И. Стракова, М. Туркс, Э. Биздена, С. Беляков^а, А. Токмаков^а, А. Страков*

РЕАКЦИИ 1-АРИЛ- И 2,3-ДИАРИЛ-5-ДИАЗО-6,6-ДИМЕТИЛ-4-ОКСО-4,5,6,7-ТЕТРАГИДРОИНДАЗОЛОВ С N-ЭТИЛ- И N-ФЕНИЛЗАМЕЩЕННЫМИ МАЛЕИНИМИДАМИ

В реакциях [3+2]-циклоприсоединения ряда 1,3- и 2,3-дизамещенных 5-диазо-6,6-диметил-4-оксо-4,5,6,7-тетрагидроиндазолов с N-этил- и N-фенилзамещенными малеинимидами получены соответствующие 6,6-диметил-4,4',6'-триоксо-4,5,6,7,3',3'а,4',5',6',6'а-декагидроспиро[индазол-5,3'-пирроло[3,4-с]пиразолы]. При кипячении в толуоле эти соединения отщепляют азот и превращаются в 6',6'-диметил-2,4,4'-триоксо-4',5',6',7'-тетрагидро-1'Н-спиро[3-азабицикло(3.1.0)гексан-6,5'- индазолы].

Ключевые слова: 1,3- и 2,3-замещенные 5-диазо-6,6-диметил-4-оксо-4,5,6,7тетрагидроиндазолы, N-этил- и N-фенилмалеинимиды, реакции [3+2]-циклоприсоединения.

В последнем десятилетии созданы новые методы синтеза индазолов, в том числе гидрированных [1–8]. Это обусловлено многогранным биологическим действием большого количества синтезированных производных индазола. Среди них обнаружены агонисты и антагонисты рецепторов эстрогена [9, 10], допамина D-3 [11, 12], кортикотропина [13] и аденозина [14]; найдены производные с противоопухолевым [15], противовоспалительным [16] и противомикробным [17] действием; обнаружены ингибиторы HIV-протеазы [18], мембраноактивные вещества [19]. Производные индазола были использованы также в качестве лигандов [20].

Ранее на основе полученных нами 4,5-диоксо-, 4-хлор-5-формил- и 4оксо- 5-диазопроизводных-4,5,6,7-тетрагидроиндазолов мы синтезировали ряд их аннелированных гетероциклами производных [21–24].

Было осуществлено также взаимодействие 1-арил- и 2,3-диарил-4-оксо-5-диазо-4,5,6,7-тетрагидроиндазолов типа **1**, **2** с малеиновым ангидридом и сложным эфиром ацетилендикарбоновой кислоты, которое привело к образованию соответствующих 3-спиропиразолиновых и пиразольных производных 4,5,6,7-тетрагидроиндазола [25].

В развитие упомянутых выше работ в настоящем ссобщении описаны реакции соединений **1а-с** и **2а-с** [26, 27] с N-этил- (**3a**) и N-фенилмалеинимидом (**3b**), проведенные по классическим методикам [28, 29] и позволившие синтезировать с высокими выходами соответствующие 6,6-диметил-4,4',6'-триоксо-4,5,6,7,3',3'а,4',5',6',6'а-

декагидроспиро[индазол- 5,3'-пирроло[3,4-*c*]пиразолы] **4а–f**, **5а–d**. Соединения **4** и **5** получены в виде

