И. В. Украинец*, А. А. Ткач, Л. А. Гриневич, А. В. Туров^а, О. В. Бевз

4-ГИДРОКСИХИНОЛОНЫ-2

154*. ПИРИМИДИН-2-ИЛАМИДЫ 1-R-4-ГИДРОКСИ-2-ОКСО-1,2-ДИГИДРОХИНОЛИН-3-КАРБОНОВЫХ КИСЛОТ. СИНТЕЗ, СТРОЕНИЕ, СВОЙСТВА

С целью последующих микробиологических испытаний осуществлен синтез серии пиримидин-2-иламидов 1-R-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты. Установлено, что в ледяной уксусной кислоте полученные соединения бромируются 1 экв. брома в положение 5 пиримидинового ядра. Исключение составляет только 1-аллильное производное, которое в указанных условиях подвергается гетероциклизации в пиримидин-2-иламид 2-бромметил-5-оксо-1,2-дигидро-5H-оксазоло[3,2-*a*]хинолин-4-карбоновой кислоты. Приводятся результаты изучения противотуберкулезной активности синтезированных соединений.

Ключевые слова: 2-аминопиримидин, 1-R-4-гидрокси-2-оксо-1,2-дигидрохинолин- 3-карбоксамиды, бромирование, противотуберкулезная активность, PCA.

Пиримидиновые основания относятся к числу наиболее распространенных в природе гетероциклических систем. Входя в состав нуклеиновых кислот и коферментов, эти соединения принимают непосредственное участие в кодировании и передаче наследственной информации, в обмене углеводов и лецитина, а также во многих других важнейших для животных и растений биохимических процессах [2]. Отсюда и чрезвычайно широкий спектр биологических свойств природных пиримидинов: от витаминов и регуляторов биосинтеза принадлежащих тому или иному живому организму белков до антибиотиков, алкалоидов и одного из самых мощных небелковых нейротоксинов – тетродотоксина [3]. Естественно фармацевтическая химия не могла оставаться в стороне от перечисленных фактов. В результате к сегодняшнему дню на основе пиримидина создано и уже применяется медицинской практикой около 100 синтетических лекарственных препаратов [4]. Большинство из них входят в четыре обширные категории хорошо известных лекарств: барбитураты, сульфаниламиды, антимикробные пиримидин-2,4-диамины и противоопухолевые агенты [3]. Менее представительные, но от этого не менее значимые для

^{*} Сообщение 153 см. [1].

здравоохранения и такие фармакологические группы, как диуретики, антигипертензивные и противогистаминные средства, антиконвульсанты, витамины и другие [3, 4].

Исследования пиримидинов на этом, конечно же, не прекратились и в последнее время появились препараты для лечения рака [5], грибковых поражений у детей [6], болезни Альцгеймера [7], гепатита В [8], СПИДа [9] и других вирусных инфекций [10]. Особенно много публикаций посвящено поиску новых эффективных антимикобактериальных средств [11–16], что объясняется необычайно высоким всплеском заболеваемости туберкулезом, достигшим во многих странах мира масштабов эпидемии. Необходимость в широких исследованиях такого рода диктуется еще и склонностью возбудителя болезни – микобактерий туберкулеза – к активным мутациям, способствующим быстрой выработке резистентности (часто множественной) к известным противотуберкулезным лекарствам.

1–4 a R = H, b R = Me, c R = Et, d R = CH₂CH=CH₂, e R = Pr, f R = Bu, g R = *i*-Bu, h R = C₅H₁₁, i R = *i*- C₅H₁₁, j R = Hex

Таблица 1

Со- ели-	Брутто-	<u>На</u> Выт	айдено, нисленс	<u>⁰⁄₀</u>), ⁰∕₀	т. пл., °С	Выхол	Противотуберку- лезная
не- ние	формула	С	Н	Ν	(ДМФА)	%	активность. Задержка роста <i>M. tuberculosis</i> , %
1a	$C_{14}H_{10}N_4O_3$	<u>59.66</u> 59.57	<u>3.68</u> 3.57	<u>19.76</u> 19.85	332 (с разл.)	85	0
1b	$C_{15}H_{12}N_4O_3$	<u>60.94</u> 60.81	<u>4.20</u> 4.08	<u>19.02</u> 18.91	237–238	83	0
1c	$C_{16}H_{14}N_4O_3$	<u>62.07</u> 61.93	<u>4.65</u> 4.55	<u>18.13</u> 18.05	216–218	90	0
1d	$C_{17}H_{14}N_4O_3$	<u>63.24</u> 63.35	<u>4.31</u> 4.38	<u>17.44</u> 17.38	199–201	86	0
1e	$C_{17}H_{16}N_4O_3$	<u>62.82</u> 62.95	<u>5.08</u> 4.97	<u>17.32</u> 17.27	205–207	82	0
1f	$C_{18}H_{18}N_4O_3$	<u>63.97</u> 63.89	<u>5.45</u> 5.36	<u>16.67</u> 16.56	184–186	85	13
1g	$C_{18}H_{18}N_4O_3$	<u>63.95</u> 63.89	<u>5.30</u> 5.36	<u>16.65</u> 16.56	175–177	89	28
1h	$C_{19}H_{20}N_4O_3$	<u>64.64</u> 64.76	<u>5.66</u> 5.72	<u>15.81</u> 15.90	162–164	81	91
1i	$C_{19}H_{20}N_4O_3$	<u>64.82</u> 64.76	<u>5.79</u> 5.72	<u>15.83</u> 15.90	171–173	83	93
1j	$C_{20}H_{22}N_4O_3$	<u>65.64</u> 65.56	<u>6.12</u> 6.05	<u>15.21</u> 15.29	159–161	80	99
3 a	C ₁₄ H ₉ BrN ₄ O ₃	<u>46.45</u> 46.56	<u>2.58</u> 2.51	<u>15.63</u> 15.51	311 (с разл.)	90	0
3b	$C_{15}H_{11}BrN_4O_3$	$\frac{47.91}{48.02}$	<u>2.88</u> 2.96	<u>15.04</u> 14.93	264–266	84	0
3c	$\mathrm{C_{16}H_{13}BrN_4O_3}$	<u>49.30</u> 49.38	<u>3.45</u> 3.37	<u>14.28</u> 14.39	243–245	86	0
3d	C17H13BrN4O3	<u>50.97</u> 50.89	<u>3.32</u> 3.27	<u>14.04</u> 13.96	231–233	80	0
3e	C17H15BrN4O3	<u>50.56</u> 50.64	<u>3.67</u> 3.75	<u>13.80</u> 13.89	240-242	85	0
3f	$\mathrm{C}_{18}\mathrm{H}_{17}\mathrm{BrN_4O_3}$	<u>51.93</u> 51.81	<u>4.03</u> 4.11	<u>13.32</u> 13.43	232–234	82	0
3g	$\mathrm{C_{18}H_{17}BrN_4O_3}$	<u>51.89</u> 51.81	<u>4.14</u> 4.11	<u>13.48</u> 13.43	244–246	84	0
3h	$C_{19}H_{19}BrN_4O_3$	<u>53.03</u> 52.91	<u>4.53</u> 4.44	<u>13.10</u> 12.99	229–231	80	0
3i	$C_{19}H_{19}BrN_4O_3$	<u>52.88</u> 52.91	<u>4.49</u> 4.44	<u>13.06</u> 12.99	235–237	81	0
3ј	$C_{20}H_{21}BrN_4O_3$	<u>53.87</u> 53.94	<u>4.66</u> 4.75	<u>12.69</u> 12.58	224–226	79	0

Характеристики пиримидин-2-иламидов 1-R-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот 1 и 3

					Спект	J ¹ AMR Iaq	ниримидин I	-2-иламидое	Таблица 2 в 1 и 3
						Хим	ический сдви	п', δ, м. д. (J,	Γu)
Соеди- нение	HO	HN		Хинолоно	вое ядро		нидимидин	овое ядро	
	(1H, c)	(1H, c)	H-5 (1Н, д)	H-7 (1H, T)	H-8 (1Н, д)	H-6 (1H, T)	H-4',6' (2H)	Н-5' (1Н, т)	К
1a	16.32	13.16	8.03 (J = 8.0)	7.74 $(J = 7.6)$	7.58 ($J = 8.4$)	7.49 $(J = 7.5)$	8.73 (д, $J = 4.9$)	7.24 (<i>J</i> = 4.6)	12.00 (1H, c, NH)
1b	16.35	13.14	8.08 (J = 8.0)	7.80 $(J = 7.5)$	7.60 (J = 8.5)	7.42 ($J = 7.5$)	8.72 (π , $J = 5.0$)	7.27 (<i>J</i> = 4.8)	3.66 (3H, ¢, NCH ₃)
1c	16.36	13.21	(J = 8.0)	7.81 $(J = 7.7)$	7.67 ($J = 8.4$)	7.36 ($J = 7.4$)	8.73 (μ , $J = 5.0$)	7.26 (<i>J</i> = 4.7)	4.31 (2H, κ , $J = 7.0$, NCH ₂); 1.23 (3H, τ , $J = 7.0$, CH ₃)
1d	16.44	13.15	8.14 (J = 8.0)	7.80 $(J = 7.8)$	7.56 (J = 8.5)	7.39 (J = 7.5)	8.74 (\pm , $J = 5.0$)	7.30 (<i>J</i> = 4.8)	5.96 (1H, m, C <u>H</u> =CH ₂); 5.15 (1H, <i>A</i> , <i>J</i> = 10.5, NCH ₂ CH=C <u>H</u> -cis); 5.02 (1H, <i>A</i> , <i>J</i> = 17.8, NCH ₂ CH=C <u>H</u> -trans); 4.94 (2H, c, NCH ₂)
le	16.25	13.23	(J = 8.1)	7.85 ($J = 7.7$)	7.68 ($J = 8.6$)	7.43 $(J=7.5)$	8.76 (π , $J = 5.0$)	7.29 (<i>J</i> = 4.8)	4.27 (2H, T, <i>J</i> = 7.3, NCH ₂); 1.69 (2H, m, NCH ₂ C <u>H₂</u>); 1.00 (3H, T, <i>J</i> = 7.2, CH ₃)
If	16.33	13.18	(J = 8.0)	7.81 ($J = 7.6$)	7.64 ($J = 8.5$)	7.42 $(J = 7.5)$	8.75 (μ , $J = 4.9$)	7.28 (<i>J</i> = 4.7)	4.27 (2H, τ , $J = 7.5$, NCH ₂); 1.55 (4H, m, C <u>H₂</u> CH ₃); 0.91 (3H, τ , $J = 7.3$, CH ₃)
1g	16.31	13.22	(J = 8.0)	7.84 ($J = 7.7$)	7.67 (<i>J</i> = 8.4)	7.40 $(J = 7.5)$	8.73 ($\pm, J = 5.0$)	7.30 (<i>J</i> = 4.7)	4.29 (2H, д, <i>J</i> = 7.4, NCH ₂); 2.24 (1H, M, CH); 0.96 (6H, д, <i>J</i> = 6.7, 2CH ₃)
1h	16.26	13.16	(J = 8.0)	7.83 (<i>J</i> = 7.5)	7.66 ($J = 8.4$)	7.40 $(J = 7.4)$	8.74 (π , $J = 5.0$)	7.27 (<i>J</i> = 4.7)	4.28 (2H, τ , $J = 7.4$, NCH ₂); 1.70 (2H, kв, $J = 7.0$, NCH ₂ C <u>H₂</u>); 1.43 (4H, M, (C <u>H₂</u>) ₂ CH ₃); 0.90 (3H, τ , $J = 6.9$, CH ₃)
li	16.37	13.25	8.14 (J = 8.0)	7.83 (<i>J</i> = 7.6)	7.62 ($J = 8.5$)	7.39 (<i>J</i> = 7.6)	8.74 (μ , $J = 4.9$)	7.28 (<i>J</i> = 4.8)	4.28 (2H, τ , $J = 7.7$, NCH ₂); 1.74 (1H, M , CH); 1.50 (2H, κ , $J = 7.6$, NCH ₂ C <u>H₂</u>); 0.97 (6H, μ , $J = 6.6$, 2CH ₃)
722									

IJ	16.30	13.28	(J = 8.0)	7.84 ($J = 7.6$)	7.65 ($J = 8.5$)	7.38 ($J = 7.5$)	8.76 (Д, $J = 4.9$)	7.29 (<i>J</i> = 4.8)	4.26 (2H, т, <i>J</i> = 7.1, NCH ₂); 1.68 (2H, кв, <i>J</i> = 7.0, NCH ₂ C <u>H₂);</u> 1.49–1.27 (6H, м, (С <u>H₂)</u> 3CH ₃); 0.91 (3H, т, <i>J</i> = 6.8, CH ₃)
3a	16.04	13.26	8.03 (<i>J</i> = 8.1)	7.72 $(J = 7.8)$	7.44 ($J = 8.3$)	7.26 ($J = 7.6$)	8.85 c	Ι	11.92 (1H, ¢, NH)
3b	16.23	13.30	(J = 8.0)	7.81 (<i>J</i> = 7.6)	7.69 ($J = 8.4$)	7.37 $(J = 7.5)$	8.90 c	I	3.64 (3H, c, NCH ₃)
3c	16.15	13.34	(J = 8.0)	7.83 $(J = 7.7)$	7.70 (J = 8.6)	7.39 ($J = 7.5$)	8.89 c	I	4.32 (2H, κ , $J = 7.0$, NCH ₂); 1.23 (3H, τ , $J = 6.9$, CH ₃)
3d	16.18	13.29	(J = 8.0)	7.81 $(J = 7.7)$	7.68 ($J = 8.3$)	7.36 (<i>J</i> = 7.5)	8.82 c	I	5.98 (1H, m, C <u>H</u> =CH ₂); 5.14 (1H, <i>π</i> , <i>J</i> = 10.1, NCH ₂ CH=C <u>H</u> - <i>cis</i>); 5.05 (1H, <i>π</i> , <i>J</i> = 17.2, NCH ₂ CH=C <u>H</u> - <i>trans</i>); 4.97 (2H, c, NCH ₂)
3 e	16.29	13.35	8.07 (<i>J</i> = 7.9)	7.80 $(J = 7.6)$	7.66 (J = 8.2)	7.38 (<i>J</i> = 7.6)	8.88 c	I	4.25 (2H, τ, <i>J</i> = 7.1, NCH ₂); 1.66 (2H, м, NCH ₂ C <u>H₂</u>); 0.97 (3H, τ, <i>J</i> = 7.0, CH ₃)
3f	16.32	13.31	(J = 8.0)	7.83 $(J = 7.7)$	7.67 ($J = 8.3$)	7.35 (<i>J</i> = 7.6)	8.86 c	I	4.24 (2H, τ, <i>J</i> = 7.3, NCH ₂); 1.58 (4H, м, C <u>H</u> ₂ CH ₃); 0.98 (3H, τ, <i>J</i> = 7.1, CH ₃)
3g	16.28	13.24	(J = 8.0)	7.78 $(J = 7.6)$	7.71 (<i>J</i> = 8.4)	7.39 ($J = 7.5$)	8.88 c	I	4.26 (2H, μ, <i>J</i> = 7.3, NCH ₂); 2.20 (1H, M, CH); 0.98 (6H, μ, <i>J</i> = 6.7, 2CH ₃)
3h	16.26	13.27	(J = 8.0)	7.82 ($J = 7.6$)	7.70 ($J = 8.3$)	7.40 ($J = 7.4$)	8.85 c	I	4.25 (2H, τ, <i>J</i> = 7.4, NCH ₂); 1.68 (2H, κ _B , <i>J</i> = 6.9, NCH ₂ C <u>H₂</u>); 1.47 (4H, м, (C <u>H₂</u>) ₂ CH ₃); 0.95 (3H, τ, <i>J</i> = 6.9, CH ₃)
3i	16.30	13.30	(J = 8.1)	7.79 $(J = 7.6)$	7.68 ($J = 8.2$)	7.38 $(J = 7.6)$	8.87 c	I	4.30 (2H, τ , $J = 7.5$, NCH ₂); 1.72 (1H, m, CH); 1.53 (2H, κ , $J = 7.4$, NCH ₂ C <u>H₂</u>); 0.99 (6H, μ , $J = 6.8$, 2CH ₃)
3j	16.33	13.32	(J = 8.0)	7.80 $(J = 7.7)$	7.65 ($J = 8.3$)	7.34 $(J = 7.5)$	8.84 c	I	4.28 (2H, τ, <i>J</i> = 7.2, NCH ₂); 1.71 (2H, κ _B , <i>J</i> = 7.1, NCH ₂ C <u>H₂</u>); 1.47–1.28 (6H, м, (C <u>H₂</u>) ₃ CH ₃); 0.98 (3H, τ, <i>J</i> = 6.9, CH ₃)

Нами уже неоднократно отмечалась высокая антимикобактериальная активность амидированных производных 1-R-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот и, в первую очередь, гетариламидов [17, 18]. Данное сообщение является логическим продолжением начатых ранее работ и с учетом приведенных выше аргументов посвящено пиримидин-2-иламидам 1а-ј. Их синтез осуществлен традиционным методом, т. е. реакцией этиловых эфиров 1-R-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот 2а-ј с 2-аминопиримидином в условиях термолиза. Как и в случае с 2-аминопиридином [17], амидирование протекает с достаточно хорошими выходами (табл. 1, спектры ЯМР ¹Н приведены в табл. 2), несмотря на существенное снижение реакционной способности аминного компонента. Следует лишь подчеркнуть, что 2-аминопиримидин при нагревании легко возгоняется, поэтому для предотвращения неоправданных потерь перед сплавлением в реакционную смесь необходимо добавлять небольшое количество высококипящего растворителя (например, ДМФА), тогда как обычно его присутствие хоть и желательно, но не обязательно.

Аналогично получены и 5-бромпиримидин-2-иламиды **За-і** (табл. 1, 2), хотя их синтез (по крайней мере, теоретически) возможен и другим путем бромированием незамещенных аналогов соединений 1а-j. Обоснованием для рассмотрения этого экономически более выгодного уже только за счет отказа от использования дорогостоящего 2-амино-5-бромпиримидина метода служит способность N-арил- и N-гетарилзамещенных 4-гидрокси-2-оксо-1.2-дигидрохинолин-3-карбоксамидов при наличии определенных структурных предпосылок, как правило, легче всего бромироваться именно в амидный фрагмент [19, 20]. Однако исключения из данного правила не так уж и редки. Более того, иногда достигается совершенно непредвиденный результат [20]. Говоря иначе, ответ об истинном поведении того или иного 4-гидроксихинолона-2 в условиях бромирования можно получить только благодаря эксперименту, который и был проведен нами на примере пиримидин-2-иламида 4-гидрокси-2-оксо-1-этил-1,2-дигидрохинолин-3-карбоновой кислоты (1с). Несвойственное другим хинолин-3-карбоксамидам поведение было отмечено сразу же после прибавления брома в раствор амида 1с в ледяной уксусной кислоте вместо обычного практически мгновенного обеспвечивания наблюдается выпадение светло-оранжевого кристаллического осадка. Реакционную смесь разбавили водой, осадок отфильтровали, перекристаллизовали из смеси ДМФА-ацетон и далее для однозначного решения вопроса о том, в каком же именно направлении прошло бромирование, использовали РСА, по данным которого неожиданно оказалось, что исследуемый образец является всего лишь исходным пиримидин-2-иламидом 1с (см. рисунок, табл. 3 и 4).

Бициклический фрагмент, гидроксильная, карбамидная и карбонильная

группы, а также атом C(15) этого соединения лежат в одной плоскости с точностью 0.03 Å, чему способствует образование сильных внутримолекулярных водородных связей O(2)–H(2O)...O(3) (H...O 1.32 Å, O–H...O

158°) и N(2)–H(2N)...O(1) (H...O 1.80 Å, N–H...O 143°). Образование сильных водородных связей приводит также к перераспределению

Строение молекулы пиримидин-2-иламида 1с с нумерацией атомов

электронной плотности в хинолоновом фрагменте, о чем свидетельствует удлинение связей O(1)-C(9) 1.244(2) и O(3)-C(10) 1.251(2) Å по сравнению с их средним значением [21] 1.210 Å, связи C(7)-C₍₈₎ 1.376(2) Å (среднее значение 1.326 Å), а также укорочение связей O(2)-C(7) 1.326(2) (1.362) и C(8)-C(9) 1.449(2) Å (1.455 Å). Пиримидиновый заместитель находится в ар-конформации относительно связи С(8)-С(10) и несколько развернут относительно связи C(10) - N(2)(торсионные углы C(11)-N(2)-C(10)-C(8) 173.9(1)°, C(10)-N(2)-C(11)-N(3) -13.2(2)°), что, вероятно, объясняется отталкиванием между атомом кислорода карбамидной группы и ароматическим циклом (укороченный внутримолекулярный контакт N(3)...O(3) 2.76 Å (сумма ван-дер-ваальсовых радиусов [22] 2.79 Å). Это же отталкивание, по-видимому, обусловливает и удлинение связи N(2)-C(11) 1.399(3) Å по сравнению с ее средним значением 1.380 Å.

Достаточно сильное отталкивание между этильным заместителем при атоме N(1) и хинолоновым фрагментом [укороченные внутримолекулярные контакты H(2)...C(15) 2.53 (2.87), H(2)...H(15a) 2.05 (2.34), H(15a)...C(2) 2.58 (2.87), H(15b)...O(1) 2.28 (2.46) и H(16c)...C(2) 2.85 Å (2.87 Å)] приводит к удлинению связей N(1)–C(9) 1.386(2) и N(1)–C(1) 1.390(2) Å по сравнению с их средними значениями 1.353 и 1.371 Å, соответственно, что наблюдалось и в других ранее изученных соединениях хинолонового ряда. Алкильный заместитель расположен таким образом, что связь C(15)–C(16) практически перпендикулярна плоскости бициклического фрагмента (торсионный угол C(9)–N(1)–C(15)–C(16) 95.5(2)°).

В кристалле молекулы пиримидин-2-иламида 1с образуют два типа слоев. Одни слои параллельны кристаллографической плоскости (1 1 0), а вторые – плоскости (-1 1 1). Молекулы внутри слоя связаны слабой межмолекулярной водородной связью С(12)–H(12)...O(3)' (1–*x*, –*y*, –*z*) H...O 2.43 Å, C–H...O 159°.

Таблица З

Связь	l, Å	Связь	l, Å
N(1)-C(9)	1.386(2)	N(1)–C(1)	1.390(2)
N(1)-C(15)	1.470(2)	N(2)-C(10)	1.348(2)
N(2)–C(11)	1.399(2)	N(3)-C(11)	1.327(2)
N(3)-C(12)	1.332(2)	N(4)-C(11)	1.329(2)
N(4)-C(14)	1.336(2)	O(1)–C(9)	1.244(2)
O(2)–C(7)	1.326(2)	O(3)-C(10)	1.251(2)
C(1)–C(6)	1.399(2)	C(1)–C(2)	1.401(2)
C(2)–C(3)	1.365(2)	C(3)–C(4)	1.383(2)
C(4)–C(5)	1.373(2)	C(5)-C(6)	1.397(2)
C(6)–C(7)	1.443(2)	C(7)–C(8)	1.376(2)
C(8)–C(9)	1.449(2)	C(8)-C(10)	1.470(2)
C(12)–C(13)	1.359(2)	C(13)–C(14)	1.360(2)
C(15)-C(16)	1.505(2)		

Длины связей (*l*) в структуре пиримидин-2-иламида 1с

Таблица 4

Валентные	иглы (φ)	вст	пуктуре	пиримилин-	2-иламила	1c
Dartentinble	(ω)	DUI	pyniype	ппримидии	— поналида	10

