В. С. Толкунов*, А. Б. Ересько, А. И. Хижан, О. В. Шишкин^а, Г. В. Паламарчук^а, С. В. Толкунов

ГЕТЕРОЦИКЛИЗАЦИИ ПРОИЗВОДНЫХ 2-АЦИЛИНДОЛИЛ-З-УКСУСНЫХ КИСЛОТ ГИДРАЗИНОМ. СИНТЕЗ 2,3-ДИГИДРО-2-ОКСО-5-R¹-1H-[1,2]ДИАЗЕПИНО[4,5-*b*]ИНДОЛОВ

Гетероциклизации гидразонов 2-ацетилиндолил-3-уксусной кислоты и ее амидов, в отличие от аналогично построенных производных фенилуксусной кислоты, не приводят к 2,3-дигидро-2-оксо-5-R¹-1H-[1,2]диазепино[4,5-*b*]индолам, а протекают с образованием 2-аминоиндоло[2,3-*c*]пиридин-3(2H)-она или азинов 2-ацетилиндолил-3-уксусной кислоты. 2,3-Дигидро-2-оксо-5-R¹-1H-[1,2]диазепино[4,5*b*]-индолы получены реакцией перхлоратов 1-алкил-3-аминоацетилиндоло[2,3-*c*]пирилия или метиловых эфиров 2-ацетил(пропионил)индолил-3-уксусной кислоты с гидразингидратом.

Ключевые слова: 2-аминоиндоло[2,3-*c*]пиридин-3(2Н)-он, гидразингидрат, гидразоны 2-ацетилиндолил-3-уксусной кислоты, 2,3-дигидро-2-оксо-5-R¹-1H-[1,2]диазепино[4,5-*b*]индолы.

Интерес к производным 2,3-бензодиазепинов связан с широким спектром биологического действия на центральную нервную систему [1–7]. Среди 2,3-бензодиазепинов найдены транквилизаторы, соединения, обладающие антиконвульсивным действием [2–4]. В клинической практике находит применение транквилизатор Tofizopam – соединение 2,3-бензодиазепинового ряда [1]. Большое внимание уделено синтезу и изучению психофармакологических свойств диазепинов, конденсированных с различными гетероциклическими системами [3, 4, 6].

Известные пути получения производных 2,3-бензодиазепин-4-онов основаны на взаимодействии 2-ароил-4,5-диметоксифенилуксусных кислот с гидразином [2, 8–10]. ЗН-[1,2]Диазепино[5,6-*b*]индолы получены циклизацией этилового эфира 2-формил(ацетил)индолил-2-уксусной кислоты гидразингидратом [11–13].

Недавно нами было показано, что реакции 2-ацетилбензо[*b*]фуран-3-уксусной кислоты и ее производных – эфиров, амидов с гидразингидратом приводят не к соответствующим бензофуродиазепинам, а к 2-аминобензофуро[2,3-*c*]пиридин-3(2H)-онам или азинам 2-ацетилбензо[*b*]фуран-3-уксусной кислоты [14].

В настоящей работе исследованы пути синтеза диазепино[4,5-*b*]индолов взаимодействием солей 3-R¹R²-аминоиндоло[2,3-*c*]пирилия с гидразингидратом, а также гетероциклизацией производных 2-ацетилиндолил-3-уксусной кислоты **1a** и ее производных – эфиров и амидов с гидразингидратом. При нагревании 2-ацетилиндолил-3-уксусной кислоты (1а) и 2-пропионилиндолил-3-уксусной кислоты (1b) с гидразингидратом в спирте или их натриевых солей в воде с последующим подкислением уксусной кислотой происходит образование азинов 2a,b, которые получают также при кипячении борофторидов 1-метил(этил)-3-оксииндоло[2,3-*c*]пирилия 3a,b с гидразингидратом. В отличие от 2-ацетилбензо[*b*]фуран-3-уксусной кислоты при образовании азинов декарбоксилирование не происходит [14].

Взаимодействие кетокислоты **1а** с фенилгидразином в спирте приводит к фенилгидразону 2-ацетилиндолил-3-уксусной кислоты (**4**). Гетероциклизацию фенилгидразона **4** осуществляли действием дициклогексилкарбодиимида (DCC). Выделенное соединение представляет собой 1-метил-2-фениламиноиндоло[2,3-*c*]пиридин-3(2H)-он (**5**).

Ранее нами было показано, что при нагревании перхлоратов 1-метил-3-ариламиноиндоло[2,3-*c*]пирилия или ариламидов 2-ацетилиндолил-3-уксусных кислот с гидразингидратом в спирте образуются исключительно гидразоны ариламидов 2-ацетилиндолил-3-уксусных кислот **6**, причем гидразинолиз амидов не происходит даже при длительном кипячении реакционной смеси [15]. Мы обнаружили, что дальнейшие гетероциклизации гидразонов **6** проходят только в кислых средах. Причем при кипячении гидразонов **6** в уксусной кислоте были выделены 2-арил-1-метилиндоло[2,3-*c*]пиридин-3(2H)-оны **7а,b**, что, вероятно, связано с гидролизом гидразонов **6а,b** и последующим кислотно-основным катализом, приводящим к 2-арилпроизводным **7а,b** [15]. В трифторуксусной кислоте гидразоны **6а,b** превращаются в 2-амино-1-метилиндоло[2,3-*c*]пиридин-3(2H)-оны **9**.