1 a Ar = Ph, R = H, b Ar = 2-mupurum, R = Me, c Ar = Ph, R = Me; **3** a R¹ = Et, b R¹ = Ph; **4**, **6** a Ar = R¹ = Ph, R = H, b Ar = R¹ = Ph, R = Me, c Ar = 2-mupurum, R = Me, R¹ = Et, **f** Ar = Ph, R = Me, R¹ = Et; **6** d Ar = 2-mupurum, R = Me, R¹ = Et; **2** a Ar² = Ph, b Ar² = C₆H₄Cl-4, c Ar² = C₆H₄Cl-4, **5** Ar = 2-mupurum, R = Me, R¹ = Et; **2** a Ar² = Ph, D Ar² = C₆H₄Cl-4, **c** Ar² = C₆H₄Cl-4, **c** Ar² = C₆H₄Cl-4, **R**¹ = Et; **6** d Ar = 2-mupurum, R = Me, R¹ = Et; **2** a Ar² = Ph, D Ar² = C₆H₄Cl-4, **R**¹ = Et; **6** d Ar = 2-mupurum, R = Me, R¹ = Et; **7** a Ar² = Ph, D Ar² = C₆H₄Cl-4, R¹ = Ph; **7** a Ar² = C₆H₄Cl-4, R¹ = Et; **6** d Ar = 2-mupurum, R = Me, R¹ = Et; **7** a Ar² = Ph, D Ar² = C₆H₄Cl-4, R¹ = Ph; **7** a Ar² = C₆H₄Cl-4, R¹ = Et; **7** a Ar² = C₆H₄Cl-4, R¹ = Cl-4Ar² = C₆H₄Cl-4, R¹ = Cl-6Ar⁴Cl-4, R¹ = Et; **7** a Ar² = C₆H₄Cl-4, R¹ = Cl-6Ar⁴Cl-4, R¹ = Et; **7** a Ar² = C₆H₄Cl-4, R¹ = Cl-6Ar⁴Cl-4, R¹ = Cl-6Ar⁴Cl-4, R¹ = Et; **7** a Ar² = C₆H₄Cl-4, R¹ = Cl-6Ar⁴Cl-4, R¹ = Et; **7** a Ar² = C₆H₄Cl-4, R¹ = Cl-6Ar⁴Cl-4, R¹ = Et; **7** a Ar² = C₆H₄Cl-4, R¹ = Cl-6Ar⁴Cl-4, R¹ = Et; **7** a Ar² = C₆H₄Cl-4, R¹ = Et; **7** a Ar² = C₆H₄Cl-4, R¹ = Cl-6Ar⁴Cl-4, R¹ = Et; **7** a Ar² = C₆H₄Cl-4, R¹ = Cl-6Ar⁴Cl-4, R¹ = Cl-6Ar⁴Cl-4, R¹ = Cl-6Ar

рацематов. На схеме изображена одна произвольно выбранная энантиомерная форма. При кипячении продуктов **4**, **5** в толуоле или анизоле выделяется азот и образуются 6',6'-диметил-2,4,4'-триоксо-4',5',6',7'-тетрагидро-1'Н-спиро[3-азабицикло(3.1.0)гексан-6,5'-индазолы] **6а–d**, **7а–d**.

Состав и строение полученных соединений 4–7 подтверждаются результатами элементного анализа (табл. 1) и данными спектров ЯМР ¹Н (табл. 2), а соединений 4b и 7c – также данными PCA (табл. 3, 4, рис. 1,2).

Соеди-	Брутто-		<u>Найдено, %</u> Вычислено, %				Выход,
нение	формула	С	Н	Ν	M*	°C	%