Валентный угол	ω, град.	Валентный угол	ω, град.
C(9)-N(1)-C(1)	122.9(1)	C(9)-N(1)-C(15)	117.0(1)
C(1)-N(1)-C(15)	120.0(1)	C(10)-N(2)-C(11)	129.0(1)
C(11)-N(3)-C(12)	115.2(1)	C(11)-N(4)-C(14)	114.6(1)
N(1)-C(1)-C(6)	119.8(1)	N(1)-C(1)-C(2)	121.9(1)
C(6)-C(1)-C(2)	118.3(1)	C(3)-C(2)-C(1)	120.2(2)
C(2)-C(3)-C(4)	121.6(2)	C(5)-C(4)-C(3)	119.2(2)
C(4)-C(5)-C(6)	120.3(2)	C(5)-C(6)-C(1)	120.3(1)
C(5)-C(6)-C(7)	121.1(1)	C(1)-C(6)-C(7)	118.6(1)
O(2)–C(7)–C(8)	122.0(1)	O(2)–C(7)–C(6)	117.1(1)
C(8)-C(7)-C(6)	120.9(1)	C(7)-C(8)-C(9)	120.0(1)
C(7)-C(8)-C(10)	118.0(1)	C(9)-C(8)-C(10)	122.1(1)
O(1)-C(9)-N(1)	118.9(1)	O(1)-C(9)-C(8)	123.4(1)
N(1)-C(9)-C(8)	117.7(1)	O(3)-C(10)-N(2)	122.5(1)
O(3)-C(10)-C(8)	119.9(1)	N(2)-C(10)-C(8)	117.6(1)
N(3)-C(11)-N(4)	127.5(1)	N(3)-C(11)-N(2)	119.3(1)
N(4)-C(11)-N(2)	113.2(1)	N(3)-C(12)-C(13)	122.6(2)
C(12)-C(13)-C(14)	117.2(2)	N(4)-C(14)-C(13)	122.9(2)
N(1)-C(15)-C(16)	112.0(1)		

Скорее всего, причиной неудавшегося бромирования пиримидин-2иламида **1с** является то, что в реакции с бромом он по типу пиридина [23] сначала образует не отличающийся высокой реакционной способностью пербромид **4c**, легко разлагающийся при последующем выделении и очистке. Экспериментальное подтверждение такому выводу было найдено после изменения условий синтеза, когда образовавшуюся в результате прибавления брома реакционную массу перед разбавлением водой предварительно прокипятили до обесцвечивания (~3 ч). Сравнительный анализ спектров ЯМР^{1} Н полученного при этом соединения и амидов 1с и 3с (т. е. веществ с заведомо известным строением) показал, что ситуация резко меняется и бромирование действительно происходит - содержание бромзамещенного производного в смеси составляет около 40%, причем электрофильной атаке подвергается исключительно положение 5 пиримидинового ядра. Факт бромирования подтвержден и масс-спектрометрически, а его направление – хромато-масс-спектрометрически. И хотя в последнем случае ни один из компонентов анализируемой смеси не смог преодолеть колонку газового хроматографа без деструкции, тем не менее, был обнаружен только один содержащий бром фрагмент – им оказался 2-амино-5-бромпиримидин. Его идентифицировали сравнением экспериментального спектра со взятым из внутренней библиотеки масс-спектрометра спектром стандартного образца.

Из проведенных исследований следует, что синтез 5-бромпиримидин-2иламидов **3а-j** путем бромирования незамещенных аналогов **1а-j** бромом действительно возможен, хотя и требует существенной доработки. Однако для одного из пиримидин-2-иламидов, а именно 1-аллильного производного **1d**, подобная схема не может быть реализована в принципе. В отличие от рассмотренного выше примера, это соединение бромируется очень легко – реакция проходит практически мгновенно уже при комнатной температуре.

Характерной особенностью масс-спектров пиримидин- и 5-бромпиримидин-2-иламидов 4-гидрокси-2-оксо-1-этил-1,2-дигидрохинолин-3карбоновой кислоты (**1c** и **3c**) является первоначальный разрыв под действием электронного удара гетариламидной связи. Способность 4-гидроксихинолонов-2 легко превращаться в таутомерную 2,4-диоксоформу приводит к тому, что распад молекулярных ионов амидов **1c** и **3c** преимущественно проходит по кетеновому типу, в результате чего образуются два типа осколочных ионов: кетен **6** с *m/z* 215 и катионрадикалы 2-аминопиримидинов **7a** и **7b** с *m/z* 95 и 173/175 соответственно.

При деструкции молекулярного иона продукта бромирования 1-аллиль-

ного производного 1d в тех же условиях четко прослеживаются уже три направления. Судя по интенсивности пиков, основное из них также начинается с разрыва амидной связи, но не по кетеновому типу, поскольку для этого, вероятно, уже нет структурных предпосылок. Другая отличительная особенность – атом брома при этом остается не в аминном фрагменте, а в ацилий-катионе 8 с m/z 306/308, из которого он после предварительного выброса СО элиминируется в виде HBr, образуя метиленоксазолохинолон 10. Однако, по данным спектра ЯМР ¹H, в рассматриваемом химическом преобразовании участия не принимают ни пиримидиновое ядро, ни бензольная часть молекулы хинолона. Существенные изменения претерпевает только 1-аллильный заместитель. Сопоставление всех этих фактов дает основания для утверждения, что соответствовать описанным свойствам, очевидно, может только одно вещество, которому следует приписать строение пиримидин-2-иламида 2-бромметил-5-оксо-1,2-дигидро-5H-оксазоло[3,2-*a*]хинолин-4-карбоновой кислоты (**5**).

Вероятность второго направления фрагментации молекулярного иона амида 5 примерно в четыре раза ниже первого. Началом этого процесса, в конечном итоге приводящего к упомянутому выше катион-радикалу метиленеоксазолохинолона 10, служит типичная для бромсодержащих органических соединений потеря молекулы HBr, после чего следует поэтапное элиминирование 2-аминопиримидина из амида 11 и CO из ацильного фрагмента 12.

Наименее вероятный, но, тем не менее, имеющий место, третий путь распада молекулярного иона амида 5 заслуживает отдельного внимания из-за необычного для 4-гидроксихинолонов-2 первоначального элиминирования СО, источником которого является 4-карбонильная группа пиридонового цикла. Эта особенность еще раз свидетельствует о том, что в основе изучаемого вещества лежит не 4-гидрокси-1,2-дигидрохинолиновое ядро исходного амида 1d, а 4-оксо-1,4-дигидрохинолин. Следовательно, и вывод относительно строения амида 5 был сделан правильный. Дальнейшая фрагментация образовавшегося первичного осколочного иона пиримидин-2-иламида 2-бромметил-2,3-дигидроокса-золо[3,2-*a*]индол-9-карбоновой кислоты (13) происходит по обычной схеме: отщепление HBr \rightarrow разрыв амидной связи в метиленоксазоло-индоле 14 \rightarrow декарбонилирование катиона 15.