Ацетилгидразоны 8а,b, полученные обработкой соответствующих 908

гидразонов **6а,b** хлористым ацетилом в ТГФ в присутствии триэтиламина, и в уксусной, и в трифторуксусной кислотах циклизуются в 1-метил-2ацетиламиноиндоло[2,3-*c*]пиридин-3(2H)-он (**9b**), который получают также прямым нагреванием гидразонов **6а,b** в уксусном ангидриде.

Перхлораты 1-метил(этил)-3-диметиламино(морфолино)индоло[2,3-*c*]пирилия **10а**–**c** с гиразингидратом в спирте реагируют аналогично солям 3ариламиноиндоло[2,3-*c*]пирилия, т. е. с образованием гидразонов диметиламида(морфолида) 2-ацетил(пропионил)индолил-3-уксусной кислоты **11а**–**c**. Гетероциклизация последних как в уксусной, так и в трифторуксусной кислотах приводит к известным 1-метил(этил)-2-аминоиндоло[2,3-*c*]пиридин-3(2H)-онам **9а,с**.

В отличие от перхлоратов 3-ариламино- и 3-диалкиламинопирилия **10а–с** перхлораты 1-метил(этил)-3-ацетиламиноиндоло[2,3-*c*]пирилия **12а,b** реагируют с гидразингидратом с образованием 2,3-дигидро-2-оксо-5-R¹-1H-[1,2]диазепино[4,5-*b*]индолов **13а,b** в смеси с небольшими количествами 2-аминопроизводных **9а,с**. Диазепино[4,5-*b*]индол **13а** получен также циклизацией метилового эфира 2-ацетилиндолил-3-уксусной кислоты **14а** с гидразингидратом. В этом случае, хромато-масс-спектральный анализ реакционной массы превращения эфира **14а** показал присутствие азина метилового эфира 2-ацетилиндолил-3-уксусной кислоты **2с**.

Таблица 1

Со- еди-	Брутто-	<u>Найдено, %</u> Вычислено, %				Т. пл.,	Выход, %
нение	формула	С	Н	Cl	Ν	C	(метод)
2a	C ₂₄ H ₂₂ N ₄ O ₄	<u>66.88</u> 66.97	<u>5.08</u> 5.15	-	<u>13.10</u> 13.02	235–236	78
2b	$C_{26}H_{26}N_4O_4$	<u>68.03</u> 68.11	<u>5.79</u> 5.72	-	<u>12.28</u> 12.22	172–173	80
2c	$C_{26}H_{26}N_4O_4$	<u>68.25</u> 68.11	<u>5.61</u> 5.72	-	<u>12.11</u> 12.22	237–238 (с разл.)	32
4	$C_{18}H_{17}N_3O_2$	<u>70.25</u> 70.34	<u>5.62</u> 5.58	_	<u>13.75</u> 13.67	163–164	74
5	$C_{18}H_{15}N_{3}O$	<u>74.63</u> 74.72	<u>5.29</u> 5.23	_	<u>14.65</u> 14.52	246–247	67
6b	$C_{19}H_{20}N_4O_2$	<u>67.98</u> 67.84	<u>5.81</u> 5.99	_	<u>16.76</u> 16.65	185–186	93
8a	$C_{21}H_{22}N_4O_2$	<u>69.71</u> 69.59	<u>6.23</u> 6.12	_	<u>15.36</u> 15.46	265–266	89
8b	$C_{21}H_{22}N_4O_3$	<u>66.58</u> 66.65	<u>5.75</u> 5.86	_	<u>14.91</u> 14.80	256–257	89
9a	$C_{12}H_{11}N_{3}O$	<u>67.42</u> 67.59	<u>5.39</u> 5.20	_	<u>19.54</u> 19.71	282–283	92 (А), 83 (Б)
9b	$C_{14}H_{13}N_3O_2$	<u>65.97</u> 65.87	<u>5.10</u> 5.13	_	<u>16.55</u> 16.46	264–265 (с разл.)	87
9c	C ₁₃ H ₁₃ N ₃ O	<u>68.60</u> 68.71	<u>5.66</u> 5.77	_	<u>18.59</u> 18.49	258–259 (с разл.)	90
10a	$C_{14}H_{15}ClN_2O_5$	<u>51.55</u> 51.46	<u>4.53</u> 4.63	<u>10.80</u> 10.85	<u>8.71</u> 8.57	>300	86
10b	C ₁₆ H ₁₇ ClN ₂ O ₆	<u>52.21</u> 52.11	<u>4.54</u> 4.65	<u>9.55</u> 9.61	<u>7.69</u> 7.60	>300	90
10c	C ₁₇ H ₁₉ ClN ₂ O ₆	<u>53.45</u> 53.34	<u>5.08</u> 5.00	<u>9.19</u> 9.26	<u>7.44</u> 7.32	292–293	78
11a	$C_{14}H_{18}N_4O$	<u>64.98</u> 65.09	<u>7.12</u> 7.02	_	<u>21.75</u> 21.69	204–205	73
11b	$C_{16}H_{20}N_4O_2$	<u>64.06</u> 63.98	<u>6.63</u> 6.71	-	<u>18.75</u> 18.65	230–231	76
11c	$C_{17}H_{22}N_4O_2$	<u>64.79</u> 64.95	<u>7.29</u> 7.05	_	<u>17.69</u> 17.82	224–225	80
12a	$C_{14}H_{13}BF_4N_2O_2$	<u>51.13</u> 51.26	<u>4.10</u> 3.99	-	<u>8.66</u> 8.54	211–212 (с разл.)	44
12b	$C_{16}H_{17}BF_4N_2O_2$	<u>53.81</u> 53.96	<u>4.93</u> 4.81	-	<u>7.75</u> 7.87	189–190 (с разл.)	40
13a	$C_{12}H_{11}N_{3}O$	<u>67.70</u> 67.59	<u>5.11</u> 5.20	_	<u>19.79</u> 19.71	270 (с разл.)	47 (А), 52 (Б)
13b	C ₁₃ H ₁₃ N ₃ O	<u>68.84</u> 68.71	<u>5.64</u> 5.77	_	<u>18.38</u> 18.49	218–219	54 (A)

