Ю. И. Муринов^{*}, Т. Р. Нугуманов, С. П. Иванов, М. Е. Клецкий^a, И. Ф. Камалетдинов^a, В. И. Минкин^б

ЭКСПЕРИМЕНТАЛЬНОЕ И КВАНТОВО-ХИМИЧЕСКОЕ ИЗУЧЕНИЕ МЕХАНИЗМА ОКИСЛЕНИЯ 5-ГИДРОКСИ-6-МЕТИЛУРАЦИЛА МОЛЕКУЛЯРНЫМ КИСЛОРОДОМ В ПРИСУТСТВИИ ИОНОВ МЕДИ(II)

Экспериментально обнаружено, что при окислении 5-гидрокси-6метилурацила молекулярным кислородом в водной среде в присутствии хлорида меди(II) обра-зуется 5,5,6-тригидрокси-6-метилпиримидин-2,4-дион. *Ab initio* и DFT-расчеты в базисе 6-31G* как в газовой фазе, так и с учетом растворителя показали, что процесс протекает при непосредственном участии активированной молекулы кислорода на комплексе CuCl₂•(5-гидрокси-6-метилурацил)₂.

Ключевые слова: 5-гидрокси-6-метилурацил, активные формы кислорода, окисление молекулярным кислородом, квантово-химические расчеты.

Известно, что при фиксации и активации молекулярного кислорода на комплексах переходных металлов происходит мягкое и селективное окислительное превращение субстрата [1, 2]. При использовании в качестве металла переменной валентности соединений меди последние могут рассматриваться как модели медьсодержащих оксидаз. В ряде случаев активированная молекула кислорода выступает в качестве гидроксилирующего агента по отношению к лиганду [3, 4].

Примером такого рода процессов является ранее обнаруженное окисление в водной среде 5-гидрокси-6-метилурацила (1) молекулярным кислородом в присутствии солей меди(II) с образованием 5,5,6-тригидрокси-6-метилпиримидин-2,4-диона (2) [5]:

Настоящая работа посвящена экспериментальному и квантово-химическому изучению механизма этого процесса.

Реакцию окисления урацила 1 проводили в термостатированном реакторе при 45 °C в водной среде (pH 3.5–4.0) при соотношении реагентов 1– CuCl₂•2H₂O, 2:1, в течение 4 ч. В ходе реакции следили спектрофото-

Рис. 1. Зависимость УФ спектра соединения **1** (вода) от времени протекания реакции (45 °С, 1 - 0 мин, 2 - 50 мин, 3 - 150 мин, 4 - 240 мин)

метрически за уменьшением интенсивности полосы поглощения при λ 278 нм (постепенное насыщение двойной связи C(5)=C(6) соединения 1, рис. 1) и ВЭЖХ за накоплением соединения 2 и расходованием исход-ного соединения 1. По окончании процесса соединение 2 было выделено и охарактеризовано спектральными методами и PCA.

Для изучения вероятного механизма гидроксилирования соединения 1 мы предприняли газофазные и с учетом растворителя (вода) *ab initio* HF/6-31G* и ROHF/6-31G*-расчеты и DFT-расчеты в базисе B3LYP/6-31G* его отдельных стадий (последний был недавно эффективно использован для расчетов механизма окисления гуанина радикалами OY, где Y = H, Me, OH [6]).

На первом этапе работы мы рассмотрели возможные пути (*a*-*d*) образования активных форм кислорода в отсутствие солей меди (указаны энергетические эффекты, ккал/моль).

$${}^{4}O_{2} + H_{2}O - \begin{bmatrix} a & & & & & \\ & 2O^{\bullet} + H^{\bullet} + \bullet OH & 216.0 \\ \hline b & & O^{\bullet} + H_{2}O_{2} & 62.5 \\ \hline c & & HO_{2}^{\bullet} + \bullet OH & 45.2 \\ \hline d & & O^{\bullet} + 2^{\bullet}OH & 83.6 \end{bmatrix}$$

Все газофазные реакции, как и ожидалось, являются эндотерми-

ческими. В то же время, с наименьшей затратой энергии протекает реакция c – фактически, гомолиз воды по связи ОН под действием молекулярного кислорода. Поскольку спектрофотометрически нами было подтверждено образование комплексов меди(II) с 5-гидрокси-6-метилурацилом состава Cu(1)₂²⁺, наиболее вероятным представляется следующий маршрут образования активных форм кислорода.