Спектр ЯМР ¹Н (особенно его "алифатическая" часть) по аналогии с предыдущими исследованиями [24, 25] также свидетельствует о том, что бромирование 1-аллильного производного **1d** сопровождается гетероциклизацией и приводит к образованию амида **5**. Наиболее весомые аргументы в пользу предложенной структуры основаны на анализе двумерного спектра NOESY и спектра гетероядерной корреляционной спектроскопии HMBC. В частности, эксперимент NOESY показал, что находящиеся при 4.75 и 4.35 м. д. сигналы протонов одной из метиленовых групп проявляют сильный ЯЭО с сигналом ароматического протона при 7.55 м. д. Это свидетельствует о пространственной близости указанных протонов и возможно лишь в случае, если оксазолидиновый цикл сочленен с ребром *a* хинолин-4-она.

729

 $+ \cdot$

Таблица 5

Полный перечень гетероядерных ¹H-¹³С корреляций, найденных для оксазолохинолина 5

¹ Н сигнал,	Положен	ия кросс-пиков в измерении ¹³ С, б, м. д.
д, м. д.	HMQC	HMBC
13.11	_	158.5; 96.1
8.67	159.0	158.5; 117.1
8.28	127.1	135.2; 134.2; 177.8
7.82	134.2	135.2; 127.1; 116.7
7.55	116.7	125.3; 124.2; 177.8
7.50	125.3	135.2; 134.2; 127.1; 124.2; 116.7
7.17	117.1	159.0
5.73	81.2	35.1; 163.4
4.75	49.3	81.2; 35.1; 163.4
4.35	49.3	81.2; 35.1; 163.4
4.08	35.1	81.2; 49.3

В экспериментах HMBC и HMQC по гетероядерной корреляции были обнаружены кросс-пики, координаты которых сведены в табл. 5.

Наблюдающиеся в спектрах HMBC и HMQC кросс-пики позволяют надежно интерпретировать все углеродные сигналы. На схеме приведены найденные для исследуемого соединения гетероядерные ¹H-¹³C корреляции, где стрелками показаны важнейшие корреляции HMBC, послужившие основанием для сделанных отнесений.

Наличие в исследуемой молекуле аннелированного с ядром хинолин-4-она оксазолидинового фрагмента подтверждается кросс-пиками между атомом C(3a) с химическим сдвигом 163.4 м. д и сигналами протонов N-метиленового звена, а также расположенной по соседству с гетероциклическим атомом кислорода группы CH. Локализация пиримидин-2-иламинокарбонильного заместителя следует из корреляций, найденных между сигналом протона NH и соседними атомами углерода. Весьма показателен с точки зрения строения молекулы химический сдвиг атома C(4), входящего в состав пиридин-4-онового цикла и соседствующего с двумя карбонильными группами (96.1 м. д.). Практически такой же химический сдвиг был обнаружен ранее и в других очень близких по строению оксазолохинолинах [24, 25].

Таким образом, бромирование молекулярным бромом пиримидин-2-иламида 1-аллил-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты (**1d**) сопровождается гетероциклизацией и приводит к пиримидин-2-иламиду **5**. Между тем, высокая скорость этой реакции не позволяет с полной уверенностью утверждать, что она обязательно проходит через промежуточное образование соответствующего пербромида **4**. Впрочем, альтернативный механизм, при котором бром сразу атакует непосредственно двойную связь 1-аллильного заместителя в амиде **1d**, тоже оста- ется под вопросом.

Способность синтезированных соединений *in vitro* ингибировать рост Mycobacterium tuberculosis H37Rv ATCC 27294 изучена радиометрически [26, 27] в рамках международной программы TAACF (Tuberculosis Antimicrobial Acquisition & Coordinating Facility). Представленные в табл. 1 данные микробиологического скрининга показывают, что в концентрации 12.5 мкг/мл незамешенный в положении 1 пиримилин-2-иламил 1а. и его ближайшие гомологи 1b-е противотуберкулезными свойствами не обладают вовсе. Слабовыраженная активность появляется начиная с бутильного производного 1f, однако, при дальнейшем удлинении углеводородной цепочки 1-алкильного заместителя она быстро возрастает и у пири- мидин-2-иламида 1-гексил-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбо- новой кислоты (1) достигает практически максимально возможной величины – рост микобактерий туберкулеза под действием этого вещества угнетается на 99%. Тем самым еще раз подтверждено пусть и не опреде-ляющее, но, во всяком случае, весьма существенное влияние 1-алкильных заместителей противотуберкулезные свойства 4-гидрокси-2-оксо-1,2на дигидрохинолин-3-карбоксамидов в целом. Несомненно, во многом высокая активность таких соединений зависит и от строения амидной части молекулы. Так, например, вопреки ожиданиям выяснилось, что атом брома в положении 5 пиримидинового ядра – амиды За-ј – полностью дезактивирует молекулу.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С оксазолохинолина **5**, эксперименты по двумерной спектроскопии ЯМР ¹Н COSY, гомоядерному эффекту Оверхаузера NOESY-2D, а также гетероядерные корреляционные спектры HMQC и HMBC зарегистрированы на спектрометре Varian Mercury-400 (400 и 100 МГц

соответственно ¹Н и ¹³С). Все двумерные эксперименты проводили с градиентной полезных сигналов. Время смешивания в импульсных селекцией последовательностях соответствовало ${}^{1}J_{CH} = 140$ и ${}^{2-3}J_{CH} = 8$ Гц. Количество инкрементов в спектрах COSY и HMQC составило 128, а в спектрах HMBC - 400. Время смешивания в эксперименте NOESY-2D составляло 500 мс. Спектры ЯМР ¹Н остальных соединений записаны на приборе Varian Mercury-VX-200 (200 МГц). Во всех случаях растворитель ДМСО-d₆, внутренний стандарт ТМС. Масси хромато-масс-спектрометрические исследования проведены на приборе Varian 1200L в режиме полного сканиро- вания в диапазоне 35-700 m/z, ионизация электронным ударом 70 эВ; ввод образца, соответственно, прямой или через газовый хроматограф. Параметры хроматографической колонки CP-SIL 8CB: длина 50 м, внутренний диаметр 0.25 мм, неподвижная фаза – пленка полисилоксана (5% дифенилполисилоксан, 95% диметилполисилоксан) толщиной 0.33 мкм, газ-носитель – гелий, температура инжектора 300 °С, температура ионного источника 250 °С.

Амидирование этиловых эфиров 1-R-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот **2а–ј** 2-аминопиримидином или 2-амино-5бромпиримидином проведено по описанной ранее методике [18].

5-Бромпиримидин-2-иламид 4-гидрокси-2-оксо-1-этил-1,2-дигидрохинолин-3-карбоновой кислоты (3c). К раствору 3.10 г (0.01 моль) пиримидин-2-иламида 4-гидрокси-2-оксо-1-этил-1,2-дигидрохинолин-3-карбоновой кислоты (1c) в 50 мл ледяной уксусной кислоты прибавляют раствор 0.52 мл (0.01 моль) брома в 5 мл того же растворителя. При этом сразу же выпадает светло-оранжевый осадок, растворяющийся при последующем нагревании. Реакционную смесь кипятят до обесцвечивания (~3 ч), после чего охлаждают, разбавляют холодной водой и прибавляют Na₂CO₃ до pH ~ 5.5. Выделившийся осадок отфильтровывают, промывают водой, сушат и кристаллизуют из смеси ДМФА–ацетон. По данным спектра ЯМР ¹Н, полученный продукт на 40% состоит из 5-бромпиримидин-2-иламида 3c. Оставшиеся 60% составляет исходный незамещенный пиримидин-2-иламид 1c.

В результате обработки водой реакционной смеси, образовавшейся сразу же после смешения исходных реагентов, и перекристаллизации полученного вещества из смеси ДМФА-ацетон получают только исходный пиримидин-2-ил-амид 1с.

Рентгеноструктурное исследование. Кристаллы пиримидин-2-иламида 1с моноклинные (из смеси ДМФА-ацетон), при 20 °С: a = 7.765(1), b = 10.589(1), c = 17.902(2) Å, $\beta = 99.77(1)^\circ$, V = 1450.6(2) Å³, $M_r = 310.31, Z = 4$, пространственная группа $P2_1/n, d_{\rm выч} = 1.421$ г/см³, μ (Мо $K\alpha$) = 0.102 мм⁻¹, F(000) = 648. Параметры элементарной ячейки и интенсивности 12 071 отражения (4193 независимых, $R_{\rm int} = 0.032$) измерены на дифрактометре Xcalibur-3 (Мо $K\alpha$ -излучение, ССD-детектор, графитовый монохроматор, ω -сканирование, $2\theta_{\rm max} = 60^\circ$).

Структура расшифрована прямым методом по комплексу программ SHELXTL [28]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с $U_{iso} = nU_{eq}$ (n = 1.5 для метильной группы и n = 1.2 для остальных атомов водорода). Положение атомов водорода, участвующих в водородной связи, уточнялось в изотропном приближении. Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.093$ по 4123 отражениям ($R_1 = 0.039$ по 1582 отражениям с $F > 4\sigma$ (F), S = 0.735). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных – депонент ССDC 672207. Межатомные расстояния и валентные углы представлены в табл. 3 и 4.

Пиримидин-2-иламид 2-бромметил-5-оксо-1,2-дигидро-5H-оксазоло[3,2-*a*]-732

хинолин-4-карбоновой кислоты (5). К раствору 3.22 г (0.01 моль) пиримидин-2иламида 1-аллил-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты (1d) в 40 мл ледяной уксусной кислоты при интенсивном перемешивании прибавляют раствор 0.52 мл (0.01 моль) брома в 5 мл того же растворителя. Обесцвечивание брома происходит практически мгновенно. Реакционную смесь разбавляют водой, затем небольшими порциями прибавляют Na₂CO₃ до тех пор, пока рН среды не достигнет ~5.5, и оставляют на 12-14 ч при комнатной температуре. Осадок пиримидин-2-иламида 5 отфильтровывают, промывают водой, сушат. Выход 2.76 г (69%). Т. пл. 170–172 °С (из этанола). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 13.11 (1H, c, NH); 8.67 (2H, д, *J* = 4.5, H-4',6' пиримидина); 8.28 (1Н, д, J = 7.8, Н-6); 7.82 (1Н, т, J = 7.6, Н-8); 7.55 (1Н, д, J = 8.2, Н-9); 7.50 (1Н, т, *J* = 7.4, H-7); 7.17 (1H, т, *J* = 4.6, H-5' пиримидина); 5.73 (1H, м, NCH₂C<u>H</u>O); 4.75 (1Н, д. д, *J* = 9.8 и *J* = 9.8, NCH); 4.35 (1Н, д. д, *J* = 9.8 и *J* = 6.7, NCH); 4.08 (2H, м, CH₂Br). Спектр ЯМР ¹³С, б, м. д.: 177.8 (5-С=О), 163.4 (С-3а), 160.6 (CONH), 159.0 (C-4',6' пиримидина), 158.5 (C-2' пиримидина), 135.2 (C-9a), 134.2 (С-8), 127.1 (С-6), 125.3 (С-7), 124.2 (С-5а), 117.1 (С-5' пиримидина), 116.7 (С-9), 96.1 (С-4), 81.2 (NCH₂<u>C</u>HO), 49.3 (NCH₂), 35.1 (CH₂Br). Масс-спектр, *m/z* (*I*_{отн}, %): $400 \quad [M]^{+} \quad (6.4), \quad 372 \quad [M-CO]^{+} \quad (4.4), \quad 320 \quad [M-HBr]^{+} \quad (9.6), \quad 306 \quad [M-2-K]^{+} \quad$ [M-COаминопиримидин]⁺ (42.6),292 $HBr]^+$ (6.0), 279 [M-2аминопиримидин-CO]⁺ (9.8), 226 [М-НВг-2-ами- нопиримидин]⁺ (100), 199 [M-HBr-2-аминопиримидин-CO]⁺ (15.2), 198 [М-СО-НВг-2-аминопиримидин]⁺ (6.4), 171 [M-CO-HBr-2-аминопиримидин-CO]⁺ (2.7). Значения *m/z* приведены только для изотопа ⁷⁹Вг. Найдено, %: С 50.73; Н 3.13; N 13.85. С₁₇Н₁₃ВгN₄O₃. Вычислено, %: С 50.89; Н 3.27; N 13.96.