Характеристики синтезированных соединений

12–14 a $R^1 = Me$, **b** $R^1 = Et$

В спектре ЯМР ¹Н диазепинов **13а,b** содержатся синглетные сигналы протонов H-5 при 3.56 и групп NHCO в области 10.6 м. д., что свидетельствует о нахождении этих соединений в лактамной форме. Интересно, что по данным работы [13] изомерный 1-метил-3H-[1,2]диазепино[5,6-*b*]индол в растворе ДМСО находится в лактимной форме.

Строение молекулы 2,3-дигидро-2-оксо-5-этил-1Н-[1,2]диазепино[4,5-*b*]индола (**13b**), по данным РСА

Спектры ЯМР ¹Н синтезированных соединений

Соеди-	Химические сдвиги, б, м. д. (Ј, Гц)
1	2
2a	2.51 (3H, c, CH ₃ C=N); 4.09 (2H, c, CH ₂); 7.07 (1H, т, <i>J</i> = 8.0, H-6); 7.17 (1H, т, <i>J</i> = 8.0, H-5); 7.44 (1H, д, <i>J</i> = 8.0, H-7); 7.58 (1H, д, <i>J</i> = 8.0, H-4); 11.28 (1H, c, NH); 12.12 (1H, c, COOH)
2b	1.15 (3H, т, <i>J</i> = 7.4, C <u>H</u> ₃ CH ₂); 3.08 (3H, к, <i>J</i> = 7.4, CH ₃ C <u>H₂</u>); 4.09 (2H, с, CH ₂); 7.02 (1H, т, <i>J</i> = 8.0, H-6); 7.16 (1H, т, <i>J</i> = 8.0, H-5); 7.43 (1H, д, <i>J</i> = 8.0, H-7); 7.55 (1H, д, <i>J</i> = 8.0, H-4); 11.21 (1H, с, NH); 12.03 (1H, с, COOH)
2c	2.53 (3H, c, CH ₃ C=N); 3.64 (1H, c, OCH ₃); 4.15 (2H, c, CH ₂); 7.07 (1H, т, <i>J</i> = 8.0, H-6); 7.20 (1H, т, <i>J</i> = 8.0, H-5); 7.43 (1H, д, <i>J</i> = 8.0, H-7); 7.61 (1H, д, <i>J</i> = 8.0, H-4); 11.24 (1H, c, NH)
4	2.37 (3H, c, CH ₃ C=N); 3.97 (2H, c, CH ₂); 6.73 (1H, т, <i>J</i> = 6.0, H-4'); 6.95 (1H, т, <i>J</i> = 8.0, H-6); 7.06 (1H, т, <i>J</i> = 8.0, H-5); 7.18–7.29 (4H, м, H аром.); 7.36 (1H, д, <i>J</i> = 8.0, H-7); 7.46 (1H, д, <i>J</i> = 8.0, H-4); 9.13 (1H, c, NH); 10.84 (1H, c, 1-NH); 11.97 (1H, c, COOH)
5	2.68 (3H, c, 1-CH ₃); 6.63 (2H, π , J = 7.6, H-2',6'); 6.87 (1H, π , J = 7.6, H-4'); 7.06 (1H, π , J = 8.0, H-7); 7.15 (2H, π , J = 7.6, H-3',5'); 7.33 (1H, π , J = 8.0, H-8); 7.45 (1H, π , J = 8.0, H-6); 7.97 (1H, π , J = 8.0, H-5); 9.03 (1H, c, NH); 10.75 (1H, c, 9-NH)
6b	2.26 (3H, c, CH ₃ C=N); 3.71 (3H, c, 4'-OCH ₃); 3.78 (2H, c, CH ₂); 6.72 (4H, π , $J = 9.0, H-3',5'$); 6.83 (2H, c, NH ₂); 6.98 (1H, π , $J = 7.6, H-6$); 7.06 (1H, π , $J = 7.6, H-5$); 7.30 (1H, π , $J = 7.6, H-7$); 7.43 (2H, π , $J = 9.0, H-2',6'$); 7.62 (1H, π , $J = 7.6, H-4$); 10.48 (1H, c, CONH); 10.91 (1H, c, 1-NH)
