, представляющим собой светло-желтые кристаллические вещества (табл. 1).

Из-за относительной жесткости двойной связи углерод-азот тиосемикарбазоны 1a-f потенциально могут существовать в виде двух геометрических изомеров: син- и анти-форм 1↔6, представляя тем самым интерес для структурных исследований. Согласно данным проведенного нами РСА (см. рисунок, табл. 2 и 3), в независимой части элементарной ячейки тиосемикарбазона 1с действительно обнаружены две молекулы (А и В), различающиеся некоторыми геометрическими параметрами. Однако как оказалось, это никак не связано с теоретически возможной син↔антиизомерией исследуемого соединения, а наиболее существенные различия проявляются в строении 1-N-пропильного заместителя. Так, в молекуле А все неводородные атомы, за исключением атомов С(13) и С(14) лежат в одной плоскости с точностью 0.02 Å. Вероятно, такое строение внутримолекулярной стабилизируется водородной связью O(2a)-H(2Oa)...N(2a) (H...N 1.88 Å, O-H...N 137°). В молекуле В плоский тиосемикарбазоновый заместитель при атоме C(8) несколько некопланарен плоскости хинолонового фрагмента (торсионный угол C(7)-C(8)-C(10)-N(2) 8.3(4)°), несмотря на образование такой же водородной связи, как и в молекуле А: O(2b)-H(2Ob)...N(2b) (H...N 1.94 Å, О-Н... N 144°). Образование достаточно сильных водородных связей приводит к перераспределению электронной плотности в хинолоновом фрагменте, о чем свидетельствует удлинение связи О(1)-С(9) 1.243(3) в молекуле **A** и 1.236(3) Å в молекуле **B** по сравнению с ее средним значением 1.210 Å [30], связи С(7)–С(8) 1.369(3) в А и 1.374(3) Å в В (среднее значение 1.326 Å), а также укорочение связей O(2)–C(7) 1.342(3) в А и 1.332(3) Å в В (1.362 Å).

Сильное отталкивание между атомами 1-N-пропильного заместителя и хинолоновым фрагментом [укороченные внутримолекулярные контакты H(2)...C(12) 2.55 в молекуле **A** и 2.54 в **B** (сумма ван-дер-ваальсовых радиусов 2.87 [31]), H(2)...H(12b) 2.00 в **A** и 2.14 в **B** (2.34), H(12a)...C(2) 2.55 в **A** и 2.64 в **B** (2.87), H(12a)...O(1) 2.31 в **A** и 2.30 Å в **B** (2.46 Å)] приводит к удлинению связей N(1)–C(9) 1.379(3) в **A** и 1.382(3) Å в **B**, а также N(1)–C(1) 1.403(3) в **A** и 1.402(3) Å в **B** по сравнению с их средними значениями 1.353 и 1.371 Å, соответственно, что наблюдалось и в ранее изученных соединениях хинолонового ряда.

Строение молекулы тиосемикарбазона 1с с нумерацией атомов

Таблица 2

Длины связей (*l*) в структуре тиосемикарбазона 1с

Связь	l, Å	Связь	l, Å
S(1A)–C(11A)	1.681(3)	N(1A)-C(9A)	1.379(3)
N(1A)-C(1A)	1.403(3)	N(1A)-C(12A)	1.469(3)
N(2A)-C(10A)	1.284(3)	N(2A)-N(3A)	1.379(3)
N(3A)–C(11A)	1.349(3)	N(4A)–C(11A)	1.317(4)
O(1A)–C(9A)	1.243(3)	O(2A)–C(7A)	1.342(3)
C(1A)–C(6A)	1.397(4)	C(1A)–C(2A)	1.408(4)
C(2A)–C(3A)	1.373(4)	C(3A)–C(4A)	1.372(4)
C(4A)–C(5A)	1.375(4)	C(5A)–C(6A)	1.409(3)
C(6A)–C(7A)	1.427(4)	C(7A)–C(8A)	1.369(3)
C(8A)-C(10A)	1.449(4)	C(8A)-C(9A)	1.450(3)
C(12A)–C(13A)	1.539(1)	C(13A)-C(14A)	1.538(1)
S(1B)–C(11B)	1.670(3)	N(1B)-C(9B)	1.382(3)
N(1B)-C(1B)	1.402(3)	N(1B)-C(12B)	1.468(3)
N(2B)-C(10B)	1.282(3)	N(2B)-N(3B)	1.375(3)
N(3B)–C(11B)	1.342(3)	N(4B)-C(11B)	1.324(3)
O(1B)–C(9B)	1.236(3)	O(2B)–C(7B)	1.332(3)
C(1B)–C(2B)	1.398(4)	C(1B)-C(6B)	1.402(4)
C(2B)–C(3B)	1.372(4)	C(3B)–C(4B)	1.375(4)
C(4B)–C(5B)	1.381(4)	C(5B)–C(6B)	1.400(3)
C(6B)–C(7B)	1.432(3)	C(7B)–C(8B)	1.374(3)
C(8B)-C(10B)	1.438(3)	C(8B)-C(9B)	1.447(3)
C(12B)–C(13B)	1.536(1)	C(13B)–C(14B)	1.535(1)