Авторы выражают благодарность Национальному институту аллергии и инфекционных заболевании США за изучение противотуберкулезных свойств синтезированных нами соединений (контракт № 01-AI-45246).

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Украинец, Н. Л. Березнякова, В. А. Паршиков, ХГС, 426 (2009).
- 2. А. Ф. Пожарский, А. Т. Солдатенков, Молекулы перстни, Химия, Москва, 1993.
- 3. D. J. Brown, in: *Comprehensive Heterocyclic Chemistry on CD-ROM: 7-Volume Set*, A. R. Katritzky, C. W. Ress (Eds.), Elsevier, Oxford, 1997, vol. 3, p. 142.
- 4. A. Kleemann, J. Engel, *Pharmaceutical Substances. Synthesis, Patents, Applications, Multimedia Viewer, Version 2.00*, Georg Thime Verlag, Stuttgart, 2001.
- 5. A. M. Youssef, E. Noaman, Arzneimittelforschung, 57, 547 (2007).
- 6. B. Almirante, D. Rodriguez, *Paediatr. Drugs*, 9, 311 (2007).
- 7. K. Sugaya, Y. D. Kwak, O. Ohmitsu, A. Marutle, N. H. Greig, E. Choumrina, *Curr. Alzheimer Res.*, **4**, 370 (2007).
- A. M. Dougherty, H. Guo, G. Westby, Y. Liu, E. Simsek, J. T. Guo, A. Mehta, P. Norton, B. Gu, T. Block, A. Cuconati, *Antimicrob. Agents Chemother.*, **51**, 4427 (2007).
- A. Mai, M. Artico, D. Rotili, D. Tarantino, I. Clotet-Codina, M. Armand-Ugón, R. Ragno, S. Simeoni, G. Sbardella, M. B. Nawrozkij, A. Samuele, G. Maga, J. A. Esté, J. Med. Chem., 50, 5412 (2007).
- S. Benzaria, D. Bardiot, T. Bouisset, C. Counor, C. Rabeson, C. Pierra, R. Storer, A. G. Loi, A. Cadeddu, M. Mura, C. Musiu, M. Liuzzi, R. Loddo, S. Bergelson, V. Bichko, E. Bridges, E. Cretton-Scott, J. Mao, J. P. Sommadossi, M. Seifer, D. Standring, M. Tausek, G. Gosselin, P. La Colla, *Antivir. Chem. Chemother.*, 18, 225 (2007).

- 11. M. Johar, T. Manning, D. Y. Kunimoto, R. Kumar, *Bioorg. Med. Chem.*, **13**, 6663 (2005).
- 12. D. Sriram, T. R. Bal, P. Yogeeswari, Med. Chem., 1, 277 (2005).
- 13. N. C. Srivastav, T. Manning, D. Y. Kunimoto, R. Kumar, *Med. Chem.*, **2**, 287 (2006).
- 14. D. Rai, M. Johar, N. C. Srivastav, T. Manning, B. Agrawal, D. Y. Kunimoto, R. Kumar, J. Med. Chem., 50, 4766 (2007).
- M. H. R. I. El-Hamamsy, A. W. Smith, A. S. Thompson, M. D. Threadgill, *Bioorg. Med. Chem.*, 15, 4552 (2007).
- A. Talukdar, B. Illarionov, A. Bacher, M. Fischer, M. Cushman, J. Org. Chem., 72, 7167 (2007).
- 17. І. В. Українець, С. А. Ель Каяль, О. В. Горохова, Л. В. Сидоренко, Т. В. Алєксєєва, *Вісник фармації*, № 1 (37), 12 (2004).
- 18. И. В. Украинец, Е. В. Моспанова, Л. В. Сидоренко, *XГС*, 1023 (2007). [*Chem. Heterocycl. Comp.*, **43**, 863 (2007)].
- 19. И. В. Украинец, А. А. Ткач, Л. В. Сидоренко, О. В. Горохова, *XTC*, 1508 (2006). [*Chem. Heterocycl. Comp.*, **42**, 1301 (2006)].
- 20. Амжад Абу Шарх, Дис. канд. фарм. наук, Харьков, 2003.
- 21. H.-B. Burgi, J. D. Dunitz, *Structure Correlation*, VCH, Weinheim, 1994, vol. 2, p. 741.
- 22. Ю. В. Зефиров, Кристаллография, 42, 936 (1997).
- 23. Л. Физер, М. Физер, *Реагенты для органического синтеза*, Мир, Москва, 1970, т. 3, с. 115.
- 24. И. В. Украинец, Н. Л. Березнякова, А. В. Туров, С. В. Шишкина, *XTC*, 1034 (2007). [*Chem. Heterocycl. Comp.*, **43**, 871 (2007)].
- 25. И. В. Украинец, Н. Л. Березнякова, О. В. Горохова, А. В. Туров, С. В. Шишкина, *XГС*, 1180 (2007). [*Chem. Heterocycl. Comp.*, **43**, 1001 (2007)].
- 26. L. B. Heifets, in: Drug Susceptibility in the Chemotherapy of Mycobacterial Infections, L. B. Heifets (Ed.), CRC Press, Boca Raton, 1991, p. 89.
- 27. C. B. Inderleid, K. A. Nash, in: *Antibiotics in Laboratory Medicine*, V. Lorian (Ed.), Williams and Wilkins, Baltimore, 1996, p. 127.
- 28. G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Sata. Rev. 5.1 (1998).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило 10.12.2007

^аКиевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: nmrlab@univ.kiev.ua