8a	2.16 (6H, c, COCH ₃ и 4'-CH ₃); 2.40 (3H, c, CH ₃ C=N); 3.89 (2H, c, CH ₂); 7.00 (2H, д, <i>J</i> = 8.6, H-3',5'); 7.08 (1H, т, <i>J</i> = 7.7, H-6); 7.15 (1H, т, <i>J</i> = 7.7, H-5); 7.39 (1H, д, <i>J</i> = 7.7, H-7); 7.44 (2H, д, <i>J</i> = 8.6, H-2',6'); 7.78 (1H, д, <i>J</i> = 7.7, H-4); 10.29 (1H, c, CH ₃ CON <u>H</u>); 10.89 (1H, c, CH ₂ CON <u>H</u>); 11.38 (1H, c, 1-NH)
8b	2.19 (3H, c, COCH ₃); 2.41 (3H, c, CH ₃ C=N); 3.70 (3H, c, 4'-OCH ₃); 3.91 (2H, c, CH ₂); 6.68 (2H, д, <i>J</i> = 8.6, H-3',5'); 7.04 (1H, т, <i>J</i> = 7.4, H-6); 7.11 (1H, т, <i>J</i> = 7.4, H-5); 7.34 (1H, д, <i>J</i> = 7.4, H-7); 7.52 (2H, д, <i>J</i> = 8.6, H-2',6'); 7.84 (1H, д, <i>J</i> = 7.4, H-4); 10.15 (1H, c, CH ₃ CON <u>H</u>); 10.70 (1H, c, CH ₂ CON <u>H</u>); 11.07 (1H, c, 1-NH)
9a	2.67 (3H, c, 1-CH ₃); 6.40 (2H, c, NH ₂); 6.88 (1H, c, H-4); 7.03 (1H, τ , $J = 7.6$, H-7); 7.31 (1H, π , $J = 7.6$, H-8); 7.43 (1H, τ , $J = 7.6$, H-6); 7.97 (1H, π , $J = 7.6$, H-5); 10.68 (1H, c, 9-NH)
9b	2.08 (3H, c, COCH ₃); 2.42 (3H, c, 1-CH ₃); 6.88 (1H, c, H-4); 7.01 (1H, т, <i>J</i> = 8.0, H-7); 7.27 (1H, д, <i>J</i> = 8.0, H-8); 7.45 (1H, т, <i>J</i> = 8.0, H-6); 7.97 (1H, д, <i>J</i> = 8.0, H-5); 10.48 (1H, c, CONH); 10.79 (1H, c, 9-NH)
9c	1.32 (3H, т, $J = 7.6$, 1-CH ₂ CH ₃); 3.13 (3H, к, $J = 7.6$, 1-CH ₂ CH ₃); 5.97 (2H, c, NH ₂); 6.71 (1H, c, H-4); 6.93 (1H, т, $J = 8.2$, H-7); 7.21 (1H, д, $J = 8.2$, H-8); 7.28 (1H, т, $J = 8.2$, H-6); 7.79 (1H, д, $J = 8.2$, H-5); 10.30 (1H, c, 9-NH)
10a	2.85 (3H, c, 1-CH ₃); 3.37 (6H, c, N(CH ₃) ₂); 7.20 (1H, т, <i>J</i> = 8.0, H-7); 7.41 (1H, д, <i>J</i> = 8.0, H-8); 7.63 (1H, т, <i>J</i> = 8.0, H-6); 7.69 (1H, c, H-4); 8.21 (1H, д, <i>J</i> = 8.0, H-5); 11.43 (1H, c, 9-NH)
10b	2.83 (3H, с, 1-CH ₃); 3.57–3.89 (8H, м, морфолин); 7.22 (1H, т, <i>J</i> = 8.0, H-7); 7.44 (1H, д, <i>J</i> = 8.0, H-8); 7.66 (1H, т, <i>J</i> = 8.0, H-6); 7.71 (1H, с, H-4); 8.22 (1H, д, <i>J</i> = 8.0, H-5); 11.52 (1H, с, 9-NH)
10c	1.33 (3H, т, $J = 7.3$, 1-CH ₂ CH ₃); 2.89 (3H, к, $J = 7.3$, 1-CH ₂ CH ₃); 3.30 (6H, c, N(CH ₃) ₂); 7.12 (1H, т, $J = 8.0$, H-7); 7.32 (1H, д, $J = 8.0$, H-8); 7.54 (1H, т, $J = 8.0$, H-6); 7.60 (1H, c, H-4); 8.09 (1H, д, $J = 8.0$, H-5); 11.28 (1H, c, 9-NH)

Окончание таблицы 2

1	2
11a	2.11 (3H, c, CH ₃ C=N); 2.88 (3H, c, NCH ₃); 3.04 (3H, c, NCH ₃); 3.99 (2H, c, CH ₂); 5.99 (2H, c, NH ₂); 6.89 (1H, T, <i>J</i> = 8.0, H-6); 7.02 (1H, T, <i>J</i> = 8.0, H-5);
11b	7.29 (1H, д, <i>J</i> = 8.0, H-7); 7.44 (1H, д, <i>J</i> = 8.0, H-4); 10.59 (1H, с, 1-NH) 2.09 (3H, с, CH ₃ C=N); 3.36–3.53 (8H, м, морфолин); 4.01 (2H, с, CH ₂); 6.28 (2H, с, NH ₂); 6.91 (1H, т, <i>J</i> = 7.8, H-6); 7.02 (1H, т, <i>J</i> = 7.8, H-5); 7.30 (1H, д, <i>J</i> = 7.8, H-7); 7.47 (1H, д, <i>J</i> = 7.8, H-4); 10.81 (1H, с, 1-NH)
11c	1.05 (3H, т, <i>J</i> = 7.3, 1-CH ₂ C <u>H₃</u>); 2.63 (3H, к, <i>J</i> = 7.3, 1-C <u>H₂</u> CH ₃); 3.32–3.51 (8H, м, морфолин); 4.01 (2H, c, CH ₂); 6.48 (2H, c, NH ₂); 6.89 (1H, т, <i>J</i> = 8.0, H-6); 7.00 (1H, т, <i>J</i> = 8.0, H-5); 7.28 (1H, д, <i>J</i> = 8.0, H-7); 7.47 (1H, д, <i>J</i> = 8.0, H-4); 10.78 (1H, c, 1-NH)
13 a	2.44 (3H, c, 5-CH ₃); 3.56 (2H, c, 1-CH ₂); 7.13 (1H, τ , $J = 8.1$, H-8); 7.26 (1H, τ , $J = 8.1$, H-9); 7.44 (1H, μ , $J = 8.1$, H-7); 7.71 (1H, μ , $J = 8.1$, H-10); 10.64 (1H, c, CONH); 11.49 (1H, c, 6-NH)
13b	1.19 (3H, т, $J = 7.3$, 5-CH ₂ CH ₃); 2.85 (3H, к, $J = 7.3$, 5-CH ₂ CH ₃); 3.48 (2H, c, 1-CH ₂); 7.05 (1H, т, $J = 8.0$, H-8); 7.17 (1H, т, $J = 8.0$, H-9); 7.38 (1H, д, $J = 8.0$, H-7); 7.59 (1H, д, $J = 8.0$, H-10); 10.23 (1H, c, CONH); 11.13 (1H, c, 6-NH)

Строение 2,3-дигидро-2-оксо-5-этил-1Н-[1,2]диазепино[4,5-*b*]индола (**13b**) установлено рентгеноструктурным исследованием (рисунок). Семичленный гетероцикл находится в конформации *ванна*. Атомы C(8), C(10) и N(3) отклонены от среднеквадратичной плоскости остальных атомов цикла на 0.62, 0.57 и 0.64 Å соответственно. Угол между плоскостями, проведенными через атомы C(7), C(8), C(10), C(11) и C(8), C(9), N(2) и N(3), составляет 60.6°. Этильная группа заметно развернута относительно плоскости индольного фрагмента (торсионные углы N(1)–C(11)–C(10)–C(12) и C(11)–C(10)–C(12)–C(13) составляют –27.9(1)° и –54.6(1)° соответственно).

Конфигурация атома азота амидного фрагмента несколько отклоняется от планарной. Сумма валентных углов центрированных на атоме N(2) равна 358°.

Таблица З

Соеди- нение	<i>m/z (I</i> _{отн} , %)*
2a	430 [M] (30), 342 (70), 171 (40), 155 (10), 129 (15), 63 (15), 44 (100)
2b	370 (20), 341 (15), 185 (40), 169 (17), 155 (15), 130 (13), 77 (9), 44 (100)
2c	$459 [M + 1]^+ (100)$
5	289 [M] (30), 197 (41), 169 (65), 127 (12), 101 (13), 93 (100), 77 (16), 65 (30), 51 (12), 42 (28)
9b	255 [M] (100), 238 (15), 213 (48), 197 (50), 184 (41), 169 (30), 154 (25), 127 (20), 115 (10), 101 (13), 77 (15), 51 (11), 43 (53)
13 a	213 [M] (100), 197 (12), 184 (100), 169 (10), 154 (16), 128 (13)

Масс-спектры синтезированных соединений

* Приведены наиболее интенсивные пики; для соединения 2с масс-спектр получен методом ВЖХ (МСД).

В кристалле молекулы соединения 13b образуют центросимметричные

димеры за счет межмолекулярной водородной связи N(2)–H(2A)...O(1)' (-x, 1-y, -z) (расстояние H...O 2.11 Å, угол N–H...O 178°). Посредством межмолекулярной водородной связи N(1)–H(1A)...O(1)' (x + 1, y, z) (расстояние H...O 1.99 Å, угол N–H...O 173°) димеры образуют цепочки вдоль кристаллографического направления (1 0 0). Соседние цепочки димеров связаны между собой за счет образования слабых водородных связей С–H... π между группой C(8)–H(8A) и π -системой бензольного кольца соседней молекулы (расстояние H(8A)...C(4) 2.76 Å, сумма вандер-ваальсовых радиусов 2.87 Å [16]).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н записаны на приборах Gemini-200 (200 МГц), Bruker DRX500 (500 МГц) в ДМСО-d₆, внутренний стандарт ТМС. Масс-спектры получены на приборе Finnigan MAT Incos-50, энергия ионизирующих электронов 70 эВ. Хромато-масс-спектры записаны на спектрометре Agilent 1100 LC/MSD VL, способ ионизации APCI (химическая позитивная ионизация при атмосферном давлении). Параметры хроматографической колонки: длина 50 мм, диаметр 4.6 мм, неподвижная фаза – ZORBAX SB-C18, растворитель ацетонитрил-вода, 95:5, 0.1% трифторуксусная кислота, градиентное элюирование, скорость подачи растворителя 3.0 мл/мин. Препаративную хроматографию соединений проводили на силикагеле марки Merck 60.

Характеристики синтезированных соединений приведены в табл. 1-3.

Рентгеноструктурное исследование. Кристаллы соединения 13b триклинные (хлороформ-ацетонитрил, 3:1), $C_{13}H_{13}N_3O$, при 293 К: a = 7.4495(4), b = 7.8021(5), c = 10.30798(6) Å, a = 102.876(5), $\beta = 94.570(5)$, $\gamma = 100.536(5)^{\circ}$, V = 569.65(6) Å³, $M_r = 227.26$, Z = 2, пространственная группа $P\overline{1}$, $d_{выч} = 1.325$ г/см³, μ (Мо $K\alpha$) = 0.087 мм⁻¹, F(000) = 240. Рентгеноструктурное исследование соединения 13b проведено при 20 °C на дифрактометре Xcalibur-3 (Мо $K\alpha$ -излучение, CCD-детектор, графитовый монохроматор, ω -сканирование, $2\theta_{max} = 60^{\circ}$). Измерено 8233 отражений, из них 3296 независимых ($R_{int} = 0.021$).

Структура расшифрована прямым методом и уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов по комплексу программ SHELXTL [17]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены изотропно. Окончательные значения факторов расходимости: $wR_2 = 0.095$ по 7900 отражениям ($R_1 = 0.035$ по 2315 отражениям с $F > 4\sigma(F)$, S = 0.947). Координаты атомов, геометрические параметры молекулы и кристаллографические данные депонированы в Cambridge Crystallographic Data Centre (депонент CCDC 673503).

2-Ацетилиндолил-3-уксусная кислота (1а), 2-пропионилиндолил-3-уксусная кислота (1b) и их метиловые эфиры 14а, b получены по методике [18].

Получение азинов 2-ацетилиндолил-3-уксусной кислоты (2а) и 2-пропионилиндолил-3-уксусной кислоты (2b) (общая методика). А. К раствору 10 ммоль соединений 1а,b в водном растворе гидрокарбоната натрия добавляют 2.5 г (50 ммоль) гидразингидрата, кипятят 1 ч, охлаждают и подкисляют уксусной кислотой до pH <7. Выпавший осадок отфильтровывают. Промывают спиртом и водой. Соединение 2a кристаллизуют из водного ДМСО, соединение 2b – из метанола.

Б. Смесь (10 ммоль) соответствующих борофторидов 1-метил(этил)-3-оксииндоло[2,3-*c*]пирилия **За,b** [18], 2.5 г (50 ммоль) гидразингидрата в 30 мл метанола 914 кипятят 1 ч. Охлаждают, кристаллы **2а,b** отфильтровывают. Промывают спиртом и водой.

Фенилгидразон 2-ацетилиндолил-3-уксусной кислоты (4). К раствору 2.3 г (10 ммоль) соединения 1а в изопропиловом спирте добавляют 1.62 г (15 ммоль) фенилгидразина и смесь кипятят 1 ч. Охлаждают, выпавший осадок отфильтровывают, промывают холодным изопропиловым спиртом. Кристаллизуют из метанола.

1-Метил-2-фениламиноиндоло[2,3-с]пиридин-3(2Н)-он (5). К раствору 1 г (3.1 ммоль) соединения **4** в 20 мл хлористого метилена добавляют 0.72 г (3.5 ммоль) дициклогексилкарбодиимида, перемешивают 5 ч. Дициклогексилмочевину отфильтровывают, промывают хлористым метиленом. Фильтрат упаривают. Остаток кристаллизуют из изопропилового спирта.

Гидразон 4-метилфениламида 2-ацетилиндолил-3-уксусной кислоты (6а) получают из перхлората 1-метил-3-(4-метилфениламино)индоло[2,3-*c*]пирилия [15].

Гидразон 4-метоксифениламида 2-ацетилиндолил-3-уксусной кислоты (6b) получают из перхлората 1-метил-3-(4-метокси-фениламино)индоло[2,3-*c*]-пирилия [15] аналогично соединению 6а. Кристаллизуют из метанола.

1-Метил-2-(4-метилфениламино)индоло[2,3-с]пиридин-3(2Н)-он (7а) получают кипячением гидразона **6а** в ледяной уксусной кислоте 2 ч. Соединение **7а** спектрально идентично синтезированным ранее образцам [15], а температура плавления их смешанной пробы депрессии не дает.

