Л. М. Потиха^{*}, В. А. Ковтуненко, А. В. Туров, Г. В. Паламарчук^а, Р. И. Зубатюк^а, О. В. Шишкин^а

СИНТЕЗ ПРОИЗВОДНЫХ 2,4-ДИФЕНИЛ-1Н-ПИРРОЛ-1-АМИНА

Направление реакции 4-бром-1,3-дифенил-2-бутен-1-она (γ-бромдипнона) с гидразинами зависит от природы заместителя в них. Взаимодействие с гидросульфатом 1-метилгидразиния приводит к бромиду 1-метил-3,5-дифенилпиридазин-1-ия, а с гидразидами карбоновых кислот – к N-(2,4-дифенил-1Н-пиррол-1ил)ами-дам карбоновых кислот. В реакции γ-бромдипнона с фенилгидразином наряду с 1,3,5-трифенил-1,4-дигидропиридазином образуется N,2,4-трифенил-1Нпиррол-1-амин (15%), в случае 1-(2,4-динитрофенил)гидразина – 2,4динитрофенил-гидразон (*Z*)-4-бром-1,3-дифенил-2-бутен-1-она. При конденсации 2,4-дифенил-1Н-пиррол-1-амина с ароматическими альдегидами легко образуются N-(арилметил-иден)-2,4-дифенил-1Н-пиррол-1-амины, а при алкилировании метилиодидом – N,N-диметил-2,4-дифенил-1Н-пиррол-1-амин.

Ключевые слова: 1-аминопиррол, *ү*-бромдипнон, 2,4-дифенил-1Н-пиррол-1-амин, 3,5-дифенилпиридазин.

Интерес к производным арилпирролов постоянно возрастает в течение последних 30 лет. Среди них найдены вещества с высоким уровнем биологической активности, которые применяются для лечения сердечнососудистых, иммунных заболеваний и заболеваний ЦНС [1, 2]. Ряд арилпирролов используется в сельском хозяйстве, пищевой промышленности, для получения новых полимерных материалов [2]. Несомненно, в связи с этим важна разработка новых путей синтеза 1-аминоарилпирролов, перспективных соединений в плане изучения как их биологической активности [3, 4], так и синтетического потенциала [5, 6].

Относительно мало изучен способ получения 1-аминопирролов взаимодействием γ-галогенкарбонильных соединений с гидразинами [7]. Известно, что в зависимости от строения реагентов эти реакции могут приводить к производным пиридазина [8] или 1-аминопиррола [7]. Например, при взаимодействии 1,3-дифенил-4-бром-2-бутен-1-она (γ-бромдипнона) (1) с гид-разингидратом образуется 2,4-дифенил-1Н-пиррол-1-амин (2) [9], а с арил-гидразинами – производные 1,3,5-трифенилпиридазина [9]. Настоящая ра-бота посвящена более глубокому исследованию процесса синтеза N-заме-щенных производных 2,4-дифенил-1Н-пиррол-1-амина 2.

Нами изучено взаимодействие γ-бромдипнона 1 с гидросульфатом 1-метилгидразиния в различных условиях: сплавление, нагревание исходных в растворителях в присутствии оснований или без, и нагревание в уксусной кислоте. Исследование показало, что проведение реакций в отсутствие оснований, независимо от условий, приводит к 2,4-дифенилфурану, который легко образуется при внутримолекулярной конденсации соединения 1,

 $\mathbf{f} \mathbf{R} = CH_2CN; \mathbf{5} \mathbf{a} \mathbf{A}\mathbf{r} = Ph, \mathbf{b} \mathbf{A}\mathbf{r} = 4-MeOC_6H_4$

провоцируемой слабыми нуклеофилами или в кислой среде [10, 11]. В присутствии же оснований (AcONa – в случае сплавления, NaHCO₃ – при кипячении в спирте) образуется, в соответствии с данными спектра ЯМР ¹H, смесь 2,4-дифенилфурана и продукта межмолекулярной конденсации γ-бромдипнона 1 с метилгидразином. Наибольший выход (53%) продукта конденсации получен при проведении реакции в спирте. Согласно данным элементного анализа и масс-спектра, продукт реакции представлял собой соль (бромид). Однако попытки выделить из соли свободное основание действием триэтиламина приводили к ее деструкции.

