В. М. Полосин, А. А. Астахов, М. А. Ряшенцева, В. А. Тафеенко

НЕКОТОРЫЕ РЕАКЦИИ 8,11,11-ТРИМЕТИЛ-11-СИЛАБЕНЗО[*b*]НАФТО[2,3-*d*]ТИОФЕН-6-ОНА С УЧАСТИЕМ КАРБОНИЛЬНОЙ ГРУППЫ

Изучены реакции по карбонильной группе 8,11,11-триметил-11-силабензо [b] нафто [2,3-d] тиофен-6-она с С- и N-нуклеофилами. Методом спектроскопии ПМР показано, что конденсация с анилином приводит к образованию смеси Zи Е-изомеров соответствующего азометина. Взаимодействием с *н*-бутил- и фениллитием получены третичные спирты, молекулярное строение которых установлено с помощью рентгеноструктурного анализа.

Каталитической дегидроциклоизомеризацией триорганосилилзамещенных бензо [b]тиофенов были получены первые представители нового класса гетероцикличесих соединений — производных 11-силабензо [b]нафто [2,3d]тиофена [1, 2]. При их окислении действием КМпО4 синтезирован 8,11,11-триметил-11-силабензо [b]нафто [2,3-d]тиофен-6-он (I) — перспективное соединение для построения новых производных указанной системы, в частности путем его взаимодействия с С- и N-нуклеофилами.

В настоящем сообщении описаны реакции соединения I с анилином, бутил- и фениллитием. Учитывая, что молекула I имеет планарную структуру [3], для этих примеров в первом приближении можно было исключить влияние стерических факторов. Конденсацию с анилином проводили в присутствии эфирата BF3, ZnCl₂ и AlCl₃. При этом был получен 8,11,11-триметил-6-фенилимино-11-силабензо [*b*]нафто [2,3-*d*]тиофен (II), максимальный выход которого (50%) был достигнут при использовании в качестве катализатора безводного AlCl₃. В случае безводного ZnCl₂ выходы соединения II не превышали 20%, а при использовании эфирата BF3 удалось хроматографически зафиксировать образование лишь следов целевого продукта.

Строение азометина II подтверждают данные ПМР. Так, в его спектре имеются мультиплетные сигналы ароматических протонов в области 6,89....8,40 и шестипротонный синглет при 0,65 м. д. группы Si—(CH₃)₂. Для протонов группы 8-CH₃ наблюдаются два уширенных сигнала при 2,49 и 2,02 м. д., указывающие на то, что соединение II существует в виде смеси двух изомеров. Суммарная интегральная интенсивность этих сигналов соответствует трем протонам, а соотношение их интенсивностей составляет 63 : 37. Учитывая эффект магнитной анизотропии фенильного радикала в фенилиминном фрагменте, сильнопольный сигнал можно отнести к Е-изомеру, а слабопольный — к Z-изомеру [4]. При повышении температуры наблюдается типичная картина динамического ЯМР для этих сигналов. При температуре 320 К происходит их слияние. С помощью метода, предложенного в работе [6], проведена оценка барьера изомеризации Z = Е при $T_c = 320$ К для обмена между двумя формами с различными заселенностями:

$$G^{\#}_{320}$$
 (E) = 15,3 ккал/моль; $G^{\#}_{320}$ (Z) = 15,0 ккал/моль; $G^{\#}_{20}$ (E) – $G^{\#}_{320}$ (Z) = 0,3 ккал/моль.

Преобладание Z-изомера в азометине II можно объяснить действием электронных и пространственных факторов [6].

Нуклеофильное присоединение BuLi и PhLi по карбонильной группе соединения I происходит с достаточно высокими выходами (62 и 64% соответственно). Поскольку соединения IIIа,б удалось получить в виде хорошо образованных кристаллов и учитывая немногочисленность извест-

Рис. 1. Структура молекулы соединения IIIа

ных производных 11-силабензо [b]нафто [2,3-d]тиофена, представлялось целесообразным изучить их методом РСА. Полученные результаты приведены на рис. 1, 2 и в таблицах 1—4. Найденные геометрические параметры близки к стандартным значениям [7].