Вначале происходит комплексообразование меди(II) с урацилом 1.

$$Cu^{2+} + 2(1) \rightarrow Cu(1)_2^2$$

Далее протекают комплексообразование O_2 с $Cu(1)_2^{2+}$ с образованием аддукта $Cu(1)_2O_2^{2+}$:

$$Cu(1)_2^{2^+} + O_2 \rightarrow Cu(1)_2 O_2^{2^+}$$

и последующий гомолиз молекулы воды с образованием гидроксильных радикалов

$$\operatorname{Cu}(1)_2 \operatorname{O_2}^{2^+} + \operatorname{H}_2 \operatorname{O} \rightarrow \operatorname{Cu}(1)_2 \operatorname{O_2} \operatorname{H}^{2^+} + \operatorname{OH}^{\bullet}$$

Именно эти процессы, протекающие либо последовательно, либо синхронно в супрамолекулярном комплексе $Cu(1)_2O_2^{2^+}$ •H₂O, и являются, очевидно, важнейшими источниками гидроксил-радикалов в реакционной смеси.

Если в реакционной среде присутствуют более сильные лиганды, чем соединение 1 (например, трилон Б), окисления урацила не происходит.

Нами были проведены расчеты энергетического эффекта газофазной реакции, моделирующей взаимодействия в комплексе $Cu(1)_2O_2^{2+}$

$$Cu...OO^{2+} + HOH \rightarrow Cu...OOH^{2+} + OH^{\bullet}$$

Установленная расчетами эндотермичность последней реакции (энергетический эффект равен 20.6 ккал/моль), очевидно, преодолевается в реальных условиях ее проведения в медьсодержащем гексакоординированном комплексе [7]. Поэтому в качестве наиболее вероятных агентов для реакции $1 \rightarrow 2$ мы выбрали в расчетах гидроксильные радикалы. В то же время можно также предположить и образование интермедиата 3 [7]. Тогда наиболее вероятные пути перехода от урацила 1 к триолу 2 могут представлять собой конкурентную атаку субстрата атомарным (молекулярным) кислородом или гидроксильными радикалами.

Указанные на схеме 1 тепловые эффекты всех стадий возможных процессов, рассчитанные как методами *ab initio*, так и DFT, говорят об их экзотермичности и о конкуренции путей $1 \rightarrow 4 \rightarrow 2$ и $1 \rightarrow 5 \rightarrow 2$ друг с другом в условиях реакции получения триола 2 из урацила 1 (расчеты DFT и *ab initio* привели к непротиворечивым результатам, см. таблицу).

Схема 1

На рис. 2 представлены рассчитанные нами и полученные из PCA [7] геометрические характеристики урацила 1, триола 2, а также иных возможных участников перехода $1 \rightarrow 2$, а в таблице – их энергетические характеристики.

Мы полагаем, что присутствующий в системе атомарный кислород, расходуется преимущественно на экзотермическую реакцию получения оксида **3**. При дальнейшей его гидратации уже на начальном этапе молекула воды приближается к мостиковому атому кислорода. Далее происходит процесс синхронного протонирования кислорода и гидроксилирования атома углерода гетероцикла. Гидратация протекает через единственное переходное состояние **6** (рис. 2), лежащее выше реагентов по шкале энергий на 18.3 ккал/моль (рис. 3).

Стадия гидратации интермедиата **3**, хотя и является также экзотермической, кинетически гораздо менее выгодна для получения триола, нежели прямые безбарьерные атаки радикалами ОН систем **1**, **4** и **5**. Об этом свидетельствуют результаты наших расчетов минимально-энергетического пути стадии $3\rightarrow 2$.

В работе нами была также изучена иная возможность образования триола 2 – через промежуточные гидроперекиси, образующиеся из соединений 4 и 5. Для соединений 5 приведены рассчитанные значения тепловых эффектов, ккал/моль:

$R^{\bullet} + O_2 \rightarrow RO_2^{\bullet},$	-60.6
$\mathrm{RO}_2^{\bullet} + \mathrm{H}^{\bullet} \rightarrow \mathrm{ROOH},$	-87.3
$\text{ROOH} \rightarrow \text{RO}^{\bullet} + \text{OH}^{\bullet}$,	45.1
$\mathrm{RO}^{\bullet} + \mathrm{HOH} \rightarrow 2^{\bullet} + \mathrm{OH}^{\bullet},$	9.8

Puc. 2. Важнейшие геометрические характеристики структур 1–5, по данным B3LYP/6-31G*-расчетов и PCA (числа в скобках на структурах 1, 2).
Представлены также важнейшие геометрические характеристики переходного состояния 6. Длины связей, Å, валентные углы (курсив), град.