Для выяснения строения синтезированного соединения мы измеряли его спектры ЯМР на ядрах ¹Н и ¹³С, а также выполнили эксперименты по двумерной гомоядерной (COSY, NOESY) и гетероядерной ¹³С¹Н корреляции (HMQC, HMBC). В спектре ЯМР ¹Н продукта конденсации, как и в спектре исходного соединения 1 [12], присутствуют сигналы ароматических протонов в виде узкого мультиплета при 7.69 м. д. (6Н) и в более слабом поле (в области 8.30 м. д.) – два сигнала о-протонов фенильных заместителей. В спектре наблюдаются также синглет метильной группы (4.71 м. д.) и два однопротонных синглета в слабом поле (10.49 и 9.31 м. д.). которые не обмениваются с D₂O. Согласно данным спектра NOESY, синглет при 10.49 м. д. имеет корреляции с сигналом метильной группы и мультиплетом о-протонов одного из бензольных циклов (8.28 м. д.), что указывает на их пространственную близость. На основании аналитических и спектральных данных мы предположили, что продуктом конденсации у-бромдипнона 1 с гидросульфатом метилгидразина является бромид 1-метил-3,5-дифенилпиридазин-1-ия (3).

Дальнейшее подтверждение этому выводу мы нашли в спектрах гетероядерной корреляции (рис. 1). В табл. 1 для каждого из сигналов ¹Н приведены положения кросс-пиков, найденные в двумерных спектрах HMQC, HMBC и NOESY.

Рис. 1. Отнесения сигналов, стрелками показаны структурнозначимые корреляции НМВС для соединений **3** (**A**) и **10** (**B**)

Наличие корреляций между протонным синглетом при 10.49 м. д. (H-6) и атомом углерода метильной группы (52.98 м. д.), протоны которой также имеют корреляцию с третичным атомом С-6 при 147.5 м. д., подтверждает строение молекулы 1-метил-3,5-дифенилзамещенного пиридазина. В альтернативном варианте – в случае бромида 1-метил-4,6-дифенилпиридазин-1-ия – протон, дающий в спектре наиболее слабопольный синглет (H-3), отстоит от метильной группы более чем на 3 химических связи и не может дать корреляций в спектре HMBC.

Таблица 1

Соеди-	δ, м. д.					
нение	ЯМР ¹ Н	HMQC	HMBC	NOESY		
3	4.71	52.98	147.5	10.49		
	7.69	133.05, 130.31, 130.13	128.8, 129.01, 130.1, 130.3, 131.6, 132.9, 133.0	8.28, 8.34		
	8.28	129.01	128.8, 133.0, 146.9	7.69, 9.31, 10.49		
	8.34	128.80	129.0, 133.0, 161.3	7.69, 9.31		
	9.31	129.1	131.6, 132.9, 147.5, 161.3	8.28, 8.34		
	10.49	147.5	52.98, 128.8, 131.6, 146.9	4.71, 8.28		
10	11.43	_	151.95, 144.3, 130.53, 117.33	_		
	8.93	123.4	144.3, 138.4, 130.94, 130.53	_		
	8.42	130.94	144.3	8.21		
	8.21	117.33	138.4, 130.94, 130.53	8.42		
	7.90	127.68	151.95, 131.3	7.50		
	7.77	127.5	146.0, 129.95, 127.5	4.31, 6.80, 7.50		
	7.50	131.3, 129.95, 129.6, 129.4	137.5, 135.5, 129.6, 129.4, 127.68, 127.5	7.90, 7.77		
	6.80	122.3	146.0, 137.5, 135.5, 30.03	7.77		
	4.31	30.03	146.0, 137.5, 123.3	7.77		