В масс-спектрах соединений IIIа, б диссоциативная ионизация характеризуется очень низкой интенсивностью элиминирования группы CH₃ от молекулярных ионов, а максимальными по интенсивности (100%) являются пики с m/z 309 [M-C₄H₉]⁺ для соединения IIIа и [M-C₆H₅]⁺ — для IIIб.

Рис. 2. Структура молекулы соединения Шб

Таблица 1

Координаты неводородных атомов (×10⁴) в молекулах соединений Ша и Шб

			7
Атом	x	y	
1	2	3	4
	,	, IIIa	
S	1505,7(5)	395(9)	4962,8(3)
Si	-728,5(5)	1492(1)	3686,2(4)
0	639(1)	-1986(2)	4579,5(9)
C(1)	625(2)	283(3)	4399(1)
C(2)	454(2)	-1034(3)	4331(1)
C(3)	-424(2)	-1237(3)	3766(1)
C(4)	-650(2)	-2507(3)	3625(1)
C(5)	-1412(2)	-2834(4)	3283(1)
C(6)	-1967(2)	-1862(4)	3096(2)
C(7)	-1765(2)	612(4)	3226(1)
C(8)	-977(2)	-239(3)	3561(1)
C(9)	245(2)	1433(3)	4252(1)
C(10)	693(2)	2474(3)	4592(1)
C(11)	528(2)	3796(4)	4559(1)
C(12)	1062(2)	4636(4)	4909(2)
C(13)	1758(2)	4192(4)	5293(2)
C(14)	1932(2)	2903(4)	5346(1)
C(15)	1398(2)	2052(3)	4994(1)
C(16)	1082(2)	-1334(3)	3771(1)
C(17)	1002(2)	-515(4)	3240(1)
C(18)	1632(2)	-807(4)	2899(2)
C(19)	1524(3)	70(6)	2383(2)
C(20)	-1622(3)	-4232(4)	3131(2)
C(21)	-567(2)	2282(4)	3024(2)
C(22)	-1571(2)	2354(4)	3921 (2)
		Шб	
S	4388(8)	4034(7)	8640(6)
Si	6435,4(3)	7911,2(8)	7634,3(7)
0	1823(2)	6301 (2)	8947(2)
C(2)	6338(3)	3644(3)	8924(2)
C(3)	7126(4)	2344(3)	9410(3)
C(4)	8698(4)	2242(3)	9530(3)

831

Окончание таблицы 1

1	2	3	4
C(5)	9448(4)	3410(4)	9171(3)
C(6)	8662(3)	4696(3)	8723(2)
C ₍₇₎	7064(3)	4847(3)	8585(2)
C(8)	6032(3)	6082(3)	8107(2)
C(9)	4575(3)	5791 (2)	8066(2)
C(10)	4457(3)	8910(3)	7453(2)
C(11)	3144(3)	8287(3)	7399(2)
C(12)	1739(3)	9139(3)	7170(3)
C(13)	1559(3)	10568(3)	7011(3)
C(14)	2841(4)	11180(3)	7013(3)
C(15)	4245(4)	10363(3)	7321 (3)
C(16)	3154(3)	6712(3)	7543(2)
C(17)	7404(4)	8462(3)	8723(3)
C(18)	2984(3)	6358(3)	6402(2)
C(19)	2074(3)	5372(3)	6319(2)
C(20)	1988(3)	5018(3)	5302(3)
C(21)	2800(4)	5617(3)	4351 (2)
C(22)	3712(4)	6590(3)	4426(3)
C(23)	3788(4)	6964(3)	5439(2)
C(24)	7626(4)	8180(4)	6280(3)
C(25)	24(4)	11456(4)	6712(3)

Таблица 2

Валентные углы	(град.)	в молекуле соединения Ш	a
----------------	---------	-------------------------	---

Угол	ω	Угол	ω
	91 4(1)	$C(\alpha) - C(\beta) - C(\beta)$	117.8(3)
$C_{(1)} = S = C_{(13)}$	102.1(1)	C(4) - C(5) - C(20)	120,4(3)
$C_{(8)} = S_i = C_{(21)}$	111.0(2)	$C_{(6)} - C_{(5)} - C_{(20)}$	121,8(3)
$C_{(8)}$ —Si— $C_{(22)}$	111,1(2)	$C_{(5)}-C_{(6)}-C_{(7)}$	121,1(3)
$C_{(2)}$ —Si— $C_{(21)}$	111,3(2)	$C_{(6)} - C_{(7)} - C_{(8)}$	122,4(3)
$C_{(9)}$ —Si— $C_{(22)}$	112,6(2)	$C_{(3)}-C_{(8)}-C_{(7)}$	116,1(3)
C(21)-Si-C(22)	108,7(2)	$C_{(1)}-C_{(9)}-C_{(10)}$	111,3(2)
$C_{(2)} - C_{(1)} - C_{(9)}$	131,0(2)	$C_{(9)} - C_{(10)} - C_{(11)}$	129,2(3)
$O - C_{(2)} - C_{(1)}$	108,5(2)	$C_{(9)} - C_{(10)} - C_{(15)}$	113,0(3)
$O - C_{(2)} - C_{(3)}$	109,9(2)	C(11)-C(10)-C(15)	117,8(3)
$O - C_{(2)} - C_{(16)}$	103,3(2)	$C_{(10)} - C_{(11)} - C_{(12)}$	119,7(3)
$C_{(1)} - C_{(2)} - C_{(3)}$	115,3(2)	$C_{(11)} - C_{(12)} - C_{(13)}$	121,0(4)
$C_{(1)} - C_{(2)} - C_{(16)}$	109,8(3)	$C_{(12)} - C_{(13)} - C_{(14)}$	121,0(3)
$C_{(3)} - C_{(2)} - C_{(16)}$	109,4(2)	$C_{(13)}-C_{(14)}-C_{(15)}$	118,4(3)
$C_{(2)} - C_{(3)} - C_{(4)}$	115,9(3)	$C_{(10)}-C_{(15)}-C_{(14)}$	122,1(3)
$C_{(2)} - C_{(3)} - C_{(8)}$	124,0(3)	$C_{(2)}-C_{(16)}-C_{(17)}$	115,2(3)
$C_{(4)} - C_{(3)} - C_{(8)}$	120,0(2)	$C_{(16)}-C_{(17)}-C_{(18)}$	114,4(3)
$C_{(3)} - C_{(4)} - C_{(5)}$	122,4(3)	C(17)C(18)C(19)	111,3(4)

	· · · · · · · · · · · · · · · · · · ·		
Угол	ω	Угол	w
	01.0(1)		
$C_{(2)} - S - C_{(9)}$	91,3(1)	$C_{(11)} - C_{(12)} - C_{(13)}$	123,2(3)
$C_{(8)}$ —Si— $C_{(10)}$	102,1(1)	$C_{(12)}-C_{(13)}-C_{(14)}$	117,8(3)
$C_{(8)}$ —Si— $C_{(17)}$	111,9(1)	$C_{(12)} - C_{(13)} - C_{(25)}$	121,3(3)
C(8)—Si—C(24)	111,9(1)	$C_{(14)} - C_{(13)} - C_{(25)}$	120,9(3)
C(10)—Si—C(17)	110,2(1)	$C_{(13)} - C_{(14)} - C_{(15)}$	120,0(3)
C(10)—Si—C(24)	111,2(1)	$C_{(10)} - C_{(15)} - C_{(14)}$	122,8(3)
C(17)-Si-C(24)	109,4(2)	$O - C_{(16)} - C_{(9)}$	107,6(2)
$C_{(3)} - C_{(2)} - C_{(7)}$	122,5(3)	$O - C_{(16)} - C_{(11)}$	109,2(2)
$C_{(2)} - C_{(3)} - C_{(4)}$	118,0(3)	$O - C_{(16)} - C_{(18)}$	105,8(2)
$C_{(3)}-C_{(4)}-C_{(5)}$	120,5(3)	$C_{(9)} - C_{(16)} - C_{(11)}$	115,2(2)
$C_{(4)} - C_{(5)} - C_{(6)}$	121,4(3)	$C_{(9)} - C_{(16)} - C_{(18)}$	108,0(2)
$C_{(5)}-C_{(6)}-C_{(7)}$	119,9(3)	$C_{(11)} - C_{(16)} - C_{(18)}$	110,5(2)
$C_{(2)} - C_{(7)} - C_{(6)}$	117,6(2)	$C_{(16)} - C_{(18)} - C_{(19)}$	121,0(2)
$C_{(2)}-C_{(7)}-C_{(8)}$	113,3(2)	$C_{(16)} - C_{(18)} - C_{(23)}$	121,0(3)
$C_{(6)} - C_{(7)} - C_{(8)}$	129,0(3)	$C_{(19)} - C_{(18)} - C_{(23)}$	118,0(3)
$C_{(7)} - C_{(8)} - C_{(9)}$	111,6(2)	$C_{(18)} - C_{(19)} - C_{(20)}$	120,4(3)
$C_{(8)} - C_{(9)} - C_{(16)}$	130,6(2)	$C_{(19)} - C_{(20)} - C_{(21)}$	121,3(3)
$C_{(11)}-C_{(10)}-C_{(15)}$	117,1(2)	$C_{(20)} - C_{(21)} - C_{(22)}$	118,7(3)
$C_{(10)} - C_{(11)} - C_{(12)}$	119,0(2)	$C_{(21)} - C_{(22)} - C_{(23)}$	120,4(3)
$C_{(10)} - C_{(11)} - C_{(16)}$	124,3(2)	$C_{(18)} - C_{(23)} - C_{(22)}$	121,2(3)
C_{12} – $C_{(11)}$ – $C_{(16)}$	116.8(2)		

Валентные углы (град.) в молекуле соединения Шб

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры регистрировали на спектрометре IR-435 в таблетках КВг. Спектр ПМР получен на приборе Bruker WM-400 в CDCl3, внутренний стандарт ТМС. Масс-спектры снимали на приборе MS-25 RFA Kratos. ТСХ проводили на пластинках Silufol UV-254 с закрепленным слоем. Колоночную хроматографию осуществляли на колонке (2 × 40 см), заполненной силикагелем 100/160 μ . Синтез исходного соединения I описан в работах [1, 2].

Рентгеноструктурное исследование соединений Ша,б. Параметры ячейки и интенсивность отражений кристаллов Ша и Шб измерены на четырехкружном автоматическом дифрактометре САD-4 фирмы Enraf Nonius (λ MoK α , графитовый монохроматор, $\theta/2\theta$ -сканирование до $\theta_{max} = 25^{\circ}$). Мотив найден с использованием прямых методов, реализованных в программе MULTAN, комплекса программ SDP. Уточнение позиционных и тепловых параметров неводородных атомов проведено в анизотропном полноматричном приближении. Атомы водорода локализованы из синтезов Фурье и уточнены в изотропном приближении.

Соединение Ша. Кристаллы моноклинные. При 20 °С a = 16,6681, b = 10,3918, c = 24,0908 Å, β = 103,82°, V = 4052,1 Å³, Z = 4, пространственная группа P21/N. R-фактор 0,03934.

Соединение Шб. Кристаллы относятся к триклинной сингонии. При 20 °С a = 8,7782, b = 9,9158, c = 12,1617 Å, $\alpha = 76,65, \beta = 84,83, \gamma = 80,82^\circ, V = 1015,2$ Å³, Z = 2, пространственная группа P-1, окончательный фактор 0,03836.