Таблица З

Угол	ω, град.	Угол	ω, град.
C(9A)–N(1A)–C(1A)	122.2(2)	C(9A)–N(1A)–C(12A)	117.3(2)
C(1A)–N(1A)–C(12A)	120.4(2)	C(10A)–N(2A)–N(3A)	115.9(2)
C(11A)–N(3A)–N(2A)	121.3(2)	C(6A)–C(1A)–N(1A)	119.9(2)
C(6A)-C(1A)-C(2A)	118.7(2)	N(1A)-C(1A)-C(2A)	121.3(3)
C(3A)-C(2A)-C(1A)	119.9(3)	C(4A)C(3A)C(2A)	121.6(3)
C(3A)-C(4A)-C(5A)	119.8(3)	C(4A)-C(5A)-C(6A)	120.1(3)
C(1A)-C(6A)-C(5A)	119.9(3)	C(1A)-C(6A)-C(7A)	118.6(2)
C(5A)-C(6A)-C(7A)	121.5(3)	O(2A)C(7A)C(8A)	122.0(2)
O(2A)C(7A)C(6A)	116.7(2)	C(8A)-C(7A)-C(6A)	121.3(3)
C(7A)-C(8A)-C(10A)	122.7(2)	C(7A)-C(8A)-C(9A)	120.0(2)
C(10A)-C(8A)-C(9A)	117.3(2)	O(1A)C(9A)N(1A)	120.1(2)
O(1A)C(9A)C(8A)	122.0(2)	N(1A)-C(9A)-C(8A)	117.9(2)
N(2A)C(10A)C(8A)	122.0(2)	N(4A)-C(11A)-N(3A)	118.0(3)
N(4A)C(11A)S(1A)	123.1(2)	N(3A)–C(11A)–S(1A)	118.9(2)
N(1A)-C(12A)-C(13A)	111.8(2)	C(14A)-C(13A)-C(12A)	111.7(3)
C(9B)-N(1B)-C(1B)	122.5(2)	C(9B)-N(1B)-C(12B)	117.6(2)
C(1B)-N(1B)-C(12B)	119.9(2)	C(10B)–N(2B)–N(3B)	116.4(2)
C(11B)-N(3B)-N(2B)	120.7(2)	C(2B)-C(1B)-C(6B)	118.6(2)
C(2B)-C(1B)-N(1B)	121.8(3)	C(6B)-C(1B)-N(1B)	119.6(2)
C(3B)-C(2B)-C(1B)	120.4(3)	C(2B)–C(3B)–C(4B)	121.6(3)
C(3B)-C(4B)-C(5B)	118.9(3)	C(4B)–C(5B)–C(6B)	120.8(3)
C(5B)-C(6B)-C(1B)	119.6(2)	C(5B)-C(6B)-C(7B)	121.6(2)
C(1B)-C(6B)-C(7B)	118.8(2)	O(2B)–C(7B)–C(8B)	122.6(2)
O(2B)-C(7B)-C(6B)	116.4(2)	C(8B)–C(7B)–C(6B)	121.1(2)
C(7B)-C(8B)-C(10B)	122.9(2)	C(7B)–C(8B)–C(9B)	120.1(2)
C(10B)-C(8B)-C(9B)	117.0(2)	O(1B)-C(9B)-N(1B)	120.7(2)
O(1B)-C(9B)-C(8B)	121.4(2)	N(1B)-C(9B)-C(8B)	117.9(2)
N(2B)-C(10B)-C(8B)	121.3(2)	N(4B)-C(11B)-N(3B)	117.7(3)
N(4B)-C(11B)-S(1B)	122.6(2)	N(3B)-C(11B)-S(1B)	119.7(2)
N(1B)-C(12B)-C(13B)	113.1(3)	C(14B)–C(13B)–C(12B)	111.4(3)