Протон-углеродные и протон-протонные корреляции для соли 1-метилпиридазиния 3 и гидразона 10

Поскольку попытки получить N-метилзамещенный 2,4-дифенил-1Hпиррол-1-амин в отсутствие основания в реакционной смеси привели только к 2,4-дифенилфурану, мы попытались осуществить его синтез путем алкилирования 2,4-дифенил-1Н-пиррол-1-амина 2. Однако нагревание раствора соединения 2 в ацетонитриле с метилиодидом (независимо от соотношения реагентов) не останавливается на этапе моноалкилирования, а ведет к N,N-диметил-2,4-дифенил-1Н-пиррол-1-амину (4). На это указывают отсутствие сигналов группы NH в его спектрах ИК и ЯМР ¹Н и наличие двух сигналов протонов метильных групп (2.19 и 1.87 м. д.) общей интенсивностью 6H в протонном спектре (табл. 2, 3). N-Метильные группы в структуре 4 неэквивалентны, что может служить указанием на заторможенность вращения диметиламиногруппы относительно пиррольного кольца и на копланарное расположение. Взаимодействие соединения 2 с другими алкилирующими реагентами (бензилгалогенидами, у-бромдипноном) в тех же условиях приводит к сложным смесям продуктов реакции, разделить которые нам не удалось.

2,4-Дифенил-1Н-пиррол-1-амины 2 и 4 не образуют устойчивых протонных солей. Следует отметить, что такие соли описаны лишь в случае более основных триалкилзамещенных 1Н-пиррол-1-аминов [13]. Также безуспешной оказалась и попытка получить четвертичную метиламмониевую соль соединения 4. Длительное нагревание N,N-диметилпроизводного 4 с метилтозилатом или диметилсульфатом привело лишь к его частичной деструкции.

Сравнительно легко происходит конденсация пиррол-1-амина 2 с ароматическими альдегидами в спирте. При этом с выходом 75–76% образуются 2,4-дифенил-N-(арилметилиден)-1Н-пиррол-1-амины 5а,b.

Длительное (10 ч) нагревание соединения **2** в уксусном ангидриде в присутствии ацетата натрия не приводит к продукту ацилирования – N-(2,4-дифенил-1Н-пиррол-1-ил)ацетамиду. Но соответствующие N-(2,4дифенил-1Н-пиррол-1-ил)амиды карбоновых кислот **6а**–**f** легко образуются при кипячении γ-бромдипнона **1** с гидразидами карбоновых кислот в спирте. К тому же результату, но с меньшим выходом приводит и сплавление компонентов в присутствии ацетата натрия. В случае гидразидов

Таблица 2

Соеди- нение	v, cm ⁻¹
4	3050, 1600, 1570, 745, 723, 680
5a	3010, 1610 (C=N), 1495, 1475, 1460, 1405, 1333, 1232, 1195, 755, 695
5b	3000, 2940, 1602 (C=N), 1510, 1460, 1405, 1330, 1302, 1250 (C–O), 1163, 1035, 752
6a	3210 (NH), 1660 (C=O), 1605, 1480, 1280, 750, 685
6b	3220 (NH), 3020, 1660 (C=O), 1295, 910, 750, 690
6c	3200 (NH), 3020, 1660 (C=O), 1590, 1295, 910, 750, 690
6d	3230 (NH), 1650 (C=O), 1590, 1470, 1315 (NO ₂), 1260, 750, 685
6e	3220 (NH), 3030, 1660 (C=O), 1610, 1335, 1035, 730
6f	3220 (NH), 3050, 2260 (CN), 1660 (C=O), 1205, 740, 680
8	3310 (NH), 3040, 1590, 1480, 745, 685

ИК спектры 1-аминопирролов 4-6, 8

арилкарбоновых кислот, имеющих электроноакцепторные заместители в бензольном цикле, при сплавлении в присутствии ацетата натрия также образуется значительное количество (~50%, согласно данным спектров ЯМР ¹Н) 2,4-дифенилфурана, а выход целевых продуктов реакции составляет <20%.

