В. Н. Брицун*, А. Н. Есипенко, А. В. Гутов, А. Н. Чернега, М. О. Лозинский

РЕЦИКЛИЗАЦИЯ 1-АЛКИЛ-5-БЕНЗОИЛ-6-МЕТИЛТИО-3-ЭТОКСИКАРБОНИЛ-1,2-ДИГИДРОПИРИДИН-2-ОНОВ В 1,6-АННЕЛИРОВАННЫЕ ПРОИЗВОДНЫЕ 3-АЛКИЛКАРБАМОИЛ-5-БЕНЗОИЛПИРИДИН-2-ОНА

Впервые показана возможность рециклизации 1-алкил-5-бензоил-6-метилтио-3-этоксикарбонил-1,2-дигидропиридин-2-онов в 1,6-аннелированные бициклические производные 3-алкилкарбамоил-5-бензоилпиридин-2-она, которая протекает при реакции первых с 1,4- и 1,5-азотсодержащими динуклеофилами. Структура продуктов рециклизации доказана спектральными методами и РСА.

Ключевые слова: алкиламины, 1-(алкиламино)фенилметилиден-3-метилкарбамоил-4-оксо-1,4-дигидробензо[4,5]имидазо[1,2-а]пиридины, 1-алкил-5-бензоил-6-метилтио-3-этоксикарбонил-1,2-дигидропиридин-2-оны, 3-алкилкарбамоил-1-бензоил-4-оксо-4Н-бензо[4,5][1,3]тиазоло[3,2-а]пиридины, 3-алкилкарбамоил-1бензоил- 4-оксо-4,10-дигидробензо[4,5]имидазо[1,2-а]пиридины, 6-алкилкарбамоил-8-бензоил- 5-оксо-1.2,3,5-тетрагидроимидазо[1,2-а]пиридины, 7-алкилкарбамоил-9бензоил-6оксо-1,2,3,5-тетрагидро-2Н-пиридо[1,2-а]пиримидины, 1-амино-2-1,3-ди- аминопропан, о-аминотиофенол, меркаптоэтан, диаминоэтан, 0фенилендиамин, рециклизация, РСА.

Недавно нами показано, что 1-алкил-5-бензоил-6-метилтио-3-этоксикарбонил-1,2-дигидропиридин-2-оны **1а,b** региоспецифически циклоконденсируются с азотсодержащими 1,2-, 1,3-, 1,4- и 1,5-динуклеофилами [1–4]. В последних двух случаях реакция протекает как рециклизация [3, 4].

Цель настоящей работы заключалась в однозначном установлении строения продуктов рециклизации, изучении границ ее применения, исследовании влияния соотношения исходных реагентов на направление реакции и выяснении последовательности образования промежуточных соединений.

Обнаружено, что 1-алкил-5-бензоил-6-метилтио-3-этоксикарбонил-1,2дигидропиридин-2-оны **1а,b** реагируют с избытком диаминоэтана **2а** и 1,3-диаминопропана **2b** неселективно. При этом продуктами реакции являются не производные 5-бензоил-3-гетерил-2H-2-пиранона, как это мы предполагали ранее [3, 4], а 6-алкилкарбамоил-8-бензоил-5-оксо-1,2,3,5тетрагидроимидазо[1,2-*a*]пиридины **3а,b**, 7-алкилкарбамоил-9-бензоил-6оксо-1,2,3,5-тетрагидро-2H-пиридо[1,2-*a*]пиримидины **3с,d** и 1-алкил-6-(1алкил-5-бензоил-2-оксо-3-этоксикарбонил-1,2-дигидропиридин-6-ил)окси-5-бензоил-2-оксо-3-этоксикарбонил-1,2-дигидропиридины **4а,b**. Последние также образуются при гидролизе исходных 1,2-дигидропиридин-2-онов **1а,b**, протекающем при действии воды и триэтиламина [3].

1a, **3a**, **c**, **4a**, **6**, **7a**, **c** R = Me; **1b**, **3b**, **d**, **4b**, **7b**, **d** R = Et; **2a**, **3a**, **b**, **7a**, **b** n = 2; **2b**, **3c**, **d**, **7c**, **d** n = 3

Выходы соединений **3а-d** и **4а,b** составляют 39-69 и 24-49% соответственно.

В то же время, при соотношении исходных реагентов **1a,b** и **2a,b**, равном 2 : 1, взаимодействие происходит избирательно, с образованием N,N'-ди(1-алкил-5-бензоил-2-оксо-3-этоксикарбонил-1,2-дигидропиридин-6-ил)-1,2-диаминоэтанов (1,3-диаминопропанов) **7a–d**. Эти же соединения получены и при реакции дипиридилоксидов **4a,b** с эквимольным количеством диаминоалканов **2a,b**. Соединение **7a** при действии тройного избытка диаминоалкана **2a** рециклизуется в 8-бензоил-6-метилкарбамоил-5-оксо-1,2,3,5-тетрагидроимидазо[1,2-*a*]пиридин (**3a**). Таким образом, дипи- ридилоксиды **4a,b** и замещенные диаминоалканы **7a–d** являются проме- жуточными продуктами рециклизации 1,2-дигидропиридин-2-онов **1a,b** в 5-оксо-1,2,3,5-тетрагидроимидазо[1,2-*a*]пиридины **3a,b** и 6-оксо-1,2,3,5-тетрагидро-2H-пиридо[1,2-*a*]пиримидины **3c,d**.