Валентные углы (ω) в структуре тиосемикарбазона 1с

Пропильный заместитель при атоме N(1) расположен практически перпендикулярно плоскости гетероцикла (торсионный угол C(1)–N(1)–C(12)–C(13) 84.0(3)° в молекуле **A** и 78.7(3)° в молекуле **B**). Связь C(13)–C(14) в молекуле **A** находится в *ар*-положении относительно связи N(1)–C(12) (торсионный угол N(1)–C(12)–C(13)–C(14) –175.0(3)°), а в молекуле **B** имеет +*sc*-ориентацию относительно этой связи (торсионный угол N(1)–C(12)–C(13)–C(14) 61.4(4)°), несмотря на отталкивание между метиленовой группой заместителя и атомом бензольного цикла [укороченный внутримолекулярный контакт H(2b)...H(13c) 2.25 Å (2.34 Å)].

В кристалле молекулы тиосемикарбазона 1с образуют димеры за счет межмолекулярных водородных связей: N(3a)–H(3Na)...O(1b) (H...O 2.00 Å, N–H...O 166°) и N(3b)–H(3Nb)...O(1a) (H...O 2.11 Å, N–H...O 173°). Молекулы димера не лежат в одной плоскости – угол между плоскостями бициклических фрагментов составляет 13.9°. Также в кристалле обнаружены межмолекулярные водородные связи: N(4a)–H(4Na)...S(1b)' (0.5+x, 1.5-y, 0.5+z) H...S 2.70 Å, N–H...S 159°; N(4a)–H(4Nb)...S(1b)'