Строение соединений **6** установлено на основании их спектральных данных (табл. 2 и 3). Так, имеются сигналы группы NH в ИК спектрах в

a	б	л	и	ц	a	3
				- 1		
	a	aб	абл	абли	аблиц	аблица

Coerry	Химические сдвиги, б, м. д. (Ј, Гц)					
нение	NH, 1H, c	ArH *	Другие сигналы			
4	_	7.55 (2H, μ , $J = 8.0$, H-2',6'); 7.49 (2H, μ , $J = 8.0$, H-2",6"); 7.36–7.30 (4H, μ , H-3',5',3",5"); 7.22 (1H, τ , $J = 8.0$, H-4'); 7.13 (1H, τ , $J = 8.0$, H-4"); 7.11 (1H, μ , $J = 1.6$, H-5); 6.68 (1H, μ , $J = 1.6$, H-3)	2.19 (3H, c, CH ₃); 1.87 (3H, c, CH ₃)			
5a	_	8.18 (1H, μ , $J = 1.2$, H-5); 7.80 (2H, μ , H-2''',6''); 7.70 (2H, μ , $J = 8.0$, H-2',6'); 7.65 (2H, μ , $J = 8.0$, H-2'',6''); 7.45 (3H, μ , H-3'''-H-5'''); 7.42 (2H, π , $J = 8.0$, H-3',5'); 7.36 (2H, π , $J = 8.0$, H-3'',5''); 7.29 (1H, π , $J = 8.0$, H-4'); 7.18 (1H, π , $J = 8.0$, H-4''); 6.75 (1H, μ , $J = 1.2$, H-3)	8.90 (1H, c, -N=CH-)			
5b	_	8.09 (1H, μ , $J = 1.2$, H-5); 7.74 (2H, μ , $J = 8.5$, H-2''',6''); 7.70 (2H, μ , $J = 8.0$, H-2',6'); 7.63 (2H, μ , $J = 7.5$, H-2'',6''); 7.40 (2H, π , $J = 8.0$, H-3',5'); 7.35 (2H, π , $J = 7.5$, H-3'',5''); 7.28 (1H, π , $J = 8.0$, H-4'); 7.17 (1H, π , $J = 7.5$, H-4''); 6.99 (2H, μ , $J = 8.5$, H-3''',5'''); 6.71 (1H, μ , $J = 1.2$, H-3)	8.82 (1H, c, -N=CH-); 3.85 (3H, c, CH ₃)			
6a	11.74	7.89 (2H, д, <i>J</i> = 8.0, H-2"',6"); 7.59–7.47 (7H, м, ArH); 7.36–7.30 (5H, м, H-3',5',3",5", H-5); 7.23 (1H, т, <i>J</i> = 7.5, H-4'); 7.15 (1H, т, <i>J</i> = 8.0, H-4"); 6.70 (1H, д, <i>J</i> = 1.2, H-3)	_			
6b	11.67	7.57 (4H, м, ArH); 7.49–7.27 (10H, м, ArH, H-5); 7.15 (1H, т, <i>J</i> = 8.0, H-4"); 6.67 (1H, д, <i>J</i> = 2.0, H-3)	_			
6c	11.81	7.90 (2H, μ , $J = 8.0$, H-2"',6"); 7.58 (2H, μ , $J = 8.0$, H-2',6'); 7.52 (4H, M, H-3"',5"', H-2",6"); 7.32 (5H, M, H-3',5', H-3",5", H-5); 7.22 (1H, π , $J = 7.5$, H-4'); 7.14 (1H, π , $J = 7.5$, H-4"); 6.69 (1H, c, H-3)	_			
6d	12.09	8.33 (2H, д, <i>J</i> = 8.2, H-3''',5'''); 8.12 (2H, д, <i>J</i> = 8.2, H-2''', H-6'''); 7.57 (2H, д, <i>J</i> = 8.0, H-2',6'); 7.52 (2H, д, <i>J</i> = 8.0, H-2'',6''); 7.37–7.31 (5H, м, H-3',5'', H-3'',5'', H-5); 7.24 (1H, т, <i>J</i> = 8.0, H-4'); 7.15 (1H, т, <i>J</i> = 7.5, H-4''); 6.71 (1H, д, <i>J</i> = 2.0, H-3)	_			
6e	11.36	7.53 (2H, д, <i>J</i> = 8.0, H-2',6'); 7.37 (2H, д, <i>J</i> = 8.0, H-2",6"); 7.32–7.21 (10H, м, ArH); 7.17 (1H, д, <i>J</i> = 2.0, H-5); 7.12 (1H, т, <i>J</i> = 7.5, H-4"); 6.61 (1H, д, <i>J</i> = 2.0, H-3)	3.52 (2H, c, CH ₂)			
6f	11.58	7.54 (2H, д, <i>J</i> = 8.0, H-2',6'); 7.46 (2H, д, <i>J</i> = 8.0, H-2",6"); 7.40 (2H, т, <i>J</i> = 8.0, H-3',5'); 7.33 (3H, м, H-3",5",4'); 7.24 (1H, с, H-5); 7.15 (1H, т, <i>J</i> = 7.5, H-4"); 6.65 (1H, с, H-3)	3.75 (2H, c, CH ₂)			
8	9.20	7.60 (2H, μ , ${}^{3}J = 8.0$, H-2',6'); 7.55 (2H, μ , ${}^{3}J = 8.0$, H-2",6"); 7.29 (4H, M, H-3',5',3",5"); 7.22 (1H, μ , ${}^{4}J = 1.6$, H-5); 7.18 (1H, π , ${}^{3}J = 7.5$, H-4'); 7.11 (3H, M, H-3"',5"',4"); 6.72 (2H, M, H-3, H-4"); 6.46 (2H, μ , ${}^{3}J = 8.0$, H-2"',6"')	_			