При использовании в качестве 1,4-динуклеофильного реагента 1-амино-2-меркаптоэтана **5** (генерированного *in situ* из его гидрохлорида и триэтиламина) из реакционной массы был выделен только ди[2'-(5-бензоил-1-метил-2-оксо-3-этоксикарбонил-1,2-дигидропиридин-6-ил)аминоэтил]дисульфид (**6**), что, вероятно, объясняется как меньшей нуклеофильностью меркаптогруппы по сравнению с аминогруппой, так и легкостью окисления ее кислородом воздуха в присутствии оснований [5].

Как рециклизация протекает и взаимодействие 1,2-дигидропиридин-2онов **1a,b** с ароматическими азотсодержащими 1,4-динуклеофилами – *о*-фенилендиамином (**8a**) и *о*-аминотиофенолом (**8b**). Продуктами этой реакции являются, соответственно, 3-алкилкарбамоил-1-бензоил-4-оксо-4,10-дигидробензо[4,5]имидазо[1,2-*a*]пиридины **9a,b**, 3-алкилкарбамоил-1-бензоил-4-оксо-4H-бензо[4,5][1,3]гиазоло[3,2-*a*]пиридины **9c,d** и дипиридилоксиды **4a,b**. Выходы соединений **9a–d** и **4a,b** составляют 57–70 и 26–32% соответственно. Способность *о*-аминотиофенола **8b**, в отличие от 1-амино-2-меркаптоэтана **5**, вступать в рециклизацию с 1,2-дигидропиридин-2онами **1**а,**b**, по всей видимости, связана с более жесткой структурой его молекулы и меньшей склонностью к окислению.

Выходы, температуры плавления и данные элементного анализа соединений **3a–d**, **6**, **7a–d**, **9a–d** приведены в табл. 1, а данные ИК, ЯМР ¹³С и ¹H спектров – в табл. 2–4. В отличие от реакций 4-метил-6-метилтио-1-фенил-3-циано-5-этоксикарбонил-1,2-дигидропиридин-2-она с диаминоэтаном и 1,3-диаминопропаном [6], исследованная нами рециклизация соединений **1a,b** в 1,6-аннелированные производные 3-алкилкарбамоил-5-бензоилпиридин-2-она **3а–d** и **9а–d** осуществляется с участием этоксикарбонильной группы и без элиминирования алкиламиногруппы. Таким образом, данная рециклизация имеет общий характер и позволяет синтезировать ряд бициклических производных 3-бензоилпиридин-2-она **3а–d**, **9а–d**, содержащих в своей структуре алкилкарбамоильную группу.

9a,c, 11a–d R = Me, 9b,d R = Et, 8a, 9a,b X = NH, 8b, 9c,d X = S; 10a, 11a $R^1 = (CH_2)_2OH$, 10b, 11b $R^1 = (CH_2)_3OH$, 10c, 11c $R^1 = Ph(CH_2)_2$, 10d, 11d $R^1 = 2$ -фурфурилметил

Для получения производных соединений 9, пригодных для установления строения методом PCA, нами было проведено аминирование 4-оксо-4,10-дигидробензо[4,5]имидазо[1,2-*a*]пиридина 9а алкиламинами 10а–d. Реакции соединения 9а с трехкратным избытком реагентов 10а–d при температуре 120–140 °С завершаются за 10–20 мин, тогда как к действию шестикратного избытка кипящего анилина в течение 6 ч бензимидазо[1,2-*a*]пиридин 9а вполне устойчив. Очевидно, определяющим фактором, допускающим возможность осуществления реакции с приемлемой скоростью, является высокая нуклеофильность алкиламинов 10а–d.