Структура	<i>Е</i> _{полн} , а. е.		
	B3LYP/6-31G*	HF/6-31G*	HF/6-31G*+PCM
1	-529.35519	-526.36472	-526.38771
2	-680.99372	-677.25364	-677.29124
3	-604.54565	-601.19981	-601.23075
4	-605.13696	-601.77626	-601.81563
5	-605.12558	-601.77013	-601.80410
6	-680.92539	-	-
$^{1}O_{2}$	-150.25742	-149.53299	-149.53162
H_2O	-76.40895	-76.01075	-76.02142
OH•	-75.72345	-75.38228	-75.39077
O•	-75.06062	-74.65660	-74.65672
HO_2 •	-150.89915	-150.17053	-150.18399
H_2O_2	-151.53321	-150.76479	-150.78520

Полные энергии всех структур, участвующих в превращении 1→2, рассчитанные методами HF/6-31G* и B3LYP/6-31G* (номера структур указаны на рис. 2). Все радикальные структуры рассчитывались *ab initio* в базисе ROHF/6-31G*

Итак, окисление 5-гидрокси-6-метилурацила (1) в присутствии хлорида меди(II) в водной среде происходит при непосредственном участии активированной молекулы кислорода на комплексе $CuCl_2 \cdot (1)_2$ и завершается образованием 5,5,6-тригидрокси-6-метилпиримидин-2,4-диона (2). Образование триола происходит в результате атаки по двойной связи C=C урацила 1 гидроксильными радикалами. Помимо радикального маршрута триол 2 может образовываться через стадию гидратации оксида 3.

Рис. 3. Минимально-энергетический путь реакции 3→2, по данным B3LYP/6-31G*расчетов. Указаны относительные значения энергии в ккал/моль. За начало отсчета принята сумма полных энергий системы $3 + H_2O$. Нумерация структур соответствует рис. 2

Полученные результаты полностью соответствуют установленному в работе [8] радикальному механизму образования гликоля при УФ облучении водного раствора урацила, насыщенного O₂, в присутствии TiO₂.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

УФ спектры регистрировали на спектрофотометре Specord M40. Спектр ЯМР 13 С записывали на импульсном спектрометре Bruker AM-300 (75 МГц) в D₂O, внутренний стандарт 2,2-диметил-2-силапентан-5-сульфонат натрия (DSS). Хрома-тографическое изучение окисления соединения 1 проводили на жидкостном хроматографе Shimadzu LC–20 AD с применением колонки с фазой Luna C18, 5 мкм, с размерами 250 × 4.6 см (Phenomenex, США). В качестве подвижной фазы использовали элюент вода–ацетонитрил, 95 : 5, со скоростью потока 1 мл/мин. Детектирование проводили при длине волны 215 нм.

В работе использовали 5-гидрокси-6-метилурацил (1), синтезированный по методике [9], перекристаллизованный из водных растворов, и двухводный хлорид меди(II), квалификации "х. ч." Содержание основного вещества в 1 составляет не менее 97% [10]. Для приготовления растворов использовали бидистиллированную воду.

5,5,6-Тригидрокси-6-метилпиримидин-2,4-дион (2). К раствору 0.51 г (3.6 ммоль) соединения 1 в 50 мл воды добавляют 0.31 г CuCl₂·2H₂O (1.8 ммоль), перемешивают 4 ч при атмосферном давлении и 45 °C. Кристаллы соединения 2 выпадают при медленном испарении воды из реакционной смеси. Выход 0.54 г (85%), т. пл. 120–121 °C (из воды). Спектр ЯМР ¹³C, δ , м. д.: 156.01 (C-2); 173.97 (C-4); 84.83 (C-5); 92.19 (C-6); 20.98 (CH₃). Масс-спектр (отрицательных ионов резонансного захвата электронов, 0.2–0.9 эВ), *m/z* (*I*_{отн}, %): 158 [M–H₂O]⁺ (44), 157 [M–H₃O]⁺ (1.32), 141 (10.8), 140 (74.36), 115 [158–NCOH]⁺ (100), 42 [CNO]⁺ (12.1). Найдено, %: C 33.7; H 4.4; N 15.4. C₅H₈N₂O₅. Вычислено, %: C 34.1; H 4.6; N 15.9.