Спектры ЯМР ¹Н соединений 4–6 и 8

^{*} Нумерация ароматических протонов бензольных циклов: 2-Ph – 2'-6', 4-Ph – 2"-6", 1-N-Ar – 2"'-6".

области 3200–3250 см⁻¹ и в спектрах ЯМР ¹Н в области 12.09–11.36 м. д. Характерные для производных 2,4-дифенилпиррола сигналы протонов пиррольного цикла [11] наблюдаются в виде синглетов или дублетов с $J_{3,5}$ = 1.2–2.0 Гц при 7.30–7.17 (H-5) и 6.71–6.61 м. д. (H-3).

Результаты опыта с гидразидами кислот свидетельствуют, что направление реакции у-бромдипнона 1 с гидразинами определяется природой заместителя в последних: наличие донорных заместителей (алкил) приводит к образованию производных пиридазина, а при наличии акцепторных заместителей (ацил) преимущественно образуются производные 1-аминопиррола. Данная закономерность соблюдается и в реакции у-бромдипнона 1 с арилгидразинами. Так, при взаимодействии γ-бромдипнона 1 с фенилгидразином был получен 1,3,5-трифенил-1,4-дигидропиридазин (7) [9]. Однако, согласно данным ТСХ, соединение 7 – не единственный продукт реакции. Нам удалось выделить из реакционнй смеси с невысоким выходом (15%) N,2,4-трифенил-1Н-пиррол-1-амин (8). Свидетельством в пользу образования структуры 8 являются данные спектров ИК и ЯМР ¹Н: в первую очередь – наличие сигналов группы NH и протонов пиррольного цикла (дублет с ${}^{4}J$ = 1.6 при 7.22 (H-3) и сигнал в области 6.72 м. д. (H-5)). В то же время, взаимодействие у-бромдипнона 1 с алкилфенилгидразинами [9] приводит исключительно к производным пиридазина.