Спектры ЯМР ¹Н синтезированных соединений 1а–f и 3а–f

Соеди- нение	Химические сдвиги, δ, м. д. (J, Гц)
1a	11.61 (1H, c, OH); 11.43 (1H, c, NH); 8.58 (1H, c, CH=N); 8.14 (2H, c, NH ₂); 8.01 (1H, π . π , $J = 8.1 \text{ m} J = 1.6$, H-5); 7.67 (1H, π . π , $J = 7.8 \text{ m} J = 1.7$, H-7); 7.51 (1H, π , $J = 8.3$, H-8); 7.27 (1H, π , $J = 7.5$, H-6); 3.56 (3H, c, CH ₃)
1b	11.56 (1H, c, OH); 11.44 (1H, c, NH); 8.59 (1H, c, CH=N); 8.10 (2H, c, NH ₂); 8.02 (1H, \exists , \exists , $J = 8.2 \ \mu$ $J = 1.5$, H-5); 7.69 (1H, \exists , \exists , $J = 7.9 \ \mu$ $J = 1.6$, H-7); 7.54 (1H, \exists , $J = 8.4$, H-8); 7.27 (1H, \exists , $J = 7.5$, H-6); 4.26 (2H, κ , $J = 7.2$, NCH ₂); 1.19 (3H, \exists , $J = 7.2$, NCH ₂ CH ₃)
1c	11.52 (1H, c, OH); 11.40 (1H, c, NH); 8.58 (1H, c, CH=N); 8.12 (2H, c, NH ₂); 8.00 (1H, π . π , $J = 8.2$ u $J = 1.6$, H-5); 7.66 (1H, π . π , $J = 7.8$ u $J = 1.6$, H-7); 7.52 (1H, π , $J = 8.3$, H-8); 7.28 (1H, π , $J = 7.4$, H-6); 4.13 (2H, π , $J = 7.5$, NCH ₂); 1.60 (2H, M, NCH ₂ C <u>H₂</u>); 0.91 (3H, π , $J = 7.4$, NCH ₂ CH ₂ CH ₃)
1d	11.54 (1H, c, OH); 11.41 (1H, c, NH); 8.58 (1H, c, CH=N); 8.15 (2H, c, NH ₂); 7.98 (1H, μ , μ , $J = 8.1 \mu J = 1.5$, H-5); 7.65 (1H, π . μ , $J = 7.7 \mu J = 1.7$, H-7); 7.49 (1H, μ , $J = 8.3$, H-8); 7.27 (1H, π , $J = 7.5$, H-6); 4.16 (2H, π , $J = 7.4$, NCH ₂); 1.54 (2H, KB, $J = 6.7$, NCH ₂ C <u>H₂</u>); 1.35 (2H, μ , C <u>H₂</u> CH ₃); 0.91 (3H, π , $J = 7.3$, CH ₃)
1e	11.53 (1H, c, OH); 11.41 (1H, c, NH); 8.59 (1H, c, CH=N); 8.12 (2H, c, NH ₂); 8.01 (1H, π . π , $J = 8.0$ и $J = 1.4$, H-5); 7.68 (1H, π . π , $J = 7.8$ и $J = 1.5$, H-7); 7.52 (1H, π , $J = 8.4$, H-8); 7.30 (1H, π , $J = 7.5$, H-6); 4.17 (2H, π , $J = 7.3$, NCH ₂); 1.57 (2H, KB, $J = 6.8$, NCH ₂ CH ₂); 1.32 (4H, μ , (CH ₂) ₂ CH ₃); 0.85 (3H, π , $J = 6.6$, CH ₃)
1f	11.46 (1H, c, OH); 11.40 (1H, c, NH); 8.59 (1H, c, CH=N); 8.06 (2H, c, NH ₂); 8.02 (1H, д, <i>J</i> = 8.0, H-5); 7.67 (1H, т, <i>J</i> = 7.9, H-7); 7.51 (1H, д, <i>J</i> = 8.5, H-8); 7.30 (1H, т, <i>J</i> = 7.5, H-6); 4.18 (2H, т, <i>J</i> = 7.3, NCH ₂); 1.58 (2H, кв, <i>J</i> = 6.6, NCH ₂ C <u>H₂</u>); 1.30 (6H, м, (C <u>H₂</u>) ₃ CH ₃); 0.84 (3H, т, <i>J</i> = 6.3, CH ₃)
3a	15.68 (1H, c, OH); 11.61 (1H, c, CONH); 10.27 (1H, c, SO ₂ NH); 8.04 (1H, д, <i>J</i> = 8.1, H-5); 7.87–7.59 (4H, м, H-7,8,2',6'); 7.44–7.32 (3H, м, H-6,3',5'); 3.58 (3H, c, NCH ₃); 2.38 (3H, c, Ar–CH ₃)
3b	15.65 (1H, c, OH); 11.62 (1H, c, CONH); 10.26 (1H, c, SO ₂ NH); 8.05 (1H, д. д, <i>J</i> = 8.0 и <i>J</i> = 1.5, H-5); 7.84–7.60 (4H, м, H-7,8,2',6'); 7.46–7.29 (3H, м, H-6,3',5'); 4.24 (2H, к, <i>J</i> = 7.3, NCH ₂); 2.38 (3H, c, Ar–CH ₃); 1.18 (3H, т, <i>J</i> = 7.1, NCH ₂ C <u>H₃</u>)
3c	15.68 (1H, с, OH); 11.60 (1H, с, CONH); 10.30 (1H, с, SO ₂ NH); 8.04 (1H, д. д, <i>J</i> = 8.2 и <i>J</i> = 1.6, H-5); 7.86–7.61 (4H, м, H-7,8,2',6'); 7.50–7.32 (3H, м, H-6,3',5'); 4.15 (2H, т, <i>J</i> = 7.7, NCH ₂); 2.37 (3H, с, Ar–CH ₃); 1.59 (2H, м, NCH ₂ C <u>H₂</u>); 0.91 (3H, т, <i>J</i> = 7.4, NCH ₂ CH ₂ C <u>H₃</u>)
3d	15.66 (1H, c, OH); 11.67 (1H, c, CONH); 10.26 (1H, c, SO ₂ NH); 8.02 (1H, д. д, $J = 8.1 \text{ м} J = 1.6, \text{H-5}$); 7.87–7.59 (4H, м, H-7,8,2',6'); 7.48–7.33 (3H, м, H-6,3',5'); 4.18 (2H, т. $J = 7.5, \text{ NCH}_2$); 2.38 (3H, c, Ar–CH ₃); 1.56 (2H, кв, $J = 6.9, \text{NCH}_2$ CH ₂); 1.36 (2H, м, CH ₂ CH ₃); 0.90 (3H, т. $J = 7.1, \text{CH}_3$)
3e	15.66 (1H, c, OH); 11.60 (1H, c, CONH); 10.28 (1H, c, SO ₂ NH); 8.02 (1H, д. д, $J = 8.2$ и $J = 1.5$, H-5); 7.84–7.59 (4H, м, H-7,8,2',6'); 7.48–7.29 (3H, м, H-6,3',5'); 4.17 (2H, т, $J = 7.3$, NCH ₂); 2.36 (3H, c, Ar–CH ₃); 1.56 (2H, кв, $J = 7.0$, NCH ₂ CH ₂); 1.30 (4H, м, (CH ₂) ₂ CH ₃); 0.84 (3H, т, $J = 6.9$, CH ₃)
3f	15.62 (1H, c, OH); 11.59 (1H, c, CONH); 10.31 (1H, c, SO ₂ NH); 8.00 (1H, д. д, $J = 8.1 \text{ и} J = 1.6, \text{ H-5}$); 7.82–7.58 (4H, м, H-7,8,2',6'); 7.51–7.31 (3H, м, H-6,3',5'); 4.19 (2H, т. $J = 7.3, \text{ NCH}_2$); 2.39 (3H, c, Ar–CH ₃); 1.57 (2H, кв, $J = 6.8, \text{ NCH}_2$ С <u>H</u> ₂); 1.31 (6H, м, (С <u>H</u> ₂) ₃ CH ₃); 0.86 (3H, т. $J = 6.5, \text{CH}_3$)