Таблица 1

Соеди-	Envrto-donuura	<u>Найдено, %</u> Вычислено, %				Т. пл., °С*	Выход,
нение	врупто-формула	С	Н	Ν	S		%
3 a	$C_{16}H_{15}N_3O_3$	<u>64.37</u> 64.64	<u>4.98</u> 5.09	<u>14.30</u> 14.13		335–337	69
3b	$C_{17}H_{17}N_3O_3$	<u>65.60</u> 65.58	<u>5.58</u> 5.50	<u>13.61</u> 13.50		300-303	63
3c	$C_{17}H_{17}N_3O_3$	<u>65.73</u> 65.58	<u>5.32</u> 5.50	<u>13.74</u> 13.50		253–256	43
3d	$C_{18}H_{19}N_3O_3$	<u>66.64</u> 66.45	<u>5.68</u> 5.89	<u>13.15</u> 12.91		257–259	39
4b**	$C_{34}H_{32}N_2O_9$	<u>66.43</u> 66.66	<u>4.99</u> 5.26	<u>4.86</u> 4.57		75–77	45
6	$C_{36}H_{38}N_4O_8S_2$	<u>59.88</u> 60.15	<u>5.59</u> 5.33	<u>7.93</u> 7.79	<u>8.81</u> 8.92	185–187	61
7a	$C_{34}H_{34}N_4O_8$	<u>65.32</u> 65.17	<u>5.22</u> 5.47	<u>9.07</u> 8.94		220–222	73
7b	$C_{36}H_{38}N_4O_8$	<u>65.83</u> 66.04	<u>6.02</u> 5.85	<u>8.65</u> 8.56		155–158	69
7 c	$C_{35}H_{36}N_4O_8$	<u>65.45</u> 65.61	<u>5.84</u> 5.66	<u>9.02</u> 8.74		215-218	67
7d	$C_{37}H_{40}N_4O_8$	<u>66.25</u> 66.45	<u>5.92</u> 6.03	<u>8.50</u> 8.38		123–125	62
9a	$C_{20}H_{15}N_3O_3$	<u>69.74</u> 69.56	<u>4.31</u> 4.38	<u>12.13</u> 12.17		283–285	70
9b	$C_{21}H_{17}N_3O_3$	<u>69.89</u> 70.18	<u>4.56</u> 4.77	<u>11.85</u> 11.69		272–275	63
9c	$C_{20}H_{14}N_2O_3S$	<u>66.02</u> 66.29	<u>4.15</u> 3.89	<u>7.48</u> 7.73	<u>8.64</u> 8.85	250–252	61
9d	$C_{21}H_{16}N_2O_3S$	<u>66.75</u> 67.01	<u>4.42</u> 4.28	<u>7.29</u> 7.44	<u>8.40</u> 8.52	241–243	57
11a	$C_{22}H_{20}N_4O_3$	<u>68.22</u> 68.03	<u>5.03</u> 5.19	<u>14.30</u> 14.42		232–234	73
11b	$C_{23}H_{22}N_4O_3$	<u>68.62</u> 68.64	<u>5.72</u> 5.51	<u>13.97</u> 13.92		210-212	77
11c	$C_{28}H_{24}N_4O_2$	<u>75.11</u> 74.98	<u>5.40</u> 5.39	<u>12.72</u> 12.49		214–217	82
11d	$C_{25}H_{20}N_4O_3$	<u>70.49</u> 70.74	<u>5.00</u> 4.75	<u>13.03</u> 13.20		210-212	69

Характеристики синтезированных соединений

* Соединения **3а-d**, **9а-d**, **7а**,**b** перекристаллизованы из ДМСО, соединение **4b** – из 2-пропанола, соединения **6** и **7а-d** – из нитрометана, соединения **11а-d** – из этанола. ** Т. пл. соединения **4a** соответствует приведенной в работе [3].

Таблица 2

Соединение	v, см ⁻¹
3a	3380, 3300, 3050, 2970, 1680, 1640, 1600, 1580, 1500
3b	3400, 3300, 3100, 3000, 1680, 1640, 1610, 1580, 1500, 1450, 1380, 1330
3c	3300, 3100, 2950, 1670, 1640, 1590, 1550, 1510, 1440, 1400, 1380
3d	3300, 3100, 3000, 1670, 1640, 1580, 1540, 1510, 1470, 1380
4b*	3100, 3000, 1720, 1680, 1610, 1530, 1450, 1400, 1370, 1320
6	3000, 1720, 1650, 1570, 1500, 1450, 1400, 1380, 1320
7a	3400, 3200, 3050, 1720, 1680, 1660, 1540, 1580, 1500, 1440
7b	3300, 3100, 3000, 1720, 1660, 1620, 1590, 1520, 1460, 1420
7c	3400, 3200, 3000, 1720, 1660, 1580, 1520, 1450, 1370
7d	3300, 3050, 3000, 1720, 1650, 1630, 1590, 1510, 1460, 1410
9a	3330, 3000, 1675, 1620, 1600, 1560, 1540, 1470, 1450, 1390, 1370
9b	3330, 3000, 1685, 1610, 1560, 1470, 1440, 1390, 1370, 1340, 1320, 1260
9c	3350, 3000, 1670, 1615, 1560, 1490, 1460, 1420, 1380, 1330
9d	3300, 3000, 1690, 1620, 1570, 1500, 1470, 1385, 1310
11a	3400, 3270, 2900, 1660, 1620, 1590, 1530, 1450, 1430, 1350, 1330, 1295
11b	3400, 3300, 3000, 1690, 1660, 1620, 1570, 1470, 1440, 1360, 1350
11c	3300, 3000, 2900, 1680, 1600, 1570, 1540, 1430
11d	3350, 2900, 1690, 1660, 1620, 1560, 1470, 1440

ИК спектры синтезированных соединений

* ИК спектр соединения 4а соответствует приведенному в [3].