Логично было предположить, что использование в реакции арилгидразинов с акцепторными заместителями в кольце может привести к увеличению содержания N-арилпиррола в реакционной смеси. С этой целью нами был использован 1-(2,4-динитрофенил)гидразин. При нагревании смеси реагентов в спирте образуется единственный продукт реакции (согласно данным ТСХ), который был выделен с высоким выходом (84%). В спектре ЯМР ¹Н полученного продукта наблюдались сигналы протонов метиленовой группы (с, 2Н при 4.31 м. д.), метинового протона (с, 1Н при 6.80 м. д.) и протона, обменивающегося с D₂O (с, 1Н при 11.43 м. д.). Согласно данным элементного анализа, молекула этого соединения содержала атом брома. Эти данные свидетельствуют, что продукт реакции не является производным пиррола (вероятность образования неустойчивой 5Н-формы очень низка), а может либо быть гидробромидом пиридазина 9, либо иметь нециклическую структуру гидразона 10. Для выяснения структуры продукта реакции были изучены его двумерные 409

спектры HMQC, HMBC и NOESY. Анализ гетероядерных корреляций в спектре HMBC (табл. 1 и рис. 1) однозначно указывает на присутствие в молекуле структурного фрагмента дипнона и исключает возможность структуры 1,4-дигидропиридазина типа 7. На это указывают корреляции между протонным синглетом при 6.80 м. д. (1H) и обоими четвертичными атомами углерода бензольных циклов C-1" (135.3) и C-1" (137.5 м. д.). В то же время для протонов метиленовой группы (4.31 м. д.) наблюдается корреляция только с одним атомом углерода (C-1"").

Окончательный вывод о структуре продукта реакции, как N-(2,4-динитрофенил)гидразона (*Z*)-4-бром-1,3-дифенил-2-бутен-1-она (**10**) был сде-лан на основании данных PCA (рис. 2, табл. 4 и 5).

Рис. 2. Строение молекулы соединения 10

Таблица 4

Некоторые валентные (ω) и торсионные (φ) углы молекулы соединения 10

Угол	ω, град.	Угол	ф, град.
C(1)–N(3)–N(4)	118.6(3)	C(1)–N(3)–N(4)–C(7)	-174.3(3)
C(7)–N(4)–N(3)	118.1(3)	N(4)-N(3)-C(1)-C(2)	0.3(5)
N(4)-C(7)-C(8)	116.5(3)	N(3)–N(4)–C(7)–C(8)	177.4(3)
N(4)–C(7)–C(14)	126.5(3)	N(3)–N(4)–C(7)–C(14)	-0.3(5)
C(8)–C(7)–C(14)	117.0(3)	C(14)-C(7)-C(8)-C(13)	-15.4(5)
C(13)–C(8)–C(7)	122.1(4)	N(4)-C(7)-C(8)-C(9)	-14.5(5)
C(9)–C(8)–C(7)	120.1(3)	N(4)-C(7)-C(14)-C(15)	-60.0(6)
C(15)-C(14)-C(7)	129.0(3)	C(8)-C(7)-C(14)-C(15)	122.3(4)
C(14)-C(15)-C(17)	120.5(3)	C(7)-C(14)-C(15)-C(16)	2.7(6)
C(14)-C(15)-C(16)	121.4(3)	C(17)–C(15)–C(16)–Br(1)	54.5(4)
C(17)–C(15)–C(16)	118.1(3)	C(14)-C(15)-C(17)-C(18)	38.6(5)
C(15)–C(16)–Br(1)	113.0(3)	C(16)-C(15)-C(17)-C(22)	40.2(5)
C(18)–C(17)–C(15)	120.7(4)		
C(22)-C(17)-C(15)	120.5(4)		
			Теб