Методика квантово-химических расчетов. Расчеты по теории функционала плотности (DFT) проводили с использованием B3LYP-обменно-корреляционного функционала [11, 12] и стандартного базисного набора 6-31G* [13]. Для большинства структур проводили также *ab initio* HF-расчеты в базисе 6-31G*. Оптимизацию геометрии проводили методом аналитического расчета градиентов по схеме Берни.

Природу стационарных точек устанавливали на основании данных расчета частот нормальных колебаний (матрицы силовых постоянных Гессе). Минимально-энергетические пути реакций получали при помощи градиентного спуска из переходных состояний в прямом и обратном направлении переходного вектора.

Влияние растворителя (с полной оптимизацией геометрии всех стационарных точек) учитывали в рамках модели поляризуемого континуума (*PCM*) [14–17]. В качестве растворителя была выбрана вода. Все расчеты выполняли с использованием программного комплекса Gaussian 03 [18].

СПИСОК ЛИТЕРАТУРЫ

- 1. Е. С. Рудаков, *Реакции алканов с окислителями, металло-комплексами и радикалами в растворах*, Наукова думка, Киев, 1985.
- 2. И. П. Скибида, А. М. Сахаров, *Рос. хим. журн.*, **39**, 14 (1995).

- 3. S. Itoh, H. Nakao, S. Fukuzumi, J. Inorg. Biochem., 67, 65 (1997).
- 4. L. M. Mirica, X. Ottenwaelder, T. D. P. Stack, Chem. Rev., 104, 1013 (2004).
- 5. Т. Р. Нугуманов, С. П. Иванов, А. А. Насыров, Р. К. Гайфутдинова, Ю. И. Муринов, *Башк. хим. журн.*, **14**, 48 (2007).
- 6. B. H. Munk, H. B. Schlegel, Chem. Res. Toxicol., 20, 432 (2007).
- 7. Т. Р. Нугуманов, С. П. Иванов, Ю. И. Муринов, *Башк. хим. журн.*, **13**, 20 (2006).
- 8. C. Jassaud, O. Paisse, R. Faure, J. Photochem. Photobiol. A: Chemistry, 130, 157 (2000).
- 9. В. П. Кривоногов, Г. А. Толстиков, И. Муринов, Ф. А. Зарудий, *Хим.-фарм. журн.*, **27**, 38 (1993).
- 10. С. П. Иванов, Т. Р. Нугуманов, Ю. И. Муринов, *Башк. хим. журн.*, **14**, 42 (2007).
- 11. A. D. Becke, J. Chem. Phys., 98, 5648 (1993).
- 12. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 37, 785 (1988).
- 13. W. J. Hehre, L. Radom, P. v. R. Schleyer, J. A. Pople, *Ab initio Molecular Orbital Theory*, Wiley, New York, 1986.
- 14. B. Ya. Simkin, I. Sheikhet, *Quantum Chemical and Statistical Theory of Solutions:* A Computational Approach; Ellis Horwood, London, 1995.
- 15. E. Cances, B. Mennucci, J. Tomasi, J. Chem. Phys., 107, 3032 (1997).
- 16. M. Cossi, V. Barone, R. Cammi, J. Tomasi, J. Chem. Phys. Lett., 255, 327 (1996).
- 17. V. Barone, M. Cossi, J. Tomasi, J. Comput. Chem. 19, 404 (1998).
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, *Gaussian 03, Version 6.0*, Gaussian, Inc., Pittsburgh PA, 2003.

Институт органической химии Уфимского научного центра РАН, Уфа 450054, Россия e-mail: murinov@anrb.ru Поступило 08.04.2008

^аХимический факультет Южного федерального университета, Ростов-на-Дону 344090, Россия e-mail: alll3@yandex.ru

⁶НИИ физической и органической химии Южного федерального университета, Ростов-на-Дону 344090, Россия e-mail: nmr@ipoc.rsu.ru