Посвящается глубокоуважаемому профессору Хенку ван дер Пласу в связи с его юбилеем

С. Беляков, М. Флейшер*, Д. Янсоне, Л. Лейте, Э. Лукевиц

МОЛЕКУЛЯРНАЯ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА *транс- и цис-*ИЗОМЕРОВ 6,6-ДИМЕТИЛ-4-[2-(4-МЕТОКСИФЕНИЛ)-ВИНИЛ]-3-ЦИАНО-5,6-ДИГИДРО-2Н-ПИРАНА

Получены монокристаллы *транс-* и *цис-*изомеров 6,6-диметил-4-[2-(4метокси- фенил)винил]-3-циано-5,6-дигидро-2Н-пирана и выполнен их рентгенострук- турный анализ. Оба соединения имеют молекулярную структуру, относящуюся к группе симметрии C₁. Гетероциклические кольца находятся в конформации искаженного *конверта*. Кристаллы *транс-*изомера принадлежат к ромбической сингонии и имеют упаковку "елочного" типа. Упаковка кристалла *цис-*изомера образована парами молекул, каждая из которых состоит только из одного энантиомера.

Ключевые слова: 6,6-диметил-4-[2-(4-метоксифенил)винил]-3-циано-5,6-дигидро-2Н-пиран, РСА, АМ1.

Многие синтетические и природные производные δ-лактонов обладают широким спектром биологической активности, в частности бактерицидными [1], кардиотоническими [2] и цитотоксичными [3] свойствами, применяются в клинической практике в качестве антиконвульсанта [4], служат средством лечения гиперхолестеринемии [5], онкологических заболеваний [6], а также применяются в качестве стимуляторов роста растений [7–9]. С целью поиска новых фармакологически активных соединений этого класса, конденсацией 4,6,6-триметил-3-циано-5,6-дигидро-2-пиранона с 4-метоксибензальдегидом в ЕtOH в присутствии каталитических количеств NaOH был синтезирован 6,6-диметил-4-[2-(4-метоксифенил)винил]-3-циано-5,6-дигидро-2Н-пиран (1). Синтезированное соединение идентифицировали на основании спектральных ланных и элементного анализа [3]. Согласно параметрам спектров ЯМР ¹Н, винильный фрагмент соединения имеет *транс*-конфигурацию ($J = 15.9 \ \Gamma$ ц). Для детального установления трехмерной структуры химических соединений наиболее объективным методом является РСА. При перекристаллизации соединения 1 из этанола были получены кристаллы двух видов: бледно-зеленые игольчатые и желтые призматической формы.

Пространственные модели молекул обоих соединений получены методом РСА (рис. 1). Основные геометрические характеристики приведены в табл. 1 и 2. Установлено, что кристаллы первого вида являются *транс*-изомерами, а кристаллы призматической формы представляют 535 собой *цис*-изомерную форму соединения **1**. В конденсированной фазе оба изомера имеют молекулярную структуру, относящуюся к точечной группе симметрии C_1 .

Фенильное кольцо, атомы винильной группы, базовые атомы гетероциклического кольца, цианогруппа и атом кислорода карбонильной группы *транс*-изомера лежат в одной плоскости. Атом кислорода метоксигруппы занимает *цис*-положение относительно связи C(15)–C(16). Двугранный угол C(4)–C(10)–C(11)–C(12), характеризующий *транс*-форму соединения **1**, равен 178.9°.

Гетероциклическое кольцо имеет конформацию искаженного *полукресла*. Выход атома C(6) из плоскости других атомов кольца равен 0.655(6) Å, а угол отгиба плоскости C(5)–C(6)–O(1) составляет 43.4(4)°. Псевдоплоскость C(20)–C(6)–C(21), содержащая атомы углерода метильных групп, практически ортогональна базовой плоскости гетероцикла (91.7(4)°).

В кристалле молекулы *транс*-изомера образуют упаковку "елочного" типа (fire-tree packing), при которой отсутствуют значимые межмолекулярные взаимодействия, что обусловливает относительно низкую плотность вещества (1.211 г/см³) (табл. 3).

Puc. 1. Пространственные модели *транс*-изомера (*a*) и *цис*-изомера (*b*) молекулы соединения 1, по данным PCA, с эллипсоидами тепловых колебаний и обозначениями атомов

Таблица 1

	l, Å				
Связь	транс-1		цис-1		
	PCA	AM1	PCA	AM1	
O(1)–C(2)	1.334(6)	1.374	1.340(3)	1.373	
C(2)–C(3)	1.478(7)	1.474	1.468(3)	1.475	
C(3)–C(4)	1.350(6)	1.360	1.356(3)	1.357	
C(4)–C(5)	1.505(6)	1.489	1.504(3)	1.489	
C(5)–C(6)	1.511(7)	1.530	1.517(3)	1.529	
C(6)–O(1)	1.467(7)	1.442	1.470(2)	1.443	
C(4)–C(10)	1.434(7)	1.448	1.452(3)	1.453	
C(10)–C(11)	1.336(6)	1.346	1.339(3)	1.340	
C(11)–C(12)	1.449(6)	1.449	1.461(3)	1.450	
O(18)–C(19)	1.437(6)	1.423	1.429(3)	1.424	
C(3)–C(8)	1.434(8)	1.418	1.441(3)	1.418	

Основные длины связей (*l*) в *транс*- и *цис*-изомерах соединения 1, определенные методом РСА и рассчитанные AM1

Параметр с элементарной ячейки кристалла значительно меньше двух других параметров (табл. 3). В подобных случаях рост кристалла происходит преимущественно по направлению, перпендикулярному малому параметру (правило Гиббса–Кюри–Вульфа [10]), в результате чего образуются тонкие кристаллы игольчатой формы.