Таблица З

Спектры ЯМР ¹³С синтезированных соединений

Соединение	Химические сдвиги (ДМСО-d ₆), б, м. д.
3b	14.8 (NCH ₂ <u>C</u> H ₃); 33.2 (C-2); 43.1 (N <u>C</u> H ₂ CH ₃); 43.4 (C-3); 97.7, 106.5, 127.8, 128.3, 130.7, 138.8, 146.4, 156.3; 160.3 (C=O); 162.8 (C=O); 191.3 (Ph- <u>C</u> =O)
3c	18.7 (3-CH ₂); 26.1 (NCH ₃); 38.7 (C-2); 39.9 (4-CH ₂); 98.8, 104.6, 128.5, 128.9, 131.1, 140.0, 146.8, 155.0; 161.4 (C=O); 164.4 (C=O); 194.1 (C ₆ H ₅ - <u>C</u> =O)
7a	14.7 (OCH ₂ C <u>H₃</u>); 33.4 (N CH ₃); 48.0 (NCH ₂); 60.1 (O <u>C</u> H ₂ Me); 101.5, 104.5, 128.8, 129.1, 132.0, 138.9, 148.2, 159.0, 160.2; 164.6 (C=O); 193.1 (C ₆ H ₅ - <u>C</u> =O)
9a	25.7 (NMe); 99.4, 105.6, 113.0, 116.4, 123.5, 126.8, 126.9, 128.4, 128.5, 131.2, 131.5, 138.5, 144.1, 144.9; 159.4 (C=O); 163.8 (C=O); 191.2 ($C_6H_5-\underline{C}=O$)
11b	26.2 (NCH ₃); 32.6 (CH ₂); 44.3 (CH ₂ NH); 58.4 (CH ₂ OH); 97.3, 107.1, 116.0, 118.2, 122.9, 125.7, 128.9, 129.5, 129.8, 130.2, 131.4, 142.8, 145.0, 149.8; 161.5; 164.5 (C=O); 169.6 (C=O)
11d	26.3 (NCH ₃); 43.2 (CH ₂ Het); 97.5, 109.3, 111.4, 116.0, 118.2, 123.2, 125.8, 129.2, 129.5, 129.7, 129.8, 131.6, 142.6, 144.1, 145.4, 149.3, 149.8, 161.6; 164.4 (C=O); 169.4 (C=O)