(0.5-*x*, 1.5-*y*, 1-*z*) Н...S 2.84 Å, N–H...S 118° и N(4b)–H(4Nc)...S(1a)' (-0.5+*x*, 1.5-*y*, -0.5+*z*) Н...S 2.46 Å, N–H...S 164°.

Обобщая результаты РСА можно утверждать, что в кристалллическом состоянии тиосемикарбазон **1с** существует исключительно в более устойчивой *син*-изомерной форме, что в целом характерно для гидразонов [32].

В растворе, как правило, устанавливается равновесие между конфигурационными партнерами и обычно это легко можно определить с помощью спектроскопии ЯМР [32, 33]. Однако в спектрах ЯМР ¹Н тиосемикарбазонов **1a–f** (табл. 4) никакого типичного для таких случаев удвоения сигналов обнаружить не удалось, поэтому для выяснения особенностей строения синтезированных веществ в растворе мы измеряли спектр 1-N-бутильного производного **1d** еще и на ядрах ¹³С. Оказалось, что в спектре ЯМР ¹³С этого соединения, записанном при комнатной температуре, отсутствуют сигналы двух четвертичных атомов углерода, которые должны располагаться в слабом поле. Это не позволяет произвести надежное отнесение имеющихся сигналов. Поэтому мы предприняли также опыты по гетероядерной ¹Н–¹³С корреляции. В табл. 5 приведены координаты кросс-пиков, найденные в корреляционных спектрах НМQС и НМВС.

Для отнесения сигналов 13 C на основании данных по их гетероядерной корреляции требуется предварительное отнесение сигналов в протонном спектре. Сигналы ароматических протонов тиосемикарбазона **1d** соответствуют спиновой системе ABCD и проявляются в виде двух триплетов и двух дублетов в области 7.27–7.98 м. д. Для их отнесения требуется надежно установить принадлежность одного из дублетов. Тогда остальные сигналы можно отнести на основании имеющихся спин-спиновых взаимодействий. Поскольку на данном этапе анализа спектра у нас нет еще

Таблица 5

Н сигнал,	Положения кросс-пиков в измерении ¹³ С		
δ, м. д.	HMQC	HMBC	
11.54	-	_	
11.41	_	_	
8.58	145.0	161.4; 102.6	
8.15	_	_	
7.98	124.6	139.5; 133.4	
7.65	133.4	139.5; 124.6; 115.4	
7.49	115.4	133.4; 122.7; 115.4	
7.27	122.7	115.4	
4.16	41.9	161.4; 139.4; 30.0; 20.3	
1.54	30.0	41.9	
1.35	20.3	14.4	
0.91	14.4	30.3; 20.3	

Полный перечень гетероядерных ¹H-¹³C корреляций, найденных для тиосемикарбазона 1d

полной картины спин-спиновых взаимодействий, будем считать, что 890

в более слабом поле – при 7.98 м. д. – поглощает сигнал протона H-5. Это предположение вполне оправдано, поскольку, во-первых, оно согласуется с многочисленными данными предыдущих исследований 4-гидроксихинолонов-2, а, во-вторых, в *пери*-положении к указанному протону находится сильно анизотропный атом кислорода группы 4-ОН. В дальнейшем мы сможем подтвердить эту гипотезу на основании гетероядерных спин-спиновых взаимодействий. Ниже на схеме приведены отнесения протонных и углеродных сигналов.

Химические сдвиги протонированных атомов углерода следуют из наличия их корреляции через одну химическую связь в спектре HMQC с соответствующим протонным сигналом. Сигналы узловых атомов углерода хинолонового ядра удается отнести на основании их корреляций через 2–3 химические связи в спектре НМВС. Так, отнесение сигнала при 139.5 м. д. к атому С(8а) следует из его корреляции с сигналом протонов группы N–CH₂ бутильного фрагмента при 4.16 м. д., а также с сигналами ароматических протонов Н-5 и Н-7. Аналогично, сигнал при 115.4 м. д. соответствует атому С(4а), поскольку он имеет корреляции с сигналами ароматических протонов H-5, H-6 и H-8. Отметим, что сигналы атомов С(4а) и С(8) совпадают, однако в спектре, записанном при повышенной температуре, они видны раздельно. Отнесение сигнала при 161.4 м. д. к карбонильному атому С(2) вытекает из его корреляции с сигналом группы 1-CH₂ N-бутильного заместителя и экзоциклическим протоном с химическим сдвигом 8.58 м. д., принадлежащим гидразоновому фрагменту молекулы. Из схемы следует, что принятое нами отнесение для протонных сигналов отвечает действительности.

В обычном спектре ЯМР ¹³С тиосемикарбазона 1d отсутствуют

891

сигналы, отвечающие атому C(4) и атому углерода фрагмента тиомочевины. Для их выявления мы измеряли углеродный спектр при нагревании до 90 °C. В этих условиях в спектре проявились в дополнение к уже имеющимся еще два углеродных сигнала с химическими сдвигами при 179.7 и 162.8 м. д., которые, исходя из значений химических сдвигов, можно отнести к атому углерода фрагмента тиомочевины и хинолоновому атому C(4) соответственно.

На основании наблюдающегося уширения сигнала атома C(4) можно сделать вывод, что в растворе ДМСО для тиосемикарбазона 1d реализуется не типичная для данного класса химических веществ и ожидаемая нами *син* инсерии изомерия 1 \leftrightarrow 6, а гидразон \leftrightarrow енгидразинная таутомерия 1 \leftrightarrow 7. Участие карбонила 2-С=О в таутомерии мало вероятно, поскольку его сигнал практически не уширяется. Что касается атома углерода тиогруппы, то с учетом удаленности от хинолонового ядра уширение его сигнала, скорее всего, вызвано совершенно самостоятельным типом таутомерии, характерным именно для производных тиосемикарбазида [34].

Изучение противотуберкулезных свойств синтезированных соединений показало, что в концентрации 6.25 мкг/мл ни тиосемикарбазоны 1a-f, ни их синтетические предшественники тозилгидразиды 3a-f вопреки ожиданиям совершенно не способны ингибировать рост *Mycobacterium tuberculosis* H37Rv ATCC 27294.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С тиосемикарбазона 1d, эксперименты по двумерной спектроскопии ЯМР¹H COSY, гомоядерному эффекту Оверхаузера NOESY-2D, а гетероядерные корреляционные также спектры HMOC И HMBC зарегистрированы на спектрометре Varian Mercury-400 (400 и 100 МГц соответственно). Все двумерные эксперименты проводились с градиентной Время смешивания в импульсных селекцией полезных сигналов. последовательностях соответствовало ${}^{1}J_{CH} = 140$ и ${}^{2-3}J_{CH} = 8$ Гц. Количество инкрементов в спектрах COSY и HMQC составило 128, а в спектрах HMBC - 400. Время смешивания в эксперименте NOESY-2D составляло 500 мс. Спектры ЯМР ¹Н остальных соединений записаны на приборе Varian Mercury-VX-200 (200 МГц) в ДМСО-d₆, внутренний стандарт ТМС.

Гидразиды 1-R-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот **5а-f** получены по методике работы [28]. В синтезе β-N-тозилгидразидов **3а-f** использованы коммерческие *n*-толуолсульфонилхлорид фирмы Merck, безводный ДМФА для пептидного синтеза фирмы Fluka и *n*-толуолсульфонилгидразид фирмы Aldrich.

β-N-Тозилгидразид 4-гидрокси-2-оксо-1-пропил-1,2-дигидрохинолин-3-карбоновой кислоты (3c). А. К раствору 2.61 г (10 ммоль) гидразида **5c** в 20 мл сухого ДМФА прибавляют 1.54 мл (11 ммоль) триэтиламина, а затем при перемешивании 2.10 г (11 ммоль) *п*-толуолсульфонилхлорида. Оставляют на 10–12 ч при комнатной температуре, после чего реакционную смесь разбавляют холодной водой, подкисляют разбавленной HCl до pH 5. Выделившийся осадок β -N-тозилгидразида **3c** отфильтровывают, промывают водой, сушат. Кристаллизуют из смеси ДМФА с этанолом.