Таблица 5

Некоторые длины связей (*l*) молекулы соединения 10

Связь	<i>l</i> , нм	Связь	<i>l</i> , нм
Br(1)–C(16)	1.930(4)	C(7)–C(14)	1.494(5)
N(3)–C(1)	1.354(5)	C(14)–C(15)	1.320(5)
N(3)–N(4)	1.368(4)	C(15)–C(17)	1.487(5)
N(4)–C(7)	1.285(5)	C(15)–C(16)	1.502(5)
C(7)–C(8)	1.482(5)		

Гидразонный фрагмент лежит практически в плоскости динитрофенильного заместителя (торсионные углы C(2)–C(1)–N(3)–N(4) 0.3(5)° и C(1)–N(3)–C(4)–C(7) –174.3(3)°), чему способствует образование внутримолекулярной водородной связи N(3)–H...O(4) (H...O 2.00 Å, N–H...O 127°). Фенильный заместитель C(8)..C(13) немного развернут относительно этого фрагмента (торсионный угол N(4)–C(7)–C(8)–C(9)–14.5(5)°)

Таблица б

Физико-химические свойства синтезированных соединений

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %				Т. пл.,	Вы- ход.
нение	формула	С	Н	Hal	Ν	•С *	%**
3	$C_{17}H_{15}BrN_2$	$\frac{62.21}{62.40}$	$\frac{4.32}{4.62}$	$\frac{\underline{24.48}}{\underline{24.42}}$	<u>8.60</u> 8.56	227–230 (разл.)	53
4	$C_{18}H_{18}N_2$	<u>82.56</u> 82.41	<u>7.03</u> 6.92	_	<u>10.54</u> 10.68	88–91	41
5a	$C_{23}H_{18}N_2$	<u>85.73</u> 85.68	<u>5.71</u> 5.63	_	<u>8.53</u> 8.69	131–133	75
5b	$C_{24}H_{20}N_2O$	<u>81.83</u> 81.79	<u>5.79</u> 5.72	_	<u>7.92</u> 7.95	182–183	76
6a	$C_{23}H_{18}N_2O$	<u>81.50</u> 81.63	<u>5.16</u> 5.36	-	<u>8.30</u> 8.28	208–209	55
6b	C ₂₃ H ₁₇ ClN ₂ O	<u>73.91</u> 74.09	<u>4.52</u> 4.60	<u>9.56</u> 9.51	<u>7.55</u> 7.51	210-212	50
6c	C ₂₃ H ₁₇ ClN ₂ O	<u>73.99</u> 74.09	$\frac{4.64}{4.60}$	<u>9.49</u> 9.51	<u>7.48</u> 7.51	224–226	51
6d	$C_{23}H_{17}N_3O_3$	<u>72.25</u> 72.05	$\frac{4.53}{4.47}$	_	<u>10.86</u> 10.96	253–255	52
6e	$C_{24}H_{20}N_2O$	<u>81.86</u> 81.79	<u>5.79</u> 5.72	-	<u>8.00</u> 7.95	228–229	68
6f	$C_{19}H_{15}N_{3}O$	<u>75.85</u> 75.73	<u>5.19</u> 5.02	_	<u>19.88</u> 19.94	235–237 (разл.)	62
8	$C_{22}H_{18}N_2$	<u>85.20</u> 85.13	<u>5.89</u> 5.85	_	<u>9.01</u> 9.03	162–165	15
10	$\mathrm{C}_{22}\mathrm{H}_{17}\mathrm{BrN}_4\mathrm{O}_4$	<u>55.00</u> 54.90	<u>3.61</u> 3.56	<u>16.63</u> 16.60	<u>11.62</u> 11.64	182–185	84

* Растворитель для перекристаллизации: AcOH (соединения 3, 10), *i*-PrOH (соединения 4, 8), EtOH (соединения 5a,b, