Посвящается профессору А. Стракову в связи с его 75-летием

Н. Батенко*, С. Беляков^а, Р. Валтерс

О СТРУКТУРЕ 5-(ТРИХЛОР-1,4-БЕНЗОХИНОНИЛ)-2-ФЕНИЛАЗОТИАЗОЛА

Методом РСА определена структура 5-(трихлор-1,4-бензохинонил)-2-фенилазотиазола, на основании чего установлено, что в реакции 2,5-дигидрокси-3,4,6,7тетрахлор-2,3-дигидробензо[*b*]фурана с 1-фенилтиосемикарбазидом образуется 5-(2,5-дигидрокси-3,4,6-трихлорфенил)-2-фенилазотиазол.

Ключевые слова: 1,4-бензохинон, 2,3-дигидробензо[b]фуран, тиазол.

Гетероциклические производные 1,4-бензохинонов вызывают значительный интерес благодаря наличию в одной молекуле электроноакцепторного (хинон) и электронодонорного (гетероцикл) фрагментов. Многие производные 1,4-бензо- и 1,4-нафтохинонов обладают фармакологической активностью. Методы синтеза и свойства таких соединений рассмотрены в обзорах [1, 2].

В настоящем сообщении представлены уточненные данные о строении продукта, полученного в реакции 2,5-дигидрокси-3,4,6,7-тетрахлор-2,3-дигидробензо[*b*]фурана (1) с 1-фенилтиосемикарбазидом. Дигидробензофуран 1 является циклической формой *о*-гидроксифенилзамещенного α-хлорацетальдегида [3, 4]. Согласно данным [5], основными продуктами реакций между 1-замещенными тиосемикарбазидами и α-галогенкарбонильными соединениями являются производные 4H-1,3,4-тиадиазина.

Ранее показано [6, 7], что в реакции дигидробензофурана 1 с 1-фенилтиосемикарбазидом образуются два соединения – 2-амино-6-(2,5-дигидрокси-3,4,6-трихлорфенил)-4-фенил-4Н-1,3,4-тиадиазин (2) и 2-амино-5-(2,5-дигидрокси-3,4,6-трихлорфенил)тиазол (3). Структура 2 была приписана исходя из данных элементного анализа, ЯМР ¹Н (90 МГц), ИК и УФ спектров. Однако исследование дальнейших превращений соединения 2 заставило усомниться в правильности этой структуры. Это послужило причиной проведения дополнительных исследований. Данные спектров ЯМР ¹Н (200 МГц) и ¹³С (100 МГц) позволили уточнить строение соединения 2 и приписать ему структуру 5-(2,5-дигидрокси-3,4,6-трихлорфенил)-2-фенилазотиазола (5). В спектре ЯМР ¹Н четко видны два сигнала различных групп ОН (10.13 и 9.94 м. д.), но отсутствуют сигналы протонов группы NH₂. Слабопольный сдвиг сигналов орто-протонов бензольного кольца свидетельствует о соседстве с акцепторным заместителем и соответствует по своему значению местоположению сигналов протонов азобензола [8].

Показано [3], что нередко синтез 4H-1,3,4-тиадиазинов осложняется образованием побочных продуктов циклизации, при этом проследить зависимость формирования тех или иных продуктов от строения исходных соединений не удалось.

В нашем случае, по всей видимости, при образовании тиазольного цикла, вначале протекает замещение атома хлора у C(3) дигидробензофурана 1, затем следует раскрытие дигидробензофуранового цикла с последующим образованием связи N(3)–C(4) тиазола. Структура соединения 2 предполагает образование связи с атомом N(1) 1-фенилтиосемикарбазида, строение продукта 5 свидетельствует о том, что циклизация протекает по атому N(4) тиосемикарбазида. Диспропорционирование 1,2-дизамещенного гидразина приводит к получению соединения 5 и объясняет появление соединения 3.

Окислением гидрохинона 5 получен 5-(трихлор-1,4-бензохинонил)-2-

фенилазотиазол (6). Из метиленхлорида удалось вырастить подходящие монокристаллы и структура соединения была окончательно установлена методом PCA.