4 a	C ₂₅ H ₂₁ N ₅ O ₃	<u>67.91</u> 68.33	<u>4.68</u> 4.82	<u>16.17</u> 15.93	_	185–187 (разб.)	52
4b	$C_{26}H_{23}N_5O_3$	<u>68.43</u> 68.86	<u>4.98</u> 4.11	<u>15.44</u> 13.73		185–187 (разб.)	80
4c	$C_{25}H_{22}N_6O_3$	<u>66.04</u> 66.06	<u>4.81</u> 4.88	<u>18.47</u> 18.49		196–198 (разл.)	82
4d	$C_{21}H_{21}N_5O_3$	<u>62.08</u> 65.17	<u>5.43</u> 5.72	<u>16.14</u> 17.27		187—188 (разл.)	73
4 e	$C_{21}H_{22}N_6O_3$	<u>62.00</u> 62.05	<u>5.38</u> 5.45	<u>20.14</u> 20.70		203–205 (разл.)	85
4f	$C_{22}H_{23}N_5O_3$	<u>65.32</u> 64.44	<u>5.46</u> 5.41	<u>16.09</u> 17.09		176—178 (разл.)	56
5a	$C_{31}H_{25}N_5O_3$	<u>70.43</u> 72.22	<u>4.75</u> 4.89	<u>13.14</u> 13.58		185–187 (разл.)	69
5b	$C_{31}H_{24}ClN_5O_3$	<u>68.27</u> 69.21	$\frac{4.30}{4.50}$	<u>12.36</u> 13.02		208–210 (разл.)	50
5c	C ₂₇ H ₂₄ ClN ₅ O ₃	<u>64.35</u> 64.61	<u>4.66</u> 4.81	<u>13.71</u> 13.95		187–190 (разл.)	84
5d	$C_{33}H_{30}N_6O_3$	<u>65.68</u> 65.92	<u>5.35</u> 5.53	<u>15.19</u> 15.37		175–178 (разл.)	96
6a	$C_{25}H_{21}N_3O_3$	<u>72.98</u> 72.98	<u>5.14</u> 4.99	<u>10.21</u> 10.21	<u>411.2</u> 411.2	257–258	98
6b	$C_{26}H_{23}N_3O_3$	<u>73.11</u> 73.39	<u>5.30</u> 5.45	<u>10.02</u> 9.87	<u>425.2</u> 425.2	244–246	87
6c	$C_{25}H_{22}N_4O_3$	<u>70.37</u> 70.41	<u>5.16</u> 5.20	<u>13.14</u> 13.13	<u>426.2</u> 426.2	216–217	99
6d	$C_{21}H_{22}N_4O_3$	<u>66.41</u> 66.65	<u>5.85</u> 5.86	<u>14.69</u> 14.80	<u>378.2</u> 378.2	200–201	99
7a	$C_{31}H_{25}N_3O_3$	<u>76.26</u> 76.37	<u>5.05</u> 5.17	<u>8.71</u> 8.62	<u>487.2</u> 487.2	246–247	83
7b	C ₃₁ H ₂₄ ClN ₃ O ₃	<u>71.12</u> 71.33	$\frac{4.56}{4.63}$	$\frac{8.01}{8.05}$	<u>521.2</u> 521.2	256–257	87
7c	$C_{27}H_{24}ClN_3O_3$	<u>68.20</u> 68.42	<u>4.98</u> 5.10	<u>8.80</u> 8.87	<u>473.2</u> 473.2	226–227	89
7d	$C_{31}H_{30}N_4O_3$	<u>74.08</u> 74.11	<u>5.71</u> 5.83	$\frac{10.44}{10.80}$	<u>530.2</u> 530.2	236–237	85