8,11,11-Триметил-6-фенилимино-11-силабензо[b]нафто[2,3-d]тиофен (II). Смесь 0,31 г (1,0 ммоль) соединения I, 3,9 г (4 мл, 42 ммоль) анилина и 0,15 г (1,1 ммоль) AlClз выдерживают 1 ч при 120...125 °С. После охлаждения реакционную массу обрабатывают водным аммиаком, экстрагируют хлороформом, экстракт высушивают MgSO4 и упаривают. Остаток хроматографируют на колонке (элюент гексан—этилацетат, 4 : 1). Получают 0,2 г (50%) азометина II в виде желтых кристаллов. *Т*_{пл} 118...119 °С (из этанола); *R*_f 0,83 (гексан—этилацетат, 4 : 1). ИК спектр:

Связь	<i>d</i> , Å	Связь	d, Å
IIIa		Шб	
S—C(1)	1,750(2)	S-C(2)	1,741(3)
S-C(15)	1,735(2)	S-C(9)	1,749(2)
Si-C(8)	1,855(4)	Si-C(8)	1,855(3)
SiC(9)	1,854(3)	Si-C(10)	1,861(3)
Si-C(21)	1,870(4)	Si-C(17)	1,860(4)
Si-C(22)	1,864(4)	Si-C(24)	1,858(3)
0-C(2)	1,443(4)	O—C(16)	1,440(3)
$C_{(1)} - C_{(2)}$	1,510(4)	C ₍₂₎ —C ₍₃₎	1,388(4)
C(1)-C(9)	1,359(4)	C(2)—C(7)	1,402(4)
$C_{(2)} - C_{(3)}$	1,531(4)	C(3)C(4)	1,385(5)
$C_{(2)} - C_{(16)}$	1,544(5)	$C_{(4)} - C_{(5)}$	1,386(5)
C(3)C(4)	1,392(5)	C(5)—C(6)	1,366(4)
C(3)C(8)	1,397(4)	C ₍₆₎ C ₍₇₎	1,408(4)
$C_{(4)} - C_{(5)}$	1,380(4)	C(7)-C(8)	1,439(3)
$C_{(5)} - C_{(6)}$	1,372(5)	C(8)-C(9)	1,363(4)
$C_{(5)}-C_{(20)}$	1,519(6)	C(9)-C(16)	1,518(3)
C(6)-C(7)	1,360(6)	C(10)C(11)	1,406(4)
$C_{(7)} - C_{(8)}$	1,421(4)	C(10)—C(15)	1,396(4)
$C_{(9)} - C_{(10)}$	1,452(4)	C(11)—C(12)	1,390(3)
C(10)-C(11)	1,400(5)	C(11)-C(16)	1,529(4)
C(10)-C(15)	1,403(4)	$C_{(12)}-C_{(13)}$	1,370(4)
C(11)-C(12)	1,382(5)	C(13)-C(14)	1,388(5)
C(12)—C(13)	1,378(5)	C(13)-C(25)	1,511(4)
C(13)—C(14)	1,370(5)	$C_{(14)}-C_{(15)}$	1,372(4)
$C_{(14)} - C_{(15)}$	1,390(4)	C(16)C(18)	1,533(4)
$C_{(16)}-C_{(17)}$	1,515(5)	C(18)-C(19)	1,384(4)
C(17)—C(18)	1,511(6)	C(18)—C(23)	1,376(4)
C(18)-C(19)	1,518(6)	C(19)-C(20)	1,373(5)
		C(20)-C(21)	1,366(4)
		C(21)-C(22)	1,371(5)
		C(22)-C(23)	1,376(5)

Длины связей (Å) в молекулах соединений Ша и Шб

820, 1250 (Si(CH₃)₂), 1610 см⁻¹ (C=N). Спектр ПМР: 0,65 (6H, с, SiCH₃); 2,02 и 2,49 (3H, два уш. с, 63: 37, CCH₃); 6,89...8,40 м. д. (12H, м, H_{аром}). Масс-спектр (*I*_{отн}, %): 383 М⁺ (100), 368 [М-CH₃]⁺ (28). Найдено, %: С 75,22; Н 5,81; N 3,61; S 8,99. С₂₄H₂₁NSSi. Вычислено, %: С 75,19; Н 5,48; N 3,65; S 8,95.

Аналогично из 0,16 г (0,05 ммоль) соединения I, 2 г (21 ммоль) свежеперегнанного анилина в присутствии 0,08 г (0,06 ммоль) очищенного возгонкой ZnCl2 получают 0,08 г (20%) соединения II.