0	
Соеди- нение	Химические сдвиги, ДМСО-d ₆ , б, м. д. (КССВ, <i>J</i> , Гц)*
3a	2.75 (3H, д, <i>J</i> = 4.2, NHC <u>H</u> ₃); 3.91 (2H, м, H-2); 4.14 (2H, т, <i>J</i> = 9.3, H-3); 7.52 (5H, м, C ₆ H ₅); 8.31 (1H, с, H-7); 8.90 (1H, уш. с, N <u>H</u> Me); 9.39 (1H, уш. с, 1-NH)
3b	1.08 (3H, T, $J = 7.2$, NHCH ₂ C <u>H₃</u>); 3.21 (2H, M, NHC <u>H₂</u> CH ₃); 3.92 (2H, M, H-2); 4.13 (2H, T, $J = 9.0$, H-3); 7.52 (5H, M, C ₆ H ₅); 8.32 (1H, c, H-7); 9.02 (1H, yu. c, N <u>H</u> Et); 9.37 (1H, yu. c, 1-NH)
3c	2.04 (2H, м, H-3); 2.75 (3H, д, <i>J</i> = 4.5, NHC <u>H</u> ₃); 3.52 (2H, м, H-2); 3.99 (2H, м, H-4); 7.39–7.65 (5H, м, C ₆ H ₅); 8.31 (1H, с, H-8); 8.92 (1H, кв, <i>J</i> = 4.5, N <u>H</u> Me); 10.88 (1H, уш. с, 1-NH)
3d	1.07 (3H, т, <i>J</i> = 6.6, NCH ₂ C <u>H₃</u>); 2.06 (2H, м, H-3); 3.47 (2H, м, NC <u>H₂</u> CH ₃); 3.53 (2H, м, H-2); 3.98 (2H, м, H-4); 7.40–7.61 (5H, м, C ₆ H ₅); 8.32 (1H, c, H-8); 9.05 (1H, уш. т, N <u>H</u> CH ₂ CH ₃); 10.87 (1H, уш. с, 1-NH)
4b**	1.28 (12H, м, 4CH ₂ C <u>H</u> ₃), 4.18 (4H, кв, <i>J</i> = 7.1, 2NC <u>H</u> ₂ Me), 4.37 (4H, кв, <i>J</i> = 6.4, 2OC <u>H</u> ₂ Me), 7.52–7.65 (10H, м, 2C ₆ H ₅), 8.17 (2H, с, 4-2H)
6	1.30 (6H, т, <i>J</i> = 6.6, 2OCH ₂ C <u>H</u> ₃); 2.96 (4H, т, <i>J</i> = 6.0, 2CH ₂ S); 3.59 (6H, с, 2NCH ₃); 3.85 (4H, м, 2CH ₂); 4.26 (4H, кв, <i>J</i> = 6.6, 2OC <u>H₂</u> Me); 7.45–7.54 (5H, м, C ₆ H ₅); 8.44 (2H, с, 4-2H); 10.70 (2H, с, 2NH)
7a	1.15 (6H, т, <i>J</i> = 6.9, 2OCH ₂ C <u>H₃</u>); 3.40 (6H, с, 2NCH ₃); 3.65 (4H, уш. с, 2NCH ₂); 4.07 (4H, кв, <i>J</i> = 6.9, 2OC <u>H₂</u> Me); 7.45–7.56 (10H, м, 2C ₆ H ₅); 8.04 (2H, с, 2H-4); 9.34 (2H, с, 2NH)
7b	1.14 (12H, м, 4CH ₂ C <u>H</u> ₃); 3.46 (4H, уш. с, 2NCH ₂); 4.05 (8H, м, 4C <u>H</u> ₂ Me); 7.48– 7.57 (10H, м, 2C ₆ H ₅); 8.05 (2H, с, 2H-4); 8.76 (2H, с, 2NH)
7c	1.15 (6H, т, $J = 7.2$, 2OCH ₂ C <u>H</u> ₃); 2.03 (2H, т, $J = 6.6$, CH ₂); 3.21 (4H, м, 2NCH ₂); 3.43 (6H, с, 2NCH ₃); 4.08 (4H, кв, $J = 7.2$, OC <u>H</u> ₂ Me); 7.44–7.61 (10H, м, 2C ₆ H ₅); 8.08 (2H, с, 2H-4); 9.43 (2H, с, 2NH)
7 d	1.16 (12H, M, $4CH_2CH_3$); 1.99 (2H, T, $J = 6.3$, CH ₂); 3.17 (4H, M, 2NCH ₂); 4.08 (8H, M, $4CH_2Me$); 7.48–7.62 (10H, M, $2C_6H_5$); 8.02 (2H, c, 2H-4); 8.89 (2H, c, 2 NH)
9a	2.85 (3H, μ , $J = 3.6$, NHC <u>H</u> ₃); 7.48 (1H, M, H _{Ar}); 7.63–7.69 (6H, M, H _{Ar}); 7.84 (1H, M, H-9); 8.68 (1H, c, H-2); 8.70 (1H, M, H-6); 9.00 (1H, ym. c, N <u>H</u> Me); 13.71 (1H, c, 10-NH)
9b	1.16 (3H, T, $J = 6.3$, NHCH ₂ CH ₃); 3.36 (2H, M, NHCH ₂ CH ₃); 7.49 (1H, M, H _{Ar}); 7.62–7.76 (6H, M, H _{Ar}); 7.88 (1H, M, H-9); 8.69 (1H, c, H-2); 8.71 (1H, M, H-6); 9.11 (1H, yui. c, NHEt); 13.73 (1H, c, 10-NH)
9c	2.87 (3H, д, <i>J</i> = 2.7, NHC <u>H</u> ₃); 7.66 (7H, м, H _{Ar}); 8.23 (1H, м, H-9); 8.74 (1H, с, H-2); 9.02 (1H, уш. с, N <u>H</u> Me); 9.20 (1H, м, H-6)
9d	1.18 (3H, т, <i>J</i> = 6.6, NHCH ₂ C <u>H</u> ₃); 3.34 (2H, м, NHC <u>H</u> ₂ CH ₃); 7.68–7.83 (7H, м, H _{Ar}); 8.26 (1H, м, H-9); 8.78 (1H, с, H-2); 9.15 (1H, уш. с, N <u>H</u> Et); 9.24 (1H, м, H-6)
11 a	2.79 (3H, д, <i>J</i> = 4.2, NHC <u>H</u> ₃); 3.51 (2H, уш. с, CH ₂); 3.67 (2H, уш. с, CH ₂); 5.25 (1H, уш. с, OH); 7.37–7.82 (8H, м, H _{Ar}); 7.98 (1H, с, H-2); 8.54 (1H, д, <i>J</i> = 7.8, H-6); 9.00 (1H, кв, <i>J</i> = 4.2, N <u>H</u> Me); 12.82 (1H, уш. с, NH)
11b	1.85 (2H, T , $J = 6.3$, CH ₂); 2.80 (3H, π , $J = 4.2$, NHC <u>H₃</u>); 3.50–3.61 (4H, m , 2CH ₂); 4.62 (1H, T , $J = 4.8$, OH); 7.36–7.80 (8H, m , H _{Ar}); 7.98 (1H, c , H-2); 8.54 (1H, π , $J = 7.8$, H-6); 9.00 (1H, κ B, $J = 4.2$, N <u>H</u> Me); 12.74 (1H, γ III. c , NH)
11c	2.78 (3H, д, <i>J</i> = 4.8, NHC <u>H</u> ₃); 2.99 (2H, т, <i>J</i> = 6.0, C <u>H</u> ₂ Ph); 3.69 (2H, м, CH ₂ NH); 7.23–7.52 (13H, м, H _{Ar}); 7.93 (1H, с, H-2); 8.52 (1H, д, <i>J</i> = 7.5, H-6); 8.96 (1H, кв, <i>J</i> = 4.8, N <u>H</u> Me); 12.64 (1H, т, <i>J</i> = 6.6, NH
11d	2.80 (3H, д, <i>J</i> = 4.5, NHC <u>H</u> ₃); 4.69 (2H, д, <i>J</i> = 4.5, CH ₂ Het); 6.37 (1H, м, Het); 6.44 (1H, м, Het); 7.36–7.73 (9H, м, H _{Ar}); 8.01 (1H, с, H-2); 8.52 (1H, д, <i>J</i> = 7.5, H-6); 8.95 (1H, кв, <i>J</i> = 4.5, N <u>H</u> Me); 12.85 (1H, уш. т, NH)