Характеристики синтезированных соединений

* Средняя масса вещества.

Таблица 1

Рис. 1. Пространственная модель молекулы соединения 7с с обозначениями атомов и эллипсоидами тепловых колебаний

Рис. 2. Пространственная модель молекулы соединения **4b** с обозначениями атомов и эллипсоидами тепловых колебаний

Данные ГЖХ/ВЭЖХ и спектры ЯМР ¹Н синтезированных соединений

Соеди- нение	Время задер- жания,	Спектр ЯМР ¹ Н (CDCl ₃)*, б, м. д., (<i>J</i> , Гц)
1	2	3
4 a	_	1.04 (3H, c, CH ₃); 1.27 (3H, c, CH ₃); 3.00 (1H, π , $J = 16.2$, H-7'); 3.22 (1H, π , ${}^{3}J = 9.2$, H-3a); 3.70 (1H, ym. π , $J = 16.0$, H-7'); 6.20 (1H, π , ${}^{3}J = 9.2$, H-6a); 7.50–7.60 (10H, m , C ₆ H ₅); 8.13 (1H, c, H-3')
4b	4.15	1.04 (3H, c, CH ₃); 1.27 (3H, c, CH ₃); 2.51 (3H, c, 3-CH ₃); 2.95 (1H, д, <i>J</i> = 16.6, H-7'); 3.20 (1H, д, <i>J</i> = 9.2, H-3'a); 3.70 (1H, уш. д, <i>J</i> = 16.0, H-7'); 6.18 (1H, д, <i>J</i> = 9.2, H-6a); 7.50–7.60 (10H, м, C ₆ H ₅)
4c	5.49	1.11 (3H, c, CH ₃); 1.30 (3H, c, CH ₃); 2.50 (3H, c, 3'-CH ₃); 3.22 (1H, д, $J = 9.0, H-3a$); 3.80 и 3.85 (2H, 2д, AB-система, $J = 18.0, H-7'$); 6.16 (1H, д, $J = 9.0, H-6a$); 7.27 (1H, д. д. д, $J = 4.8, J = 2.0, J = 1.2, Py$); 7.37–7.55 (5H, м, C ₆ H ₅); 7.87 (1H, д. д. д, $J = 8.4, J = 7.4, J = 1.8, Py$); 8.02 (1H, д, $J = 8.2, Py$); 8.48 (1H, д. д. д, $J = 5.0, J = 1.8, J = 1.0, Py$)
4d	_	1.02 (3H, c, CH ₃); 1.20 (3H, c, CH ₃); 1.27 (3H, τ , $J = 7.2$, CH ₂ CH ₃); 2.97 (1H, π , $J = 17.0$, H-7'); 3.05 (1H, π , $J = 9.0$, H-3a); 3.57–3.68 (3H, μ , H-7', CH ₂ CH ₃); 5.98 (1H, π , $J = 9.0$, H-6a); 7.47–7.57 (5H, μ , C ₆ H ₅); 8.10 (1H, c, H-3')
4e	5.31	1.11–1.15 (6H, уш. с, CH ₃); 1.24 (3H, т, $J = 7.0$, CH ₂ CH ₃); 2.47 (3H, с, CH ₃); 3.06 (1H, д, $J = 9.0$, H-3a); 3.63 (2H, кв, $J = 7.0$, CH ₂ CH ₃); 3.70, 3.90 (2H, 2д, AB-система, $J = 18.0$, H-7'); 5.93 (1H, д, $J = 9.0$, H-6a); 7.28 (1H, д. т, $J = 5.6$, $J = 1.5$, Py); 7.86 (1H, д. т, $J = 8.2$, $J = 2.0$, Py); 8.00 (1H, д, $J = 8.4$, Py); 8.51 (1H, д. д. д, $J = 5.2$, $J = 1.5$, $J = 0.6$, Py)
4f	4.62	1.01 (3H, c, CH ₃); 1.21 (3H, c, CH ₃); 1.27 (3H, т, <i>J</i> = 7.2, CH ₂ –C <u>H₃</u>); 2.47 (3H, c, 3'-CH ₃); 2.93 (1H, д, <i>J</i> = 16.6, H-7'); 3.03 (1H, д, <i>J</i> = 9.0, H-3a); 3.54–3.68 (3H, м, C <u>H₂</u> CH ₃ , H-7'); 5.92 (1H, д, <i>J</i> = 9.0, H-6a); 7.54–7.94 (5H, м, C ₆ H ₅)
5a	5.22	1.21 (3H, уш. с, CH ₃); 1.31 (3H, с, CH ₃); 3.10 (1H, д, <i>J</i> = 16.0, H-7'); 3.29 (1H, д, <i>J</i> = 9.2, H-3a); 3.56 (1H, д, <i>J</i> = 16.0, H-7'); 6.14 (1H, д, <i>J</i> = 9.2, H-6a); 7.26–7.38 (15H, м, C ₆ H ₅)
5b	5.84	1.05 (3H, уш. с, CH ₃); 1.30 (3H, уш. с, CH ₃); 3.19 (2H, уш. с, H-7'); 3.70 (1H, д, <i>J</i> = 8.2, H-3a); 6.46 (1H, д, <i>J</i> = 8.2, H-6a); 7.09 (2H, м, C ₆ H ₄); 7.22–7.33 (4H, м, C ₆ H ₅ , C ₆ H ₄); 7.41–7.44 (8H, м, C ₆ H ₅)
5c	8.18	1.11 (3H, т, $J = 7.2$, CH ₂ CH ₃); 1.20 (6H, уш. с, CH ₃); 3.05 (1H, д, $J = 16.2$, H-7'); 3.14 (1H, д, $J = 9.0$, H-3a); 3.35–3.44 (1H, уш. с, H-7'); 3.52 (2H, кв, $J = 7.2$, CH ₂ CH ₃); 5.92 (1H, д, $J = 9.0$, H-6a); 7.17–7.27 (6H, м, C ₆ H ₅ , C ₆ H ₄); 7.33–7.38 (3H, м, C ₆ H ₄)
5d	6.94	1.17 (3H, уш. с, CH ₃); 1.32 (3H, уш. с, CH ₃); 2.97 (6H, с, N(CH ₃) ₂); 3.05 (1H, д, $J = 16.2$, H-7'); 3.26 (1H, д, $J = 9.2$, H-3a); 3.56 (1H, уш. с, H-7'); 6.13 (1H, д, $J = 9.2$, H-6a); 6.53 (2H, д, $J = 9.0$, C ₆ H ₄); 7.16 (2H, д, $J = 9.0$, C ₆ H ₄); 7.34–7.39 (10H, м, C ₆ H ₅)
6a	16.04	1.11 (6H, с, 2CH ₃); 3.00 (4H, с, H-7',3а,6а); 7.34–7.58 (10H, м, C ₆ H ₅); 8.20 (1H, с, H-3')
6b	15.11	1.20 (6H, c, CH ₃); 2.48 (3H, c, CH ₃); 2.97 (4H, c, H-7',3a,6a); 7.34– 7.52 (10H, м, C ₆ H ₅)

Окончание таблицы 2

1	2	3
6c	16.03	1.18 (6H, c, CH ₃); 2.48 (3H, c, 3'-CH ₃); 2.98 (2H, c, H-7'); 3.51 (2H, c,
6d	7.41	H-3a,6a); 7.25 (1H, д. д. д. $J = 7.2$, $J = 4.8$, $J = 1.2$, Py); 7.32–7.52 (5H, м, C ₆ H ₅); 7.85 (1H, д. д. $д$, $J = 8.4$, $J = 7.4$, $J = 1.8$, Py); 7.97 (1H, д. т. $J = 8.4$, $J = 1.0$, Py); 8.45 (1H, д. $д$. d , $J = 5.0$, $J = 1.8$, $J = 1.0$, Py) 1.11 (6H, c, CH ₃); 1.15 (3H, т. ${}^{3}J = 7.4$, CH ₂ CH ₃); 2.43 (2H, c, 3'-CH ₃); 2.78 (2H, c, H-7'); 3.45 (2H, c, H-3a,6a); 3.48 (2H, кв, $J = 7.4$, CH ₂ CH ₃); 7.23 (1H, d . d . d , $J = 8.6$, $J = 7.0$, $J = 2.0$, Py); 7.84 (1H, d . d . d , $J = 7.9$, $J = 7.8$, $J = 2.0$, Py); 7.96 (1H, d . τ , $J = 8.4$, $J = 1.0$, Py); 8.45 (1H, d . d . d , $J = 5.0$, $J = 1.8$, $J = 1.0$, Py); 8.45 (1H, d . d . d , $J = 7.9$, $J = 7.8$, $J = 2.0$, Py); 7.96 (1H, d . d . τ , $J = 8.4$, $J = 1.0$, Py); 8.45 (1H, d . d . d , d , d = 5.0, J = 1.8, J = 1.0, Py);
7a	24.73	1.18 (6H, c, CH ₃); 2.99 (2H, c, H-7'); 3.02 (2H, c, H-3a,6a); 7.13–7.37 (15H, M, 3C ₆ H ₅)
7b	30.88	1.19 (6H, c, CH ₃); 3.00 (2H, c, H-7'); 3.02 (2H, c, H-3a,6a); 7.08–7.23 (8H, м, C ₆ H ₅ , C ₆ H ₄); 7.33–7.40 (6H, м, C ₆ H ₅ , C ₆ H ₄)
7c	13.58	0.97 (3H, т, <i>J</i> = 7.2, CH ₂ C <u>H₃</u>); 1.12 (6H, с, CH ₃); 2.81 (2H, с, H-7'); 2.96 (2H, с, H-3a,6a); 3.36 (2H, кв, <i>J</i> = 7.2, C <u>H</u> ₂ CH ₃); 7.12–7.25 (6H, м, C ₆ H ₅ , C ₆ H ₄); 7.32–7.36 (3H, м, C ₆ H ₅)
7d	50.21	1.17 (6H, c, CH ₃); 2.96 (6H, c, N(CH ₃) ₂); 2.98 (2H, c, H-7'); 3.00 (2H, c, H-3a,6a); 6.45 (2H, д, $J = 9.0$, C ₆ H ₄); 7.02 (2H, д, $J = 8.8$, C ₆ H ₄); 7.24–7.38 (10H, м, C ₆ H ₅)

* Спектры ЯМР ¹Н соединения **5b** снимали в ДМСО-d₆.

В спектрах ЯМР ¹Н спиросоединений **4** и **5** сигналы протонов группы 7'-CH₂ имеют вид двух дублетов с J = 16 Гц, а сигналы H-3a и H-6a – двух дублетов с J = 9 Гц, свидетельствующие об их *цис*-расположении. В спектрах спиросоединений **6** и **7** присутствуют один двухпротонный синглетный сигнал группы 7'-CH₂ и также синглетный сигнал протонов в положениях 3a и 6a. Протоны всех остальных структурных фрагментов соединений **4**–7 обнаруживаются в ожидаемых областях спектров.

Шестичленный цикл индазольной системы в молекуле 7с имеет пространственную форму, близкую к *твист*-конформации, а в молекуле соединения 4b – конформацию *конверта*: выход атома C(6) из плоскости атомов C(4), C(5), C(7), C(8) и C(9) составляет 0.592(4) Å. Двугранный угол между плоскостями циклопропанового и пиррольного циклов в молекуле соединения 7с равен 112.3(9)°. В молекуле соединения 4b двугранный угол между пиррольным и пиразольным циклами составляет 124.8(5)°. Основные длины связей в гетероциклах соединений 7с и 4b приведены в табл. 3. В кристалле молекулы соединений 7с и 4b упаковываются на расстояниях, составляющих не менее суммы ван-дер-ваальсовых радиусов контактирующих атомов. К сожалению, невысокое качество кристаллов 7с не позволяет провести детальный сравнительный анализ геометрии молекул соединений 7с и 4b.

По результатам рентгеноструктурного анализа можно сделать вывод о *син*-расположении малеинимидного фрагмента по отношению к кетогруппе в переходном состоянии биполярного циклоприсоединения. *анти*-Расположение будет маловероятно из-за значительных стерических препятствий, возникающих при взаимодействии диполярофила с аксиальной метильной группой (рис. 3).

Таблица З

Связь	l, Å	Связь	l, Å	
Соедине	ние 7 с	Соединение 4b		
N(1)-N(2)	1.39(1)	N(1)-N(2)	1.385(4)	
N(1)-C(8)	1.33(1)	N(1)-C(8)	1.348(4)	
N(2)-C(3)	1.34(1)	N(2)-C(3)	1.317(4)	
C(3)-C(9)	1.43(2)	C(3)-C(9)	1.424(4)	
C(4)-C(9)	1.47(2)	C(4)-C(9)	1.440(4)	
C(4) - C(5)	1.48(1)	C(4)-C(5)	1.560(4)	
C(5)-C(6)	1.55(1)	C(5)-C(6)	1.549(4)	
C(6)-C(7)	1.58(2)	C(6)-C(7)	1.544(4)	
C(7)-C(8)	1.45(2)	C(7)-C(8)	1.490(4)	
C(8)-C(9)	1.43(2)	C(8)-C(9)	1.378(4)	
C(5)-C(24)	1.56(2)	C(5)-N(18)	1.515(5)	
C(5)-C(28)	1.49(1)	C(5)-C(32)	1.546(4)	
C(24)-C(25)	1.51(2)	N(18)-N(19)	1.243(4)	
C(24)-C(28)	1.50(1)	N(19)-C(20)	1.485(5)	
C(25)-N(26)	1.33(2)	C(20)-C(21)	1.524(5)	
N(26)-C(27)	1.38(2)	C(20)-C(32)	1.512(5)	
C(27)-C(28)	1.47(2)	C(21)-N(23)	1.395(5)	
/	. ,	N(23)-C(30)	1.407(4)	
		C(30)-C(32)	1.525(5)	

Основные длины связей (1) в гетероциклах соединений 7с и 4b

Таблица 4

Кристаллографические данные для соединений 7с и 4b

Характеристика	Структура 7с	Структура 4b
Брутто-формула	C ₂₇ H ₂₄ ClN ₃ O ₃	C ₂₆ H ₂₃ N ₅ O ₃
Молекулярная масса, M_r^*	473.94	453.49
Размер кристаллов, мм	$0.08\times0.17\times0.29$	$0.21\times0.25\times0.33$
Кристаллическая сингония	Ромбическая	Ромбическая
Пространственная группа	$P2_1ca$	$Pc2_1b$
Параметры элементарной ячейки		
a, Å	9.952(1)	10.3658(4)
b, Å	13.161(1)	12.2077(5)
<i>c</i> , Å	18.094(2)	17.5380(5)
<i>V</i> , Å ³	2369.9(9)	2219.3(1)
Число молекул в элементарной ячейке, Z	4	4
Плотность кристаллов, d , г/см ³	1.328	1.357
Коэффициент поглощения, µ, мм ⁻¹	0.196	0.092
Число		
независимых рефлексов	2863	2653
рефлексов с $I > 2\sigma(I)$	1552	1936
уточняемых параметров	297	307
Окончательный фактор расходимости, R	0.098	0.047
Используемые программы	SIR97 [30], SHELXL97 [31]	SIR97 [30], SHELXL97 [31]

* Точная масса молекулы вещества.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н регистрировали на спектрометре Varian Mercury BB (200 МГц), внутренний стандарт ТМС. ВЭЖХ проводили на приборе Agilent Technologies 1200 series на колонке ZORBAX Eclipse XDB-C18 Rapid Resolution HT (4.6 × 50 мм; 1.8 мкм). Скорость потока 2 мл/мин. Градиент A:B = 90%:10% $\rightarrow B$ (100%) 10 мин, 3 мин B (100%). А = 95% по объему водного раствора 20 ммоль AcONH₄ и 5% по объему ацетонитрила; B = ацетонитрил. ГЖХ проводили на колонке HP-5; фенилметилсилоксан 5% (Agilent 19091 J–433), толщина слоя 0.25 мкм. Газ-носитель гелий, скорость потока 1 мл/мин. Режим температур: 1 мин – 200 °С, повышение 50 °С/мин до 310 °С; 310 °С – 50 мин.

1,5'-Дифенил- (4а), 3-метил-1,5'-дифенил- (4b), 3-метил-1-(2-пиридил)-5'-этил- (4e) и 3-метил-1-фенил-5'-этил-6,6-диметил-4,4',6'-триоксо-4,5,6,7,3',3'а,4',5',6',6'а-декагидроспиро[индазол-5,3'-пирроло[3,4-с]пиразол] (4f) (общая методика). Раствор 1 ммоль соответствующего диазоиндазола 1 и 1 ммоль замещенного малеинимида 3 в 5–7 мл CH₂Cl₂ выдерживают 6–7 сут при температуре 20 °C. Образовавшийся осадок продукта 4 отфильтровывают, промывают на фильтре небольшими порциями холодного CH₂Cl₂. Из фильтрата дополнительно осаждают гексаном продукт 4. Суммарное количество соединения 4 перекристаллизовывают, растворяя его при кипячении в CH₂Cl₂ и добавляя гексан до начала кристаллизации.

2,3,5'-Трифенил- (5а), 2,5'-дифенил-3-(4-хлорфенил)- (5b), 2-фенил-3-(4-хлорфенил)-5'-этил- (5c), 3-(4-диметиламинофенил)-2,5'-дифенил-6,6-диметил-4,4',6'-триоксо-4,5,6,7,3',3'а,4',5',6',6'а-декагидроспиро[индазол-5,3'-пирроло-[3,4-*c*]пиразол] (5d) получают аналогично соединениям 4а-f из диазоиндазолов 2 и соответствующего N-замещенного малеинимида 3.

3,1'-Дифенил- (6а), З'-метил-3,1'-дифенил- (6b), З'-метил-1'-(2-пиридил)-3фенил- (6с) и З'-метил-1'-(2-пиридил)-3-этил-6',6'-диметил-2,4,4'-триоксо-4',5',6',7'-тетрагидро-1'Н-спиро[З-азабицикло(3.1.0)гексан-6,5'-индазол] (6d) (общая методика). Раствор соединения 4 в толуоле или анизоле кипятят 1–2 ч до прекращения выделения азота. Продукт 6 осаждают добавлением к охлажденному раствору избытка гексана и перекристаллизовывают из этанола.

3,2',3'-Трифенил- (7а), 3,2'-дифенил-3'-(4-хлорфенил)- (7b), 3'-(4-хлорфенил)-2'-фенил-3-этил- (7c) и 3'-(4-диметиламинофенил)-3,2'-дифенил-6',6'-диметил-2,4,4'-триоксо-4',5',6',7'-тетрагидро-1'Н-спиро[3-азабицикло(3.1.0)гексан-6,5'индазол] (7d) получают аналогично спиросоединениям 6 из соединений 5а-d. Перекристаллизовывают из этанола.

Рентгеноструктурное исследование соединений 7с и 4b. Монокристаллы соединений 7с и 4b выращены из этанола и 50% этанола соответственно. Для начала кристаллизации в раствор добавляли мелкие кристаллы 4b, полученные путем быстрой кристаллизации в CH₂Cl₂. Анализ проводили при комнатной температуре на автоматическом дифрактометре "Nonius KappaCCD" до $2\theta_{max} = 55^{\circ}$ ($\lambda_{Mo} = 0.71073$ Å). Основные кристаллических структур приведены в табл. 4.

СПИСОК ЛИТЕРАТУРЫ

- 1. L. D. Shirtcliff, J. Rivers, M. M. Haley, J. Org. Chem., 71, 6619 (2006).
- 2. A. Correa, I. Tellitu, E. Domínguez, R. SanMartin, J. Org. Chem., 71, 3501 (2006).
- 3. В. А. Горпинченко, Д. В. Петров, Л. В. Спирихин, В. А. Докичев, Ю. В. Томилов, *ЖОрХ*, **42**, 1718 (2006).
- 4. А. М. Старосотников, А. В. Лобач, В. М. Виноградов, С. А. Шевелев, *Изв. АН*, *Сер. хим.*, 1686 (2003).
- J.-Ch. Lien, F.-Yu. Lee, L.-J. Huang, S. L. Pan, J.-H. Guh, C.-M. Teng, S.-C. Kuo, J. Med. Chem., 45, 4947 (2002).