6-Бутил-8,11,11-триметил-11-силабензо[*b*]нафто[2,3-*d*]тиофен-6-ол (Ша). К раствору 1,0 г (3 ммоль) соединения I в 50 мл абсолютного эфира в токе аргона при -20 °C добавляют 0,2 г (3 ммоль) бутиллития в гексане. Реакционную массу перемешивают 20 мин при -20 °C, затем 2 ч при 20 °C и гидролизуют 100 мл насыщенного раствора NH4Cl. Органический слой высушивают MgSO4 и упаривают. Остаток (1,2 г) хроматографируют на колонке, элюент гексан—этилацетат, 5:1. Получают 0,74 г (62%) бесцветных кристаллов соединения Ша. $T_{\rm HI}$ 125...126 °C (из гептана). *R*_f0,49 (гексан—этилацетат, 5:1). ИК спектр: 820, 1250 (Si (CH₃)₂), 3500 см⁻¹ (OH). Масс-спектр ($I_{\rm OTH}$, %): 366 M⁺ (38), 309 [M-C₄H₉]⁺ (100), 351 [M-CH₃]⁺ (11), 348 [M-H₂O]⁺ (28). Найдено, %: С 72,21; H 7,20; S 8,61. С22H₂₆OSSi. Вычислено, %: С 72,13; H 7,10; S 8,74. 8,11,11-Триметил-6-фенил-11-силабензо[*b*]нафто[2,3-*d*]тиофен-6-ол (Шб). К фениллитию, полученному из 0,3 г (42 ммоль) лития и 3,2 г (21 ммоль) бромбензола в 50 мл абсолютного эфира, при 0 °С в токе сухого аргона добавляют раствор 0,5 г (1,6 ммоль) соединения I в 50 мл эфира. Реакционную массу кипятят 2 ч с обратным холодильником и после охлаждения гидролизуют 50 мл насыщенного водного раствора NH4C1. Органический слой высупивают MgSO4, остаток после упаривания кристаллизуют из гептана. Получают 0,4 г (64%) бесцветных кристаллов соединения Шб. $T_{\rm III}$ 203...204 °С; R_f 0,5 (гексан—этилацетат, 5 : 1). ИК спектр: 820, 1255 [Si(CH₃)₂], 3500 см⁻¹ (OH). Масс-спектр ($I_{\rm OTH}$, %): 386 M⁺ (79), 371 [M-CH₃]⁺ (10), 368 [M-18]⁺ (42), 309 [M-C₆H₅]⁺ (100). Найдено, %: С 74,55; Н 5,72; S 8,31. С₂₄H₂₂OSSi. Вычислено, %: С 74,61; Н 5,69; S 8,29.

СПИСОК ЛИТЕРАТУРЫ

- Polosin V. M., Astakhov A. A., Ivashchenko A. V., Ryashentseva M. A., Belanova E. P., Minachev Kh. M. // Sulfur Lett. — 1988. — N 8(3). — P. 163.
- 2. Полосин В. М., Астахов А. А., Иващенко А. В., Ряшенцева М. А., Беланова Е. П., Шашков А. С., Миначев Х. М. // ХГС. — 1989. — № 3. — С. 419.
- 3. Полосин В. М., Астахов А. А., Тафеенко В. А., Иващенко А. В. // Металлоорган. химия. 1990. № 3. С. 650.
- 4. Сергеев Н. М. // Спектроскопия ЯМР. М.: Из-во МГУ, 1981. С. 279.
- 5. Shanan-Atidi H., Bar-Eli K. H. // J. Phys. Chem. 1970. Vol. 74. P. 961.
- 6. Потапов В. М. // Стереохимия. М.: Химия, 1988. С. 336.
- 7. Allen F. H., Kennard O., Watsen D. G., Brammer L., Orpen A. G., Taylor R. // J. Chem. Soc. Perkin Trans. II. 1987. N 12. P. S1.

Государственный научно-исследовательский институт химических реактивов и особо чистых химических веществ, Москва 107076, Россия

Поступило в редакцию 03.04.98

Российский университет друждбы народов, Москва 117198

Институт органической химии им. Н. Д. Зелинского РАН, Москва 117913, Россия

Московский государственный университет им. М. В. Ломоносова, Москва 119899, Россия