На рис. 1 представлена молекулярная структура соединения **6** с эллипсоидами тепловых колебаний и обозначениями атомов. Основные длины связей и значения валентных углов приведены в табл. 1. Молекула характеризуется плоской конформацией: все атомы молекулы в пределах ошибки лежат в одной плоскости; при азогруппе заместители находятся в *транс*-положении. Структурная формула **6** характеризует строение молекулы весьма условно: сопряженная система охватывает всю молекулу, поэтому в структуре нет чисто двойных и чисто ординарных связей. Среднее расстояние атомов хлора до соответствующих атомов углерода в бензохиноновом фрагменте (1.711(9) Å) указывает на то, что сопряженная система молекулы распространяется также и на атомы хлора.

Рис. 1. Пространственная модель молекулы соединения 6 по данным РСА

Рис. 2. Фрагмент кристаллической структуры соединения 6

Таблица 1

Связь	l, Å	Угол	ω, град	
S(1)–C(2)	1.706(9)	C(2)–S(1)–C(5)	89.6(5)	
S(1)–C(5)	1.754(9)	S(1)-C(2)-N(3)	116.4(7)	
C(2)–N(3)	1.324(12)	N(3)-C(4)-C(5)	118.8(9)	
C(4)–C(5)	1.384(13)	C(4)-C(5)-S(1)	106.6(7)	
C(2)–N(6)	1.414(12)	C(2)-N(6)-N(7)	108.6(8)	
N(6)–N(7)	1.263(11)	N(6)-N(7)-C(8)	115.0(8)	
N(7)–C(8)	1.411(12)	C(4)-C(5)-C(14)	131.6(9)	
C(5)–C(14)	1.457(13)	C(5)-C(14)-C(15)	126.0(8)	
C(14)–C(15)	1.356(13)	C(14)-C(15)-C(16)	122.3(9)	
C(15)–C(16)	1.505(13)	C(15)-C(16)-O(21)	119.4(10)	

Основные длины связей (*l*) и валентные углы (ω) соединения 6

Таблица 2

Основные кристаллографические данные соединения 6 и параметры уточнения					
кристаллической структуры					

Брутто-формула	$C_{15}H_6Cl_3N_3O_2S$
Молекулярная масса	398.655
Форма кристалла	Иголка
Размер кристалла, мм	$0.01\times0.03\times0.37$
Сингония	Моноклинная
Параметры кристаллической решетки:	
<i>a</i> , Å	11.427(1)
b, Å	5.3467(5)
<i>c</i> , Å	13.179(2)
β, град.	106.991(4)
Объем элементарной ячейки, V , $Å^3$	770.0(1)
Пространственная группа	$P2_1$
Число молекул в элементарной ячейке, Z	2
<i>F</i> (000)	400
Плотность вещества, $\rho_{\text{выч}}$, Γ/cm^3	1.719
Максимальный угол, 20 _{тах} , град.	55.0
Интервалы индексов Миллера	<i>−</i> 14 <i>≤h≤</i> 14
	$-6 \le k \le 5$
	<i>−</i> 17≤ <i>l</i> ≤16
Коэффициент поглощения, µ, мм ⁻¹	0.744
Общее число рефлексов	5467
Число независимых рефлексов	3287
Число рефлексов с $I > 2\sigma(I)$	2055
<i>R</i> -Фактор	0.0534
R -Индексы по всем рефлексам (R_1 , wR_2)	0.1033, 0.2213
Число уточняемых параметров	207
GooF	0.974
$(\Delta/\sigma)_{max}$	0.001

На рис. 2 представлен фрагмент упаковки молекул 6 в кристаллической решетке. Между молекулами в кристаллической структуре наблюдается межмолекулярное π - π -взаимодействие (stacking interaction), посредством кристалле образуются стопки которого в молекул вдоль кристаллографического направления у. Наиболее короткий контакт (3.202(11) Å) в молекулярных стопках наблюдается между атомами С(18) и О(21) соседних молекул. Особенности кристаллической структуры обусловливают глубокую окраску кристаллов 6. Следует отметить, что хотя в структуре 6 нет асимметрических атомов и молекулы по причине плоской конформации полностью совпадают со своими зеркальными антиподами, кристаллическая структура хиральна (пространственная группа симметрии – P2₁). Этот факт должен определять физические свойства кристаллов 6, характеризующиеся тензорами третьего ранга, поскольку все компоненты этих тензоров в силу указанной симметрии должны отличаться от нуля. В частности, ненулевые компоненты должны быть у тензора нелинейно-оптической восприимчивости, что должно обусловливать оптические свойства кристаллов 6, например, генерацию вторичной гармоники.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н зарегистрированы на спектрометре Varian Mercury BB 200 (200 МГц), а спектр ЯМР ¹³С – на приборе Varian Mercury BB 400 (100 МГц), внутренний стандарт ТМС. Температуры плавления соединений **3**, **5** и **6** соответствуют ранее описанным [6].