Молекула *цис*-изомера **1** не может иметь плоскую конформацию из-за взаимного отталкивания водородных атомов при C(5) и C(17), поэтому молекула характеризуется геликоидальной конформацией с абсолютным значением торсионного угла C(12)–C(11)–C(10)–C(4) 13.4(2)° (рис. 1*b*).

Таблица 2

Основные валентные углы (ω) в *транс-* и *цис-*изомерах соединения 1, определенные методом РСА и рассчитанные методом AM1

	ω, град				
Угол	транс-1		цис-1		
	PCA	AM1	PCA	AM1	
C(3)–C(4)–C(5)	116.7(4)	118.7	115.5(2)	119.2	
C(4)-C(5)-C(6)	113.1(4)	112.5	111.8(2)	112.4	
C(5)-C(6)-O(1)	110.4(4)	111.8	109.3(2)	111.9	
C(6)–O(1)–C(2)	119.6(4)	118.3	120.3(2)	118.5	
O(1)–C(2)–C(3)	117.7(5)	119.8	117.5(2)	119.7	
C(2)–C(3)–C(4)	123.3(5)	120.6	123.6(2)	120.4	
C(4)-C(10)-C(11)	125.3(4)	124.0	129.5(2)	127.3	
C(10)-C(11)-C(12)	127.0(4)	125.1	130.3(2)	127.7	
C(19)-O(18)-C(15)	118.2(4)	116.3	118.1(2)	116.2	

Фенильное кольцо повернуто относительно плоскости, содержащей винильную группу, на $33.3(2)^\circ$. Гетероциклическое кольцо имеет, как и в случае *транс*-изомера, форму искаженного *полукресла*. Атом O(1) выходит из плоскости атомов C(3)–C(4)–C(5) на 0.264 Å, а атом C(6) – на 0.755(2) Å в том же направлении.

Хотя молекула *цис*-изомера не имеет асимметрических атомов, тем не менее она является хиральной, так как может иметь как левую геликоидальную конформацию, так и правую. Кристалл состоит из смеси равных количеств двух энантиомеров (торсионный угол C(12)–C(11)–C(10)–C(4) $-13.4(2)^{\circ}$ и $+13.4(2)^{\circ}$). Особенностью строения кристаллов *цис*-изомера является упаковка, состоящая из пар молекул, каждая из которых образована только одним из энантиомеров (рис. 2). В каждой паре молекулы расположены таким образом, что фенильное кольцо одной из них почти параллельно гетероциклическому кольцу другой (угол между плоскостями колец равен $13.2(2)^{\circ}$).

Для получения представлений о строении изолированных молекул в газовой фазе, были проведены квантово-химические расчеты изомеров с полной оптимизацией их геометрии полуэмпирическим методом AM1 [11]. Длины связей и валентные углы, полученные экспериментально (РСА) и найденные теоретически (AM1), различаются незначительно (табл. 1 и 2). Укорочение валентной связи гетероатом–атом углерода карбонильной группы при переходе в кристаллическое состояние составляет лишь 0.040 Å для *транс*-изомера и 0.033 Å для *цис*-изомера.

Рис. 2. Проекция кристаллической структуры *цис*-изомера соединения 1 вдоль направления оси *х*

Параметр	транс-1	цис-1	
Брутто-формула	C ₁₇ H ₁₇ NO ₃	C ₁₇ H ₁₇ NO ₃	
Молекулярная масса	283.327	283.327	
Форма кристалла	Иголка	Призма	
Размер кристалла, мм	0.05×0.07×0.43	0.12×0.19×0.31	
Сингония	Ромбическая	Моноклинная	
Параметры элементарной ячейки:			
<i>a</i> , Å	20.820(2)	12.4206(6)	
b, Å	13.8366(11)	8.4972(5)	
<i>c</i> , Å	5.3925(4)	14.0206(9)	
β, град.	90.0	94.631(2)	
Объем элементарной ячейки, V , Å ³	1553.5(2)	1474.91(15)	
Пространственная группа	$Pna2_1$	$P 2_1/n$	
Число молекул в ячейке, Z	4	4	
<i>F</i> (000)	600	600	
Плотность вещества, р _{расч} , г/см ³	1.211	1.276	
Максимальный угол, 20 _{тах} , град.	46.0	55.0	
Интервалы индексов Миллера	<i>−</i> 22≤ <i>h</i> ≤22	<i>−</i> 15 <i>≤h≤</i> 16	
	<i>−</i> 14 <i>≤k≤</i> 15	<i>−</i> 10≤ <i>k</i> ≤11	
	<i>−5≤l</i> ≤5	<i>−</i> 18≤ <i>l</i> ≤18	
Коэффициент поглощения, µ, мм ⁻¹	0.08	0.09	
Число рефлексов			
общее	1921	5845	
независимых	1268	3836	
$c I > 3\sigma(I)$	826	1732	
<i>R</i> -Фактор	0.049	0.048	
R -Индексы по всем рефлексам (R_1, wR_2)	0.095, 0.121	0.084, 0.197	
Число уточняемых параметров	190	258	
GooF	1.330	1.267	
$(\Delta/\sigma)_{\rm max}$	0.007	0.002	