- 6. D. B. Kimball, R. Herges, M. M. Haley, J. Am. Chem. Soc., 124, 1572 (2002).
- 7. В. М. Любчанская, Л. М. Алексеева, С. А. Савина, В. Г. Граник, *XГС*, 1482 (2000). [*Chem. Heterocycl. Comp.*, **36**, 1276 (2000)].
- 8. J. Zadikovicz, P. G. Potvin, J. Heterocycl. Chem., 36, 623 (1999).
- 9. G. A. Nishiguchi, A. L. Rodriguez, J. A. Katzenellenbogen, *Bioorg. Med. Chem. Lett.*, **12**, 947 (2002).
- R. R. Wilkening, R. W. Ratcliffe, A. K. Fried, D. Meng, W. Sun, L. Colwell, S. Lambert, M. Greenlee, S. Nilsson, A. Thorsell, M. Mojena, C. Tudela, K. Frisch, W. Chan, E. T. Birzin, S. P. Rohrer, M. L. Hammond, *Bioorg. Med. Chem. Lett.*, 16, 3896 (2006).
- K. Y. Avenell, I. Boyfield, M. S. Hadley, Ch. N. Johnson, D. J. Nash, G. J. Riley, G. Stemp, *Bioorg. Med. Chem. Lett.*, 9, 2715 (1999).
- 12. S. Löber, H. Hübner, P. Gimeiner, Bioorg. Med. Chem. Lett., 12, 2377 (2002).
- K. Wilcoxen, Ch. O. Huang, J. R. McCarty, D. E. Grigoriadis, Ch. Chen, *Bioorg. Med. Chem. Lett.*, 13, 3367 (2003).
- V. Colotta, D. Catarzi, F. Varano, L. Cecchi, G. Filacchioni, C. Martini, L. Trincavelli, A. Lucacchini, J. Med. Chem., 43, 3118 (2000).
- 15. T. Mimura, N. Kato, T. Sugaya, M. Ikuta, S. Kato, Y. Kuge, S. Tomioka, M. Kasai, *Synthesis*, 947 (1999).
- 16. E.-S. A. M. Badawey, I. M. El-Ashmawey, Eur. J. Med. Chem., 33, 349 (1998).
- 17. А. Г. Голиков, С. В. Райкова, А. А. Бугаев, А. П. Кривенько, Г. М. Шуб, *Хим.-фарм. журн.*, **39**, 22 (2005).
- 18. R. F. Kaltenbach, R. M. Klabe, B. C. Cordova, S. P. Seitz, *Bioorg. Med. Chem. Lett.*, 9, 2259 (1999).
- J. Corbera, D. Vaño, D. Martínez, J. M. Vela, D. Zamanilo, A. Dordal, F. Andreu, E. Hernandez, R. Perez, M. Escriche, L. Salgado, S. Yeste, M. T. Serafini, R. Pascual, J. Alegre, M. C. Calvet, N. Cano, M. Carro, H. Buschmann, J. Holenz, *ChemMedChem.*, 1, 140 (2006).
- 20. J. Zadykowicz, P. G. Potvin, J. Org. Chem., 63, 235 (1998).
- 21. И. А. Стракова, А. Я. Страков, М. В. Петрова, Л. Г. Делятицкая, *XГС*, 533 (2000). [*Chem. Heterocycl. Chem.*, **36**, 459 (2000)].
- 22. И. Стракова, А. Страков, М. Петрова, *XIC*, 740 (2005). [*Chem. Heterocycl. Comp.*, **41**, 637 (2005)].
- 23. И. Стракова, М. Петрова, А. Страков, Latv. ķīmijas žurn., 387 (2005).
- 24. И. А. Стракова, А. Я. Страков, М. В. Петрова, Latv. ķīmijas žurn., 65 (2003).
- 25. И. Стракова, А. Страков, М. Петрова, С. Беляков, *XГС*, 1784 (2007). [*Chem. Heterocycl. Chem.*, **43**, 1512 (2007)].
- 26. И. А. Стракова, А. Я. Страков, М. В. Петрова, *XTC*, 351 (1995). [*Chem. Heterocycl. Comp.*, **31**, 303 (1995)].
- 27. И. Стракова, А. Страков, М. Петрова, *XГС*, 1829 (2005). [*Chem. Heterocycl. Comp.*, **41**, 1507 (2005)].
- 28. R. Huisgen, Angew. Chem., 75, 604 (1963).
- 29. R. Huisgen, Chim. Acta, 50, 2421 (1967).
- A. Altomare, M. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. Moliterni. & Spagna R, *J. Appl. Crystallogr.*, 32, 115 (1999).
- 31. G. M. Sheldrick, SHELXL97, Program for the Refinement of Crystal Structures, Univ. of Göttingen, Germany (1997).

Рижский технический университет, Рига LV-1048, Латвия e-mail: strakovs@latnet.lv ^aЛатвийский институт органического синт Поступило 04.01.2008 После доработки 14.05.2008

^аЛатвийский институт органического синтеза, Рига LV-1006, Латвия e-mail: serg@osi lv