Для РСА дифракционная картина для монокристаллов получена на автоматическом рентгеновском дифрактометре Bruker–Nonius KappaCCD при комнатной температуре. Расшифровка кристаллической структуры проведена по методике, разработанной ранее в Латвийском институте органического синтеза [9]. Начальный *R*-фактор полученной после расшифровки модели структуры составлял 30%. Дальнейшее уточнение осуществлялось полноматричным МНК в анизотропном приближении для неводородных атомов с использованием комплекса программ *AREN* [10]. Положения атомов водорода локализованы на основе разностных Фурье синтезов электронной плотности и уточнены в изотропном приближении с использованием модели "наездника". Кристаллографические характеристики соединения **6** и параметры уточнения структуры даны в табл. 2. Полная кристаллографическая информация и дифракционные данные для кристаллов **6** депонированы в Кембриджском банке структурных данных под номером ССDС 725676.

5-(2,5-Дигидрокси-3,4,6-трихлорфенил)-2-фенилазотиазол (5). Т. пл. >250 °С (разл.) [6]. Спектр ЯМР ¹Н (ДМСО-d₆), δ, м. д.: 7.66 (3H, м, H-3,4,5 C₆H₅); 7. 96 (2H, м, H-2,6 C₆H₅); 8.18 (1H, с, H-4 тиазола); 9.94 (1H, с, OH); 10.13 (1H, с, OH). Спектр ЯМР ¹³С (ДМСО-d₆), δ, м. д.: 118.69; 120.95; 122.28; 123.69; 123.94; 130.37; 132.54; 134.03; 144.37; 146.16; 146.23; 151.52; 176.52.

2-Фенилазо-5-(трихлор-1,4-бензохинонил)тиазол (6). Т. пл. 166 °С (разл.) [6]. Спектр ЯМР ¹Н (CDCl₃), δ, м. д.: 7.57 (3Н, м, H-3,4,5 C₆H₅); 8.08 (2Н, м, H-2,6 C₆H₅); 8.80 (1Н, с, H-4 тиазола).

СПИСОК ЛИТЕРАТУРЫ

- 1. S. Spyroudis, Molecules, 5, 1291 (2000).
- 2. Н. Г. Батенко, Г. Карливанс, Р. Валтерс, *XГС*, 803 (2005). [*Chem. Heterocycl. Comp.*, **41**, 691 (2005)].
- 3. Р. Э. Валтер, Э. Э. Лиепиныш, Г. А. Карливан, В. Р. Зиньковска, М. Ф. Утинан, *ЖОрХ*, **21**, 436 (1985).
- 4. R. E. Valters, E. Flitsch, *Ring-Chain Tautomerism*, A. R. Katritzky (Ed.), Plenum Press, New York, 1985, p. 104.
- 5. С. В. Усольцева, Г. П. Андронникова, В. С. Мокрушин, *XГС*, 435 (1995). [*Chem. Heterocycl. Comp.*, **31**, 377 (1995)].
- 6. G. Karlivans, J. Gulbis, R. Valters, A. Bace, R. Kampare, Latv. J. Chem., 99 (1994).
- 7. R. Valters, G. Karlivans, J. Gulbis, M. Utinans, A. Bace, *Phosphorus*, *Sulfur*, *Silicon*, *Relat. Elem.*, **95–96**, 457 (1994).
- 8. E. Pretsch, P. Bühlmann, C. Affolter, *Structure Determination of Organic Compounds. Tables of Spectral Data*, 3rd Engl. Ed., Springer, Berlin, 2000, p. 211.
- 9. А. Ф. Мишнев, С. В. Беляков, Кристаллография, **33**, 835 (1988).
- 10. В. И. Андрианов, Кристаллография, 32, 228 (1987).

Рижский технический университет, Рига LV-1048, Латвия e-mail: nbatenko@hotmail.com Поступило 14.04.2009

^аЛатвийский институт органического синтеза, Рига LV-1006, Латвия e-mail: serg@osi.lv