1-Метил-2-(4-метоксифениламино)индоло[2,3-с]пиридин-3(2H)-он (7b) получают кипячением гидразона 6b в ледяной уксусной кислоте 2 ч. Соединение 7b идентично синтезированным ранее образцам [15], а температура плавления их смешанной пробы депрессии не дает.

N-Ацетилгидразон 4-метилфениламида 2-ацетилиндолил-3-уксусной кислоты (**8a**). К раствору 0.64 г (2 ммоль) гидразона **6a** и 0.3 мл триэтиламина в ТГФ при перемешивании и охлаждении прибавляют 0.157 г (2 ммоль) ацетилхлорида, перемешивают 1 ч, доводят до кипения, охлаждают и выливают в воду. Осадок отфильтровывают. Кристаллизуют из ДМСО.

N-Ацетилгидразон 4-метоксифениламида 2-ацетилбензо[*b*]фуран-3-уксусной кислоты (8b) получают из гидразона 6b аналогично соединению 8а. Кристаллизуют из ДМСО.

2-Амино-1-метилиндоло[2,3-с]пиридин-3(2Н)-он (9а). А. Раствор 1 г гидразонов ариламидов 2-ацетилиндолил-3-уксусной кислоты **6а,b** кипятят 1 ч в 20 мл трифторуксусной кислоты. Трифторуксусную кислоту удаляют в вакууме. Прибавляют 50 мл воды и остатки трифторуксусной кислоты нейтрализуют добавлением водного раствора аммиака до рН >7. Выпавший осадок отфильтровывают, промывают водой. Кристаллизуют из спирта.

Б. Получают по методике, аналогичной методике А, используя гидразоны алкиламидов 2-ацетилиндолил-3-уксусной кислоты **11а,b** и уксусную кислоту.

Соединения 9а, полученные по способам А и Б, спектрально идентичны. Проба смешения депрессии температуры плавления не дает.

2-Ацетиламино-1-метилиндоло[2,3-с]пиридин-3(2Н)-он (9b). А. К раствору 0.96 г (3 ммоль) гидразона **6а** в ТГФ прибавляют 0.2 г (4 ммоль) уксусного ангидрида. Раствор доводят до кипения, охлаждают и выливают в воду. Выпавший осадок отфильтровывают. Кристаллизуют из 2-пропанола.

Б. Растворяют 0.38 г (1 ммоль) N-ацетилгидразона 4-метилфениламида 2-ацетилиндолил-3-уксусной кислоты (8а) в 20 мл уксусной кислоты и кипятят 1 ч.

Раствор охлаждают, разбавляют 50 мл воды и нейтрализуют уксусную кислоту 915

добавлением 10% водного раствора аммиака до pH >7. Выпавший осадок отфильтровывают, промывают водой. Кристаллизуют из 2-пропанола. Соединения **9b**, полученные по способам A и Б, спектрально идентичны. Проба смешения депрессии температуры плавления не дает.

2-Амино-1-этилиндоло[2,3-с]пиридин-3(2Н)-он (9с) получают из гидразона **11с** аналогично соединению **9а** (способ Б). Кристаллизуют из 2-пропанола.

Перхлорат 1-метил-3-диметиламиноиндоло[2,3-с]пирилия (10а) получают по методике [19] циклизацией диметиламида 2-ацетилиндолил-3-уксусной кислоты [18].

Перхлорат 3-морфолино-1-метилиндоло[2,3-с]пирилия (10b) получают по методике [19] циклизацией морфолида 2-ацетилиндолил-3-уксусной кислоты [18].

Перхлорат 3-диметиламино-1-этилиндоло[2,3-с]пирилия (10с) получают по методике [19] циклизацией морфолида 2-пропионилиндолил-3-уксусной кислоты [18].

Гидразон диметиламида 2-ацетилиндолил-3-уксусной кислоты (11а). К суспензии 10 ммоль перхлората пирилия 10а в 50 мл изопропилового спирта прибавляют 5 мл 60% гидразингидрата и кипятят 1.5 ч. Охлаждают, прибавляют 50 мл воды. Осадок отфильтровывают, промывают водой. Кристаллизуют из 2-пропанола.

Гидразон морфолида 2-ацетилиндолил-3-уксусной кислоты (11b) получают из перхлората 1-метил-3-морфолиноиндоло[2,3-*c*]пирилия (10b) аналогично гидразону **11а**. Кристаллизуют из 2-пропанола.

Гидразон морфолида 2-пропионилиндолил-3-уксусной кислоты (11с) полу-чают из перхлората 10с аналогично гидразону 11а. Кристаллизуют из 2-пропа-нола.

Перхлорат 3-ацетиламино-1-метилиндоло[2,3-с]пирилия (12а) получают ацилированием индолил-3-ацетонитрила уксусным ангидридом в присутствии эфирата трехфтористого бора по методике, аналогичной [20].

Перхлорат 3-ацетиламино-1-этилиндоло[2,3-с]пирилия (12b) получают ацилированием индолил-3-ацетонитрила ангидридом пропионовой кислоты в при-сутствии эфирата трехфтористого бора по методике, аналогичной [20].

2,3-Дигидро-2-оксо-5-R-1H-[1,2]диазепино[4,5-*b***]индолы 13а,b. А. К суспензии 10 ммоль соответствующего перхлората пирилия 12а,b в 50 мл изопропилового спирта прибавляют 5 мл 98% гидразингидрата и кипятят 30 мин. Охлаждают, прибавляют 50 мл воды и нейтрализуют избыток гидразина прибавлением уксусной кислоты до pH <7, экстрагируют хлороформом. Экстракт промывают водой. Растворитель удаляют. Соединения 13а** и 13b очищают методом препаративной хроматографии: соединение 13а, R_f 0.13, элюент хлороформметанол, 20:1, соединение 13b, R_f 0.45, элюент хлороформ-ацетонитрил, 3:1.

Б. К раствору 5 ммоль метилового эфира кетокислоты **14a** [18] в 50 мл 2-пропанола прибавляют 0.75 мл 98% гидразингидрата и кипятят 2 ч. Охлаждают, прибавляют 30 мл воды и нейтрализуют избыток гидразина прибавлением уксусной кислоты до рН <7. Выпавший осадок отфильтровывают, промывают водой. Разделение соединений **13a** и **2c** проводят методом препаративной хроматографии, элюент хлороформ-метанол, 20:1, **2c**, R_f 0.43, кристаллизуют из спирта.

СПИСОК ЛИТЕРАТУРЫ

- 1. E. J. Horvath, K. Horvath, T. Hamori, M. I. K. Fekete, S. Solyom, M. Palkovits, *Progress in Neurobiology*, **60**, 309 (2000).
- 2. T. Seppala, E. Palva, M. Mattila, K. Korttila, R. Shrotriya, *Psychopharmacology*, **69**, 209 (1980).
- 3. A. De Sarro, G. De Sarro, R. Gitto, S. Grasso, N. Micale, M. Zappala, *Farmaco*, 916

54, 178 (1999).

- 4. G. De Sarro, R. Gitto, M. Zappala, A. Chimirri, Farmaco, 57, 129 (2002).
- 5. A. Chimirri, R. Gitto, S. Quartarone, V. Orlando, A. De Sarro, G. De Sarro, *Farmaco*, **57**, 759 (2002).
- 6. A. Chimirri, G. De Sarro, A. De Sarro, R. Gitto, S. Quartarone, M. Zappala, A. Constanti, V. Libri, *J. Med. Chem.*, **41**, 3409 (1998).
- M. Zappala, R. Gitto, F. Bevacqua, S. Quartarone, A. Chimirri, M. Rizzo, G. De Sarro, A. De Sarro, *J. Med. Chem.*, 43, 4834 (2000).
- R. Gitto, M. L. Barreca, L. De Luca, G. De Sarro, G. Ferreri, S. Quartarone, E. Russo, A. Constanti, A. Chimirri, *J. Med. Chem.*, 46, 197 (2003).
- 9. F. Gatta, D. Piazza, M. R. Del Giudice, M. Massotti, Farmaco, 40, 942 (1985).
- F. Bevacqua, A. Basso, R. Gitto, M. Bradly, A. Chimirri, *Tetrahedron Lett.*, 42, 7683 (2001).
- 11. A. Monge, M. T. Martinez, J. A. Palop, J. M. Mateo, E. Fernandez-Alvarez, J. Heterocycl. Chem., 18, 889 (1981).
- 12. A. Monge, M. T. Martinez, J. A. Palop, T. Goni, E. Fernandez-Alvarez, J. Heterocycl. Chem., 21, 381 (1984).
- 13. A. Monge, J. A. Palop, T. Goni, A. Martinez, E. Fernandez-Alvarez, *J. Heterocycl. Chem.*, **22**, 1445 (1985).
- 14. V. S. Tolkunov, I. F. Perepichka, V. I. Dulenko, J. Heterocycl. Chem., 42, 811 (2005).
- В. С. Толкунов, Ю. Б. Высоцкий, О. А. Горбань, С. В. Шишкина, О. В. Шишкин, Р. И. Зубатюк, В. И. Дуленко, *XIC*, 601 (2005). [*Chem. Heterocycl. Comp.*, 41, 515 (2005)].
- 16. Ю. В. Зефиров, П. М. Зоркий, *Успехи химии*, **58**, 713 (1989).
- 17. G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev.5.1. 1998.
- 18. H. Plieninger, W. Müller, K. Weinert, Chem. Ber., 97, 667 (1964).
- 19. С. В. Толкунов, М. Н. Кальницкий, Е. А. Земская, *XГС*, 1552 (1991). [*Chem. Heterocycl. Comp.*, **27**, 1253 (1991)].
- 20. Г. Н. Дорофеенко, С. В. Кривун, Е. И. Садекова, XГС, 730 (1971). [Chem. Heterocycl. Comp., 7, 681 (1971)].

Институт физико-органической химии и углехимии им. Л. М. Литвиненко НАН Украины, Донецк 83114, Украина e-mail: s tolkunov@yahoo.com Поступило 21.03.2008

^аНТК "Институт монокристаллов" НАН Украины, Харьков 61001, Украина