Посвящается глубокоуважаемому академику Андрису Стракову в связи с его юбилеем

М. Флейшер*, С. Беляков, Д. Янсоне, В. Поройков^а, Л. Лейте, Э. Лукевиц

ИССЛЕДОВАНИЕ СТРУКТУРЫ И ПРОГНОЗ БИОЛОГИЧЕСКОЙ АКТИВНОСТИ 1,3-БИС(6,6-ДИМЕТИЛ-2-ОКСО-3-ЦИАНО-5,6-ДИГИДРО-2H-ПИРАН-4-ИЛ)-2-(4-МЕТОКСИФЕНИЛ)ПРОПАНА

Получены монокристаллы 1,3-бис(6,6-диметил-2-оксо-3-циано-5,6-дигидро-2H-пиран-4-ил)-2-(4-метоксифенил)пропана и выполнен их РСА. Соединение имеет молекулярную структуру, относящуюся к группе симметрии C₁. Гетероциклические кольца находятся в конформации искаженного *полукресла*. Упаковка кристалла образована центросимметричными димерами, в которых молекулы расположены таким образом, что обращенные к центру инверсии гетероциклы – антипараллельны. С помощью компьютерной системы PASS проведен прогноз биологической активности соединения.

Ключевые слова: 1,3-бис(6,6-диметил-2-оксо-3-циано-5,6-дигидро-2H-пиран-4-ил)-2-(4-метоксифенил)пропан, PCA, PM6, PASS.

В продолжение наших исследований по поиску новых физиологически активных соединений класса δ-лактонов была осуществлена реакция 4,6,6-триметил-3-циано-5,6-дигидро-2-пиранона с 4-метоксибензальдегидом в этаноле в присутствии каталитических количеств NaOH. Было установлено, что наряду с ожидаемым продуктом кротоновой конденсации 6,6-диметил-2-оксо-3-циано-5,6-дигидро-4-[2-(4-метоксифенил)винил]-2H-пираном в реакции образуется также соединение типа аддукта Михаэля 1,3-бис(6,6-диметил-2-оксо-3-циано-5,6-дигидро-2H-пиран-4-ил)-2-(4-метоксифенил)пропан (1). Идентификация синтезированных соединений проведена на основе спектральных данных и элементного анализа [1].

Квантово-химическое исследование реакции показало, что оба продукта получаются из общего протонированного интермедиата, и различие в механизмах их образования обусловлено регионаправленностью стадии взаимодействия карбаниона HetCH_2^- с интермедиатом. В том случае, когда атака карбаниона направлена на α -атом углерода двойной связи интермедиата, имеет место бимолекулярная реакция элиминирования *E*2 с образованием продукта кротоновой конденсации. Если же атаке подвергается β -положение, то спонтанно протекает реакция бимолекулярного нуклеофильного замещения *S*_N2, в результате которой образуется продукт присоединения типа Михаэля.

Для получения объективной детальной информации о пространственном и геометрическом строении соединения **1** нами были выращены кристаллы, пригодные для рентгенодифракционных исследований, и проведен РСА монокристаллов этого вещества (рис. 1, табл. 1).

Рис. 1. Общий вид молекулы соединения **1**, полученный методом PCA с эллипсоидами тепловых колебаний и обозначениями атомов.

В конденсированной фазе соединение имеет молекулярную структуру, относящуюся к точечной группе симметрии C_1 . Оба гетероцикла **A** и **B** находятся в конформации искаженного *полукресла*. Выход атома C(6а) из плоскости других атомов кольца равен 0.566(7) Å, а угол отгиба плоскости C(5а)–C(6а)–O(1а) составляет 41.86°.

Псевдоплоскость C(8а)–C(6а)–C(7а), содержащая атомы углерода метильных групп, пересекает базовую плоскость гетероцикла под углом 86.61(4)°. В гетероцикле **В** отклонение атома вершины *полукресла* C(6b) от плоскости кольца равно 0.682(7) Å, а соответствующий угол отгиба равен 41.98°. Базовая плоскость кольца и псевдоплоскость C(7b)–C(6b)–C(8b) ортогональны друг другу (89.94°). Атомы кислорода карбонильных групп и цианогруппы расположены копланарно плоскости своих гетероциклов. Атом кислорода метоксигруппы занимает *цис*-положение относительно связи C(5)–C(6).

Двугранный угол между плоскостями гетероциклов **A** и **B** равен 66.99°. Фенильное кольцо и гетероцикл **A** практически параллельны друг другу (угол между плоскостями их колец равен 1.50°), в то время как угол наклона гетероцикла **B** к плоскости фенильного кольца составляет 68.39°.

В кристалле молекулы соединения 1 объединены в центросимметричные димеры и расположены таким образом, что обращенные к центру инверсии гетероциклы \mathbf{B} – антипараллельны (рис. 2). Расстояние между плоскостями их колец равно 3.598(6) Å, а сами кольца сдвинуты друг относительно друга: расстояние между центроидами циклов составляет 4.760 Å.

Рис. 2. Проекция кристаллической структуры соединения 1 вдоль направления оси х

Таблица 1

Связь	l, Å		VEOT	ω, град.	
	PCA	PM6	910,1	PCA	PM6
C(7)–C(1)	1.527(6)	1.512	C(1)-C(7)-C(10a)	110.4 (3)	109.6
C(7)–C(10b)	1.540(6)	1.547	C(1)–C(7)–C(10b)	112.7(3)	111.3
C(7)–C(10a)	1.547(6)	1.546	C(7)–C(10a)–C(4a)	113.0(4)	112.3
O(1a)–C(2a)	1.331(6)	1.375	C(7)–C(10b)–C(4b)	112.9(3)	112.0
O(1a)–C(6a)	1.474(5)	1.471	C(4a)-C(3a)-C(2a)	122.5(5)	121.4
O(1b)–C(2b)	1.341(6)	1.378	C(4b)–C(3b)–C(2b)	123.9(4)	121.6
O(1b)–C(6b)	1.485(6)	1.470	C(3a)–C(2a)–O(1a)	118.1(4)	116.9
C(5b)–C(4b)	1.492(6)	1.492	C(3b)–C(2b)–O(1b)	117.3(4)	116.8
C(5b)–C(6b)	1.508(7)	1.543	C(2a)–O(1a)–C(6a)	119.3(4)	122.1
C(5a)–C(4a)	1.503(6)	1.492	C(2b)–O(1b)–C(6b)	120.7(4)	122.0
C(5a)–C(6a)	1.513(6)	1.543	O(1a)–C(6a)–C(5a)	110.0(4)	109.7
C(3a)–C(2a)	1.487(7)	1.492	O(1b)–C(6b)–C(5b)	110.6(4)	110.0
C(4b)–C(10b)	1.513(6)	1.498	C(6a)–C(5a)–C(4a)	113.4(4)	112.4
C(4a)–C(10a)	1.497(6)	1.498	C(6b)–C(5b)–C(4b)	113.7(4)	112.9
C(3b)–C(2b)	1.465(6)	1.489	C(8)–O(1)–C(4)	118.3(4)	118.0
C(3a)–C(4a)	1.337(6)	1.356	C(5a)–C(4a)–C(3a)	118.0(4)	119.3
C(3b)–C(4b)	1.338(6)	1.358	C(5b)–C(4b)–C(3b)	117.7(4)	119.7

Основные длины связей (*l*) и валентные углы (ω) соединения 1, определенные методом РСА и рассчитанные методом РМ6

Для получения представления о строении изолированной молекулы в газовой фазе были проведены квантово-химические расчеты с полной оптимизацией ее геометрии полуэмпирическим методом РМ6 [2]. Длины связей и валентные углы, полученные экспериментально (РСА) и найденные теоретически (РМ6), различаются незначительно (табл. 1). Остается без изменений также симметрия молекулярной структуры. При переходе в кристаллическое состояние укорочение валентной связи C(5a)–C(6a) в гетероцикле **A** составляет лишь 0.030, а для соответствующей связи C(5b)–C(6b) в гетероцикле **B** – 0.035 Å.

Прогнозирование биологической активности соединения 1 проведено с помощью компьютерной программы PASS (Prediction of Activity Spectra for Substance) [3, 4]. Система позволяет предсказать около 3300 видов биологической активности вещества на основе его структурной формулы, включая фармакологические эффекты, молекулярные механизмы действия, специфическую токсичность, а также биотрансформации. Средняя точность прогноза при скользящем контроле с исключением по одному составляет ~94%.

Главное назначение программы PASS состоит в прогнозе спектра биологической активности новых, еще не изученных веществ. Это позволяет уже на самых ранних стадиях исследования "отсеять" мало перспективные соединения (например с высокой вероятностью обладающие токсичностью) и определить на какие виды биологической активности целесообразно проводить тестирование прошедшие этот фильтр вещества-кандидаты.