Б. Смесь 2.75 г (10 ммоль) эфира **4c**, 1.86 г (10 ммоль) *n*-толуолсульфонилгидразида и 1 мл ДМФА тщательно перемешивают и выдерживают 3–5 мин при 140 °C. К еще горячей реакционной смеси осторожно прибавляют 10–15 мл 892 этанола и растирают. Осадок отфильтровывают, промывают спиртом, сушат.

Смешанная проба образцов β -N-тозилгидразида **3**с, полученных различными методами, не дает депрессии температуры плавления, их спектры ЯМР ¹Н идентичны.

Тиосемикарбазон 4-гидрокси-2-оксо-1-пропил-1,2-дигидрохинолин-3-карбальдегида (1с). К нагретому до 160 °С раствору 4.15 г (10 ммоль) β -N-тозилгидразида **3с** в 20 мл этиленгликоля в один прием прибавляют 3.18 г (30 ммоль) безводного Na₂CO₃ (Осторожно! Сильное вспенивание!). Через несколько минут выделение газов прекращается. Реакционную смесь охлаждают, разбавляют водой и подкисляют разбавленной 1:1 HCl до pH ~4. Образовавшийся альдегид **2с** экстрагируют CH₂Cl₂ (3 × 20 мл). Растворитель отгоняют (в конце при пониженном давлении). К полученным 2.10 г (9.1 ммоль) технического альдегида **2с** прибавляют 10 мл этанола, 0.83 г (9.1 ммоль) тиосемикарбазида и кипятят 30 мин. Выделившийся после охлаждения желтый кристаллический осадок тиосемикарбазона **1с** отфильтровывают, сушат.

Тиосемикарбазоны 1a,b,d-f (табл. 1) получены по аналогичной методике.

Рентгеноструктурное исследование. Кристаллы тиосемикарбазона 1с моноклинные (бутанол), при 20 °С: a = 27.266(1), b = 13.057(1), c = 17.293(1) Å, $\beta = 108.15(1)^\circ$, V = 5849.9(3) Å³, $M_r = 304.37, Z = 16$, пространственная группа $C2/c, d_{\rm выч} = 1.382$ г/см³, μ (Мо $K\alpha$) = 0.231 мм⁻¹, F(000) = 2560. Параметры элементарной ячейки и интенсивности 16147 отражений (5047 независимых, $R_{\rm int} = 0.034$) измерены на дифрактометре Xcalibur-3 (Мо $K\alpha$ -излучение, ССD-детектор, графитовый монохроматор, ω -сканирование, $2\theta_{\rm max} = 50^\circ$).

Структура расшифрована прямым методом по комплексу программ SHELXTL [35]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с $U_{iso} = nU_{eq}$ (n = 1.5 для метильной группы и n = 1.2 для остальных атомов водорода). Атомы водорода, участвующие в образовании водородных связей, уточнялись в изотропном приближении. При уточнении структуры налагались ограничения на длины связей в пропильном заместителе ($Csp^3-Csp^3 = 1.54$ Å). Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.124$ по 4983 отражениям ($R_1 = 0.046$ по 2637 отражениям с $F > 4\sigma(F)$, S = 0.869). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных – депонент № ССDС 717533. Межатомные расстояния и валентные углы представлены в табл. 2 и 3.

СПИСОК ЛИТЕРАТУРЫ

- 1. S. V. Shishkina, O. V. Shishkin, I. V. Ukrainets, N. L. Bereznyakova, A. A. Davidenko, *Acta Crystallogr.*, **E64**, 01031 (2008).
- D. S. Kalinowski, P. C. Sharpe, P. V. Bernhardt, D. R. Richardson, J. Med. Chem., 50, 6212 (2007).
- 3. K. Husain, M. Abid, A. Azam, Eur. J. Med. Chem., 42, 1300 (2007).
- C. Biot, B. Pradines, M. H. Sergeant, J. Gut, P. J. Rosenthal, K. Chibale, *Bioorg. Med. Chem. Lett.*, 17, 6434 (2007).
- 5. T. Varadinova, D. Kovala-Demertzi, M. Rupelieva, M. Demertzis, P. Genova, *Acta Virol.*, **45**, 87 (2001).
- M. J. Mackenzie, D. Saltman, H. Hirte, J. Low, C. Johnson, G. Pond, M. J. Moore, *Invest. New Drugs*, 25, 553 (2007).
- P. Jütten, W. Schumann, A. Härtl, H. M. Dahse, U. Gräfe, J. Med. Chem., 50, 3661 (2007).
- 8. D. S. Kalinowski, Y. Yu, P. C. Sharpe, M. Islam, Y. T. Liao, D. B. Lovejoy, N. Kumar, P. V. Bernhardt, D. R. Richardson, *J. Med. Chem.*, **50**, 3716 (2007).

- 9. A. C. Caires, Anticancer Agents Med. Chem., 7, 484 (2007).
- C. Kirilmis, M. Koca, A. Cukurovali, M. Ahmedzade, C. Kazaz, *Molecules*, 10, 1399 (2005).
- 11. M. Koca, M. Ahmedzade, A. Cukurovali, C. Kazaz, Molecules, 10, 747 (2005).
- 12. B. A. Wilson, R. Venkatraman, C. Whitaker, Q. Tillison, Int. J. Environ. Res. Public Health, 2, 170 (2005).
- 13. H. Elo, Z. Naturforsch., C: Biosci., 62, 498 (2007).
- G. Turan-Zitouni, J. A. Fehrentz, P. Chevallet, J. Martinez, Z. A. Kaplancikli, A. Ozdemir, M. Arslanyolu, M. T. Yildiz, *Arch. Pharm. (Weinheim)*, 340, 310 (2007).
- 15. I. Kizilcikli, Y. D. Kurt, B. Akkurt, A. Y. Genel, S. Birteksöz, G. Otük, B. Ulküseven, *Folia Microbiol. (Praha)*, **52**, 15 (2007).
- 16. T. Rosu, A. Gulea, A. Nicolae, R. Georgescu, *Molecules*, 12, 782 (2007).
- Г. И. Жунгиету, В. Г. Граник, Основные принципы конструирования лекарств, Издательско-полиграф. комплекс Гос. ун-та Молдовы, Кишинев, 2000, с. 266.
- 18. G. Abate, T. Koivula, S. E. Hoffner, Int. J. Tuberc. Lung. Dis., 6, 933 (2002).
- 19. L. E. Bermudez, R. Reynolds, P. Kolonoski, P. Aralar, C. B. Inderlied, L. S. Young, *Antimicrob. Agents Chemother.*, 47, 2685 (2003).
- K. Waisser, L. Heinisch, M. Slosárek, J. Janota, *Folia Microbiol. (Praha)*, **50**, 479 (2005).
- 21. D. Sriram, P. Yogeeswari, R. Thirumurugan, R. K. Pavana, J. Med. Chem., 49, 3448 (2006).
- 22. R. A. Gupta, A. K. Gupta, L. K. Soni, S. G. Kaskhedikar, *Eur. J. Med. Chem.*, **42**, 1109 (2007).
- 23. W. Fiala, W. Stadlbauer, J. Prakt. Chem., 335, 128 (1993).
- 24. K. A. Khan, A. Shoeb, Indian J. Chem., 24B, 62 (1985).
- 25. E. E. Jaffe, US Pat. 3132140 (1964). http://ep.espacenet.com
- 26. P. Lienhard, E. E. Jaffe, US Pat. 4866112 (1989). http://ep.espacenet.com
- 27. F. L'Eplattenier, L. Vuitel, A. Pugin, US Pat. 4008225 (1977). http://ep.espacenet.com
- И. В. Украинец, П. А. Безуглый, В. И. Трескач, М. Ю. Корнилов, А. В. Туров, А. И. Масленников, С. В. Гладченко, В. И. Кривобок, *XTC*, 1086 (1992). [*Chem. Heterocycl. Comp.*, 28, 912 (1992)].
- 29. И. В. Украинец, А. А. Ткач, Лю Янян, *ХГС*, 1655 (2008). [*Chem. Heterocycl. Comp.*, **44**, 1347 (2008)].
- 30. H.-B. Burgi, J. D. Dunitz, Structure Correlation, VCH, Weinheim, 1994, vol. 2, p. 741.
- 31. Ю. В. Зефиров, *Кристаллография*, **42**, 936 (1997).
- 32. Общая органическая химия, под ред. Д. Бартона и У. Д. Оллиса, Химия, Москва, 1982, т. 3, с. 488.
- 33. О. В. Туров, Т. А. Воловненко, О. О. Туров, Ю. М. Воловенко, *Журн. орг.* фарм. хім., **4**, вип. 2, 30 (2006).
- 34. Г. Д. Биркит, Г. А. Михалек, *Успехи химии*, **21**, 1472 (1952). [G. D. Byrkit, G. A. Michalek, *Ind. Eng. Chem.*, **42**, 1862 (1950)].
- 35. G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev. 5.1 (1998).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило 16.06.2008

^аКиевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: nmrlab@univ.kiev.ua