ЯМР¹Н спектры синтезированных соединений

^{*} Спектр ЯМР ¹Н соединения **4a** соответствует приведенному в работе [3], спектр ЯМР ¹Н соединения **6** зарегистрирован в $CDCl_3$.

Найдено, что продуктами аминирования 4-оксо-4,10-дигидробензо[4,5]имидазо[1,2-*a*]пиридина **9a** алкиламинами **10a**–**d** являются 1-(алкиламино)- фенилметилиден-3-метилкарбамоил-4-оксо-1,4-дигидробензо[4,5]имидазо-[1,2-*a*]пиридины **11a**–**d**, причем реакция протекает с препаративными выходами (69–82%). 3-Алкилкарбамоил-1-бензоил-4-оксо-4H-бензо[4,5]-[1,3]тиазоло[3,2-*a*]пиридины **9с**,**d** в подобную реакцию с алкиламинами **10a**–**d** не вступают. Убедительным признаком осуществления данного взаимодействия является отсутствие в спектрах ЯМР ¹³С соединений **11b**,**d** весьма характеристичных сигналов углерода карбонильной группы бензоильного фрагмента, которые в спектрах ЯМР ¹³С 1,6-аннелированных производных 5-алкилкарбамоил-3-бензоилпиридин-2-она **3b,с**, **9a** наблюдаются в области 191.2–194.1 м. д.

Структура соединения **11с** была исследована методом РСА (табл. 5 и рисунок). Интересной особенностью его молекулярной структуры является образование достаточно прочных внутримолекулярных водородных связей N–H…N и N–H…O, замыкающих 6-членные циклы N(4)C(14)C(8)C(7)N(2)H(4) и N(3)C(10–12) O(2)H(3).

Общий вид молекулы 3-метилкарбамоил-4-оксо-1-(2-фенилэтиламино)фенилметилиден-1,4-дигидробензо[4,5]имидазо[1,2-*a*]пиридина **11с**.

Основные длины связей соединения 11	lc
-------------------------------------	----

Таблица 5

Связь	l, Å	Связь	l, Å
C(1)–N(2)	1.328(2)	C(7)–C(8)	1.391(2)
C(1)–C(2)	1.400(3)	C(8)–N(5)	1.353(2)
C(2)–C(3)	1.363(3)	C(8)–N(4)	1.386(2)
C(3)–N(1)	1.376(2)	C(9)–N(5)	1.321(2),
N(1)–N(2)	1.377(2),	C(9)–C(10)	1.419(3),
N(3)–N(4)	1.3597(19)	C(10)–C(11)	1.357(3),
C(6)–N(3)	1.338(2)	C(11)–N(4)	1.368(2)
C(6) - C(7)	1.399(2)		

На основании экспериментальных данных можно предположить следующую схему механизма рециклизации дигидропиридин-2-онов 1а, в в бициклические производные бензимидазола 9а, b. Вероятно, первыми стадиями реакции являются гидролиз и аминирование дигидропиридин-2онов 1a,b, соответственно, в соединения 4a,b и интермедиаты 12a,b. Следует отметить, что последние, по всей видимости, могут получаться и непосредственно при аминировании дигидропиридин-2-онов 1а, b о-фенилендиамином 8а [1]. Промежуточные продукты 12а, b, возможно, подвергаются внутримолекулярной нуклеофильной атаке свободной аминогруппы о-фенилендиаминового фрагмента по эндоциклическому атому N, превращаясь при этом в производные бензимидазола 13а, b. Последние, по всей видимости, через наиболее выгодную для внутримолекулярной циклизации конформацию 14а, b трансформируются в бициклические гетеросоединения 9а, b. Очевидно, подобным образом осуществляются и рециклизации дигидропиридин-2-онов 1а, в 5-оксо-1,2,3,5-тетрагидроимидазо[1,2-*a*]пиридины **3a**,**b**, 6-оксо-1,2,3,5-тетрагидро-2H-пиридо[1,2-*a*]пиримидины **3с, d** и 4-оксо-4H-бензо[4,5][1,3]тиазоло-[3,2-*а*]пиридины **9с, d**.

Известно, что замещенные бензо[4,5]имидазо[1,2-*а*]пиридины и бензо-[4,5][1,3]тиазоло[3,2-*а*]пиридины проявляют фунгицидные [7, 8], антимикробные [9], противораковые [8, 10], противовирусные [11] и антибактериальные [8] свойства. Таким образом, в результате проведенных нами исследований, найдены новые возможности в синтезе и функционализации 1,6-аннелированных производных 3-алкилкарбамоил-5-бензоилпиридин-2-она **3а–d**, **9а–d** – перспективных биологически активных соединений.

12 - 14 a R = Me, b R = Et

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С записаны на приборе Varian-300 (300 и 75 МГц соответственно), внутренний стандарт ТМС. ИК спектры зарегистрированы на приборе UR-20 в таблетках КВг.

Рентгеноструктурное исследование монокристалла соединения 11c выращенного из этанола, с линейными размерами 0.48×0.28×0.12 мм проведено при комнатной температуре на дифрактометре Bruker Smart Apex II (λ MoK α излу- чение, графитовый монохроматор, $\theta_{max} = 26.56^{\circ}$, сегмент сферы $-11 \le h \le$ 16, $-13 \le k \le 15$, $-17 \le l \le 17$). Всего было собрано 14 214 отражений, из которых 4436 являются симметрически независимыми (*R*-фактор усреднения 0.034). Кристаллы соединения **11с**: $C_{28}H_{24}N_4O_2$, M = 448.51, моноклинные, пространственная группа $P2_1/n$ (№ 14), a = 13.2132(10), b = 12.6692(9), c =14.7662(13) Å, $\beta = 111.446(3)^{\circ}$, V = 2300.7(3) Å³, Z = 4, $d_c = 1.295$, $\mu = 0.084$ Mm⁻¹, F(000) = 944. Структура расшифрована прямым методом и уточнена МНК в полноматричном анизотропном приближении с использованием программ SHELXS97 и SHELXL97 [12, 13]. Атомы фенильных колец С(23-29), а также атомы С(21), С(22) и сопутствующие им протоны разупорядочены по двум позициям А и В с заселен- ностями 55 и 45% соответственно. Все атомы водорода, связанные с атомами углерода, посажены геометрически, а атомы H(N), участвующие в образовании водородных связей, выявлены объективно и уточнены изотропно. В уточнении использовано 2666 отражений с $I > 2\sigma(I)$ (364 уточняемых параметра, число отражений на параметр 7.32, использована весовая схема $\omega = 1/[\sigma^2(F_o^2) + (0.1P)^2]$, где $P = (F_o^2 + 2F_c^2)/3)$. Была введена коррекция поглощения по программе SADABS (отношение минимальной к максимальной коррекции T_{min} /T_{max} = 0.85). Окончательные значения факторов расходимости $R1(F^2)$ 0.0955, $R_W(F^2)$ 0.1679, GooF 0.995 по всем отражениям и R1(F) 0.0492, $R_W(F^2)$ 0.1331, GooF 0.993 по отражениям с $I > 2\sigma(I)$. Остаточная электронная плотность из разностного ряда Фурье после последнего цикла уточнения 0.25 и – 0.18 e/Å³. Полный набор рентгеноструктурных данных для соединения 11с депонирован в Кембриджском банке структурных данных (ССDС 6839232).

6-Алкилкарбамоил-8-бензоил-5-оксо-1,2,3,5-тетрагидроимидазо[1,2-а]пиридины 3а,b, 7-алкилкарбамоил-9-бензоил-6-оксо-1,2,3,5-тетрагидро-2Н-пиридо[1,2-а]пиримидины 3с,d, 3-алкилкарбамоил-1-бензоил-4-оксо-4,10-дигидробензо[4,5]имидазо[1,2-а]пиридины 9а,b, 3-алкилкарбамоил-1-бензоил-4-оксо-4Н-бензо[4,5][1,3]тиазоло[3,2-а]пиридины 9с,d. Раствор 1 ммоль 1,2-дигидропиридин-2-она 1а,b и 1.5 ммоль амина 2а,b (1.0 ммоль амина 8а,b) в 4 мл 2-пропанола кипятят 2–6 ч, охлаждают и отфильтровывают осадок соединений 3а-d, 9а-d. При упаривании фильтрата выделяют дипиридилоксиды 4а,b.

1-Алкил-6-(1-алкил-5-бензоил-2-оксо-3-этоксикарбонил-1,2-дигидропиридин- 6-ил)окси-5-бензоил-2-оксо-3-этоксикарбонил-1,2-дигидропиридины 4а,b полу- чают по методике [3].

N,N'-Ди(1-алкил-5-бензоил-2-оксо-3-этоксикарбонил-1,2-дигидропиридин-6-ил)-1,2-диаминоэтаны (1,3-диаминопропаны) 7а-d. К раствору 1 ммоль 1,2-дигидропиридин-2-она **1а,b** (дипиридилоксида **4а,b**) в 3 мл 2-пропанола при перемешивании по каплям добавляют раствор 0.5 ммоль амина **2а,b** в 3 мл 2-пропанола. Реакционную массу выдерживают 3 ч при 20 °C и отфильтровывают осадок соединения **7а-d**.

Рециклизация N,N'-ди(1-алкил-5-бензоил-2-оксо-3-этоксикарбонил-1,2-

дигидропиридин-6-ил)-1,2-диаминоэтана (7а) в 8-бензоил-6-метилкарбамоил-5-оксо-1,2,3,5-тетрагидроимидазо[1,2-*a*]пиридин (3а). Раствор 0.626 г (1 ммоль) соединения 7а и 0.18 г (3 ммоль) диаминоэтана 2а в 4 мл 2-пропанола кипятят 5 ч, охлаждают и отфильтровывают осадок соединения 3а, выход 0.559 г (81%).

Ди[2'-(5-бензоил-1-метил-2-оксо-3-этоксикарбонил-1,2-дигидропиридин-6-ил)аминоэтил]дисульфид (6). Раствор 0.331 г (1 ммоль) 1,2-дигидропиридин-2-она 1а, 0.170 г (1.5 ммоль) гидрохлорида 1-амино-2-меркаптоэтана и 0.152 г (1.5 ммоль) триэтиламина в 4 мл 2-пропанола кипятят 3 ч, охлаждают и отфильтровывают осадок соединения 6.

Аминирование 4-оксо-4,10-дигидробензо[4,5]имидазо[1,2-а]пиридина (9а) алкиламинами 10. Смесь 0.345 г (1 ммоль) соединения 9а и 3 ммоль алкиламина 10 выдерживают 10–20 мин при температуре 120–140 °C, охлаждают, кипятят с 3 мл 2-пропанола, охлаждают и отфильтровывают осадок соединения 11.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. Н. Брицун, А. Н. Есипенко, А. Н. Чернега, Э. Б. Русанов, М. О. Лозинский, *XГС*, 1660 (2007). [*Chem. Heterocycl. Comp.*, **43**, 1411 (2007)].
- В. Н. Брицун, А. Н. Есипенко, В. В. Пироженко, М. О. Лозинский, XГС, 1216 (2008). [Chem. Heterocycl. Comp., 44, 979 (2008)].
- 3. В. Н. Брицун, А. Н. Есипенко, М. О. Лозинский, *XГС*, 1089 (2008). [*Chem. Heterocycl. Comp.*, **44**, 876 (2008)].
- 4. В. Н. Брицун, Е. И. Майборода, М. О. Лозинский, *XГС*, 472 (2008). [*Chem. Heterocycl. Comp.*, **44**, 366 (2008)].
- 5. Т. В. Низовцева, Т. Н. Комарова, А. С. Нахманович, *ЖОрХ*, 43, 142 (2007).
- 6. D. G. Hehemann, W. Winnik, J. Heterocycl. Chem., 31, 393 (1994).
- 7. S. Demirayak, K. Gueven, Pharmazie, 50, 527 (1995).
- 8. A. M. Youssef, E. Noaman, Arzneim.-Forsch., 57, 547 (2007).
- 9. S. Demirayak, U. A. Mohsen, P. Chevallet, H. Erdeniz, Farmaco, 12, 825 (1996).
- 10. S. A. M. El-Hawash, E. A. M. Badawey, T. Kappe, Pharmazie, 54, 341 (1999).
- 11. T. Chiba, S. Snigeta, Y. Numazaki, Biol. Pharm. Bull., 18(8), 1081 (1995).
- 12. G. M. Sheldrick, SHELXS-97, *Program for the Solution of Crystal Structures*, Univ. of Göttingen, Göttingen, Germany (1997).
- 13. G. M. Sheldrick, SHELXL-97, *Program for the Refinement of Crystal Structures*, Univ. of Göttingen, Göttingen, Germany (1997).

Институт органической химии НАН Украины, Киев-94, 02660, Украина e-mail: bvn1967@rambler.ru Поступило 16.03.2009