Результаты прогнозирования (при пороговом значении вероятности выше 0.60) показали, что соединение 1 может применяться для лечения ишемической болезни сердца (вероятность 0.644), проявлять цитопротекторный эффект (0.635), является потенциальным ингибитором оксидоредуктазы (0.709), ингибитором убихинол-цитохром с-редуктазы (0.672), агонистом фактора роста нервов (0.641), стимулятором нейротрофического фактора (0.618), ингибитором убихиноновой НАДН-дегидрогеназы (0.604) и субстратом фермента СҮР2С12 человека (0.891).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

1,3-Бис(6,6-диметил-2-оксо-3-циано-5,6-дигидро-2Н-пиран-4-ил)-2-(4метокси- фенил)пропан синтезирован по методике, описанной в [1]. Монокристаллы соединения получены перекристаллизацией продукта реакции из этилового спирта. Квантово-химические расчеты проведены методом РМ6 [2] с исполь-зованием пакета программ МОРАС2007 [5]. Оптимизированная структура явля-ется точкой минимума на поверхности потенциальной энергии молекулярной системы.

Дифракционная картина для монокристаллов получена на автоматическом рентгеновском дифрактометре Bruker–Nonius KappaCCD. Расшифровка кристаллической структуры проведена по методике, разработанной ранее в Латвийском институте органического синтеза [6]. Начальный *R*-фактор полученных (после расшифровки) моделей структур составляет 25–30%. Дальнейшее уточнение осуществлялось полноматричным МНК в анизотропном приближении для всех неводородных атомов с использованием комплекса программ *maXus* [7]. Положения атомов водорода локализованы на основе разностных Фурье синтезов электронной плотности и уточнены в изотропном приближении с использованием модели "наездника". Кристаллографические характеристики соединения 1 и параметры уточнения структуры даны в табл. 2. Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных, № ССDС 719527.

Таблица 2

Параметр		
Брутто-формула	$C_{26}H_{28}N_2O_5$	
Молекулярная масса	448.50	
Форма кристалла	Призма	
Размер кристалла, мм	$0.09 \times 0.11 \times 0.36$	
Сингония	Триклинная	
Параметры элементарной ячейки:		
<i>a</i> , Å	6.9750(6)	
<i>b</i> , Å	13.0700(13)	
<i>c</i> , Å	13.3980(17)	
α, град.	83.331(4)	
β, град.	81.510(4)	
ү, град.	88.511(9)	
Объем элементарной ячейки V , Å ³	1991.8(2)	
Пространственная группа	P 1	
Число молекул в ячейке, Z	2	
F(000)	476	
Плотность вещества, $\rho_{\text{выч}}$, $\Gamma/\text{см}^3$	1.241	
Максимальный угол, 20 _{max} , град.	50.0	
Интервалы индексов Миллера	$-8 \le h \le 7$	
	<i>−</i> 15 <i>≤k≤</i> 15	
	<i>−</i> 15 <i>≤l≤</i> 15	
Коэффициент поглощения, µ, мм ⁻¹	0.086	
Общее число рефлексов	6233	
Число независимых рефлексов	3858	
Число рефлексов с $I > 2\sigma(I)$	2426	
<i>R</i> -Фактор	0.0704	
R -Индексы по всем рефлексам (R_1, wR_2)	0.0925, 0.1452	
Число уточняемых параметров	298	
GooF	0.970	
$(\Delta/\sigma)_{max}$	0.001	

Кристаллографические характеристики соединения 1 и параметры уточнения кристаллической структуры

_

СПИСОК ЛИТЕРАТУРЫ

- Л. Лейте, Д. Янсоне, М. Флейшер, Х. Кажока, Ю. Попелис, Н. Веретенникова, И. Шестакова, И. Домрачева, Э. Лукевиц, *XГС*, 839 (2004). [*Chem. Heterocycl. Comp.*, 40, 715 (2004)].
- 2. J. J. P. Stewart, J. Mol. Model., 13, 1173 (2007).
- V. V. Poroikov, D. A. Filimonov, W.-D. Ihlenfeldt, T. A. Gloriozova, A. A. Lagunin, Yu. V. Borodina, A. V. Stepanchikova, M. C. Nicklaus, *J. Chem. Inf. Comput. Sci.*, 43, 228 (2003).
- 4. Д. А. Филимонов, В. В. Поройков, Рос. хим. журн., 50, № 2, 66 (2006).
- 5. J. J. P. Stewart, Program package MOPAC2007. http://www.MOPAC2007.com.
- 6. А. Ф. Мишнев, С. В. Беляков, *Кристаллография*, **33**, 835 (1988).
- S. Maskay, C. J. Gilmore, C. Edwards, N. Stewart, K. Shankland. maXus. Computer Program for the Solution and Refinement of Crystal Structures, Bruker Nonius, 1999, The Netherlands, MacScience, Japan & The Univ. of Glazgow.

Латвийский институт органического синтеза, Рига LV-1006, Латвия e-mail: misha@osi.lv Поступило 12.03.2009

^аГУ НИИ биомедицинской химии им. В. Н. Ореховича РАМН, Москва 119121, Россия e-mail: vladimir.poroikov@ibmc.msk.ru