Кристаллографические характеристики *транс*- и *цис*-изомеров соединения 1 и параметры уточнения кристаллических структур

Более существенное различие касается торсионного угла C(12)-C(11)--C(10)-C(4) в *цис*-изомере, описывающего степень поворота гетероцикла вокруг связи C(4)-C(10). Согласно расчету этот угол в изолированной молекуле равен 54.1°, в то время как в кристалле, благодаря эффектам молекулярной упаковки, он уменьшается до $13.4(2)^\circ$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

6,6-Диметил-4-[2-(4-метоксифенил)винил]-3-циано-5,6-дигидро-2Н-пиран (1) син-тезирован по методике, описанной в [3]. Монокристаллы *транс*- и *цис*-изомеров соединения получены перекристаллизацией продукта реакции из этилового спирта.

Квантово-химические расчеты проведены методом AM1 [11] с использованием пакета программ МОРАС2007 [12]. Оптимизированные структуры являются точками минимума на поверхности потенциальной энергии молекулярных систем.

Дифракционная картина для монокристаллов получена на автоматическом рентгеновском дифрактометре Bruker–Nonius KappaCCD. Расшифровка кристаллической структуры проведена по методике, разработанной ранее в Латвийском институте органического синтеза [13]. Начальный *R*-фактор полученных (после расшифровки) моделей структур составляет 25–30%. Дальнейшее уточнение осуществлялось полноматричным МНК в анизотропном приближении для всех неводородных атомов с использованием комплекса программ *maXus* [14]. Положения атомов водорода локализованы на основе разностных Фурье синтезов электронной плотности и уточнены в изотропном приближении с использованием модели "наездника". Кристаллографические характеристики изомеров соединения 1 и параметры уточнения структур даны в табл. 3.

СПИСОК ЛИТЕРАТУРЫ

- 1. А. Аветисян, Г. Токмаджян, *ХГС*, 723 (1987). [*Chem. Heterocycl. Comp.*, **23**, 595 (1987)].
- L. Leite, D. Jansone, M. Veveris, H. Cirule, Y. Popelis, G. Melikyan, A. Avetisyan, E. Lukevics, *Eur. J. Med. Chem.*, 34, 859 (1999).
- Л. Лейте, Д. Янсоне, М. Флейшер, Х. Кажока, Ю. Попелис, Н. Веретенникова, И. Шестакова, И. Домрачева, Э. Лукевиц, *ХГС*, 839 (2004). [*Chem. Heterocycl. Comp.*, 40, 715 (2004)].
- 4. R. Kretzschmar, H.-J. Teschendorf, Chem.-Ztg., 98, 24 (1974).
- 5. J. A. Tobert, Am. J. Cardiol., 62, 287 (1988).
- 6. S. Sirikantaramas, T. Asano, H. Sudo, M. Yamazaki, K. Saito, *Curr. Pharmaceut. Biotechnol.*, **8**, 196 (2007).
- 7. А. Аветисян, Г. Меликян, С. Сагомонян, Биол. журн. Армении, 42, 959 (1989).
- 8. А. Аветисян, А. Галстян, Г. Меликян, С. Сагомонян, *Биол. журн. Армении*, **42**, 1006 (1989).
- 9. Г. Меликян, А. Аветисян, В. Секерка, Биол. журн. Армении, 44, 271 (1991).
- 10. М. П. Шаскольская, Кристаллография, Высш. школа, Москва, 1984, 376 с.
- 11. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc., 107, 3902 (1985).
- 12. J. J. P. Stewart, Program package MOPAC2007. http://www.MOPAC2007.com.
- 13. А. Ф. Мишнев, С. В. Беляков, *Кристаллография*, **33**, 835 (1988).
- 14. S. Maskay, C. J. Gilmore, C. Edwards, N. Stewart, K. Shankland. maXus. Computer Program for the Solution and Refinement of Crystal Structures, Bruker Nonius, 1999, The Netherlands, MacScience, Japan, The University of Glazgow.

Латвийский институт органического синтеза, Рига LV-1006, Латвия e-mail: misha@osi.lv Поступило 05.12.2008