Посвящается академику Б. А. Трофимову в связи с его 70-летием

## И. К. Петрушенко, К. Б. Петрушенко\*, В. И. Смирнов, Е. Ю. Шмидт, А. И. Михалева

## ДЕПРОТОНИРОВАНИЕ КОРОТКОЖИВУЩИХ КАТИОН-РАДИКАЛОВ ПИРРОЛИЛБЕНЗОЛОВ

Методом наносекундного лазерного фотолиза изучена реакция депротонирования катион-радикалов 4-(1-винил-2-пирролил)-1-(2-пирролил) бензола. Определены бимолекулярные константы скорости переноса протона к гетероциклическим основаниям. Проведен анализ выходов конечных продуктов катионрадикальной реакции 4-(1-винил-2-пирролил)-1-(2-пирролил)бензола в присутствии и отсутствие оснований. Сопоставление результатов импульсного и стационарного фотолиза показало, что ингибирование катион-радикальной реакции основаниями происходит на стадии образования катион-радикалов.

**Ключевые слова**: 4-(1-винил-2-пирролил)-1-(2-пирролил)бензол, катионради- кал, депротонирование, наносекундный лазерный фотолиз.

В литературе отмечается, что при электрополимеризации пирролов в присутствии малых количеств воды или оснований полимеры имеют более высокую проводимость, чем полученные в сухом ацетонитриле. Причину этого явления связывают с увеличением кислотности среды на стадии ароматизации дигидродимеров дикатионов, образующихся в результате спаривания катион-радикалов (КР). В кислых условиях пиррол протонируется и затем может реагировать с исходным мономером по положениям 2 или 3, давая дефекты в виде несопряженных олигомеров. Для предотвращения образования таких дефектов необходимо как можно быстрее депротонировать дикатионы и удалять образующиеся протоны [1, 2]. Вместе с тем введение оснований может полностью ингибировать процесс полимеризации из-за депротонирования исходных катион-радикалов. Схожие проблемы могут возникать и в процессе образования полисопряженных систем на основе дипирролилбензолов при их химическом, электрохимическом или фотохимическом окислении.

В настоящей работе на примере 4-(1-винил-2-пирролил)-1-(2-пирролил)бензола (1) методом наносекундного лазерного фотолиза (НЛФ) изучено депротонирование КР молекулы 1 (1<sup>+•</sup>) рядом гетероциклических оснований (**B**) в среде ацетонитрила.



705

В качестве окислителя применяли CHCl<sub>3</sub>. Как основания использовали азолы **B** (в скобках приведены значения  $pK_{BH}^+$  по данным [3]): 4-бромпиразол (6.3), индазол (7.1), пиразол (8.8), 3-метилпиразол (9.8), 3,5-диметилпиразол (10.9), бензимидазол (12.7), 2-метилбензимидазол (13.6), имидазол (14.6) и 2-метилимидазол (15.8). Реакции проводили в среде MeCN.

КР 1 получали фотохимически, методом НЛФ по схеме:

|                                                                                                |                                                    | Схема 1 |
|------------------------------------------------------------------------------------------------|----------------------------------------------------|---------|
| $1 + hv_a \rightarrow {}^11*,$                                                                 | поглощение света, $I_{\rm abs}$                    | 1.1     |
| $^{1}1^{*} \rightarrow 1$ ,                                                                    | внутренняя конверсия, $k_{\rm ic}$                 | 1.2     |
| $^{1}\mathbf{1^{*}} \rightarrow 1 + h\mathbf{v}_{\mathrm{f}},$                                 | флуоресценция, $k_{\rm rad}$                       | 1.3     |
| $^{1}1^{\star} \rightarrow ^{3}1,$                                                             | интеркомбинационная<br>конверсия, k <sub>isc</sub> | 1.4     |
| $^{1}1^{*} + \mathrm{R-Cl} \rightarrow 1^{+\bullet} + \mathbf{R}^{\bullet} + \mathbf{Cl}^{-},$ | перенос электрона, $k_q$                           | 1.5     |
| $1^{+\bullet} + \mathbf{B} \to 1^{\bullet} + \mathbf{B}\mathbf{H}^{+},$                        | перенос протона, $k_r$                             | 1.6     |
| $1^{+\bullet} \rightarrow \rightarrow P600$                                                    | другие реакции, $k_{\rm p}$                        | 1.7     |

Выбор оснований диктовался:

1. Достаточно широким диапазоном значений  $pK_{BH}^{+}$  при относительной однородности гетероциклического ряда;

2. Отсутствием поглощения на длине волны лазера ( $\lambda_{ex} = 337.1$  нм), что давало возможность возбуждать только исследуемое вещество;

3. Более высоким положением уровней энергии низших возбужденных синглетных и триплетных состояний оснований В относительно уровней энергии соответствующих состояний соединения 1. Такое относительное расположение уровней энергии делает маловероятным тушение электроновозбужденного состояния соединения 1 по механизму переноса энергии;

4. Более высокими, чем у соединения 1, значениями потенциалов ионизации молекул **B**. В связи с этим, перенос электрона от используемых гетероциклических оснований к КР 1:  $1^{+\bullet} + B \rightarrow 1 + BH^{+\bullet}$ , является термодинамически не выгодным.

Формально-кинетический анализ схемы 1 для случая нестационарного возбуждения при экспериментальных условиях  $k_{\Sigma} > k_L$  и в предположении, что концентрация соединения **1** не меняется и катион-радикалы расходуются только по реакции 1.6, приводит к следующему выражению для зависимости концентрации катион-радикалов от времени:

$$[\mathbf{1}^+](t) = \frac{\alpha k_q [\mathrm{R-Cl}]}{k_{\Sigma} k_L} \cdot [\mathbf{1}](o) [\exp(-k_r t) - \exp(-k_L t)],$$

где:  $k_{\Sigma} = k_0 + k_q$  [R–Cl],  $c^{-1}$ ;  $k_L = 10^8 c^{-1}$  – обратная величина длительности лазерного импульса на высоте 1/e;  $k_r = k_p + k_H^+$ [**B**];  $\alpha$  – постоянная, характеризующая поглощательную способность вещества, геометрию облучения образца и мощность лазера,  $c^{-1}$ .

Проведенный анализ показывает, что время введения катион-радикалов в реакцию описывается нарастающим участком кинетической кривой и определяется длительностью лазерного импульса, т. е. может рассматриваться как "мгновенное". Спад кинетической кривой определяет наблюдаемую псевдомономолекулярную константу скорости переноса протона  $k_r$  (1.6).

Пример "тушения" КР 1 имидазолом по реакции 1.6 представлен на рис. 1. Значения  $k_r$  для всех оснований определяли из кинетики затухания оптической плотности в максимуме поглощения КР 1 при нескольких концентрациях основания (рис. 1). Для того чтобы обеспечить псевдомономолекулярный характер реакции, минимальная концентрация основания выбиралась не менее, чем с восьмикратным избытком над концентрацией образовавшегося при фотолизе КР 1. Бимолекулярные константы скорости  $k_{\rm H}^+$  были определены для каждого основания из тангенса углов линейных зависимостей  $k_r$  от концентрации оснований **В**.



Рис. 1. Лазерный фотолиз системы соединение **1** + имидазол в среде MeCN + CHCl<sub>3</sub> (10% об.): *a* – изменение оптической плотности в максимуме поглощения КР **1**<sup>+•</sup> от времени при концентрациях имидазола: I - 0;  $2 - 8 \cdot 10^{-4}$ ;  $3 - 3 \cdot 10^{-3}$ ;  $4 - 10^{-2}$  моль/л; b – спектр поглощения, полученный: I – непосредственно после возбуждения (КР **1**), 2 –спустя 2.5 мкс (нейтральный радикал **1**). Концентрация имидазола –  $1.5 \cdot 10^{-3}$  моль/л



*Рис.* 2. Зависимость бимолекулярной константы скорости переноса протона в реакции  $\mathbf{1}^{+\bullet} + \mathbf{B}$  в MeCN от р $K_{\rm BH}^{+\bullet}$  оснований: *I*– пиразол, *2*– 3-метилпиразол, *3*– 3,5-диметилпиразол, *4*– бензимидазол, *5*– 2-метилбензимидазол, *6*– имидазол, *7*– 2-метилимидазол. y = 0.6443x - 0.6916;  $\mathbf{R}^2 = 0.9873$ 

Наблюдается линейная зависимость между log  $k_{\rm H}^+$  и  $pK_{\rm BH}^+$  оснований (рис. 2). При  $pK_{\rm BH}^+ = 15.8$  (2-метилимидазол) значение  $k_{\rm H}^+$  становится близким к диффузионному пределу, что, согласно [3], позволяет оценить  $pK_{\rm I}^{+\bullet}$  в MeCN как  $\geq 16$ .

Ранее [4] нами было обнаружено, что при стационаром фотолизе дипирролилбензолов в присутствии хлорметанов образуются окрашенные продукты олигомерной природы с  $\lambda_{max} \approx 610$  нм (в дальнейшем продукт **Р600**), генетически связанные с катион-радикалами (схема 1, 1.7). Специально природа олигомеров в работе [4] не изучалась. Отметим, что очень близкую форму полосы поглощения в видимой области ( $\lambda_{max} = 680$  нм) имеет дикатион 2,2':5',2"'-кватерпиррола, полученный в результате спаривания по  $\alpha$ -положениям двух катион-радикалов 2,2'-бипиррола (CR–CR-механизм) при электрохимическом и фотохимическом (в присутствии CCl<sub>4</sub>) окислении 2,2'-бипиррола в MeCN [2]. При фотохимической полимеризации 2,2'-битиофена и 2,2':5',2"'-тертиофена в среде MeCN в присутствии CCl<sub>4</sub> как электроноакцептора также зарегистрировано образование окрашенных продуктов реакции, которые в соответствии с ЯМР исследованиями рассматривались как частично протонированные по  $\alpha$ -положениям наноразмерные  $\alpha$ -связанные олигомеры [5].

Родственный характер обсуждаемых гетероциклических соединений и близкие фотохимические условия экспериментов позволяют нам с большой долей вероятности полагать, что продукт **Р600** имеет структуру дикатиона дигидродимера 4-(1-винил-2-пирролил)-1-(2-пирролил)бензола ( $2^{2^+}$ ).





*Рис. 3.* Оптимизированная геометрия (UB3LYP/6-31+ G (d)) и распределение спиновой плотности (изоспин 0.005) КР 1.

Возможность образования дигидродимера  $2^{2+}$  при димеризации  $1^{++}$  по CR–CR-механизму подтверждается высокими значениями рассчитанных спиновых плотностей на атомах  $\alpha$ -углерода пиррольных циклов (0.237 для незамещенного пиррольного цикла и 0.243 для пиррольного цикла с N-винильным заместителем) (рис. 3).

Эксперименты, которые, с одной стороны, подтверждают связь катионрадикалов с продуктом **P600**, и, с другой стороны, демонстрируют ингибирование катион-радикальных реакций соединения **1** основаниями, представлены на рис. 4.



Рис. 4. Зависимость спектра поглощения системы соединение 1 (5· 10<sup>-3</sup> моль/л) + CHCl<sub>3</sub> (10% об.) в MeCN от времени облучения: *а* − в отсутствие имидазола (основание добавлялось после окончания фотолиза); *b* − имидазол (3·10<sup>-3</sup>) вводился непосредственно перед фотолизом. Время облучения растворов – 115 с

В первом эксперименте стационарное фотохимическое окисление 1 CHCl<sub>3</sub> проводилось в отсутствие основания. Титрование полученного после окончания фотолиза раствора основанием приводит к полному исчезновению полосы поглощения продукта **Р600** и появлению новой полосы поглощения с максимумом при 525 нм (**Р500**, рис. 4*a*).

Во втором эксперименте основание вводилось непосредственно перед фотолизом. Присутствие основания в фотолизируемом растворе практически полностью устраняет образование продукта **Р600**, как и в первом случае, однако продукт **Р500** образуется только в следовых количествах (рис. 4*b*).

В обоих случаях растворы имели одинаковые концентрации и облучались один и тот же период времени. Соотношение выходов продукта **Р500** в экспериментах А и В и результаты НЛФ по депротонированию доказывают ингибирование катион-радикальной реакции на стадии образования катион-радикала 1<sup>+•</sup>.

Полученная информация показывает необходимость деликатного подхода к подбору силы и концентрации оснований при проведении катион-радикальных синтезов полисопряженных полимеров и может быть полезна при рассмотрении других пирролсодержащих мономеров.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез соединения 1 по реакции Трофимова описан в работе [4]. МеСN и CHCl<sub>3</sub> фирмы Merck Uvasol (99.9 %) применяли без дополнительной очистки. Электронные спектры поглощения получали на спектрофотометре Perkin–Elmer Lambda 35. Спектрально-кинетические свойства короткоживущих продуктов исследовали на установке лазерного фотолиза (НЛФ) [6]. Возбуждение образцов проводили в кварцевой кювете  $1 \times 1 \text{ см}^2$  N2-лазером АИЛ-3 (энергия в импульсе –  $10^{-3}$  Дж, длительность импульса света на полувысоте – 7 нс). Непосредственно перед экспериментом образцы освобождали от кислорода воздуха пропусканием аргона в течение 20 мин. В качестве источника для стационарного возбуждения использовали ртутную лампу ДРШ-500 со светофильтром, выделяющим свет с  $\lambda_{max}$  313 нм.

Расчет равновесной структуры и спиновой плотности КР-1 проводили методом DFT B3LYP// 6-31 + G(d), входящим в пакет программ GAUSSIAN 2003.

## СПИСОК ЛИТЕРАТУРЫ

- 1. S. Sadki, Phil. Shcottland, N. Brodie, G. Sabourand, Chem. Soc. Rev., 29, 283 (2000).
- 2. L. Guyard, P. Hapiot, P. Neta, J. Phys. Chem., B, 101, 5698 (1997).
- 3. К. Б. Петрушенко, А. И. Вокин, В. К. Турчанинов, С. Е. Коростова, *Изв. АН СССР, Сер. хим.*, 41 (1988).
- И. К. Петрушенко, В. И. Смирнов, К. Б. Петрушенко, Е. Ю. Шмидт, Н. В. Зорина, Ю. Ю. Русаков, А. М. Васильцов, А. И. Михалева, Б. А. Трофимов, *ЖОХ*, 77, 1307 (2007).
- 5. M. Fudjitsuka, T. Sato, H. Segava, T. Shimidzu, Synth. Met., 69, 309 (1995).
- 6. К. Б. Петрушенко, В. К. Турчанинов, А. И. Вокин, Ю. Л. Фролов, *Теор.* эксперим. химия, **17**, 103 (1981).

Иркутский институт химии им. А. Е. Фаворского СО РАН, Иркутск 664033 e-mail:smirnov@irioch.irk.ru Поступило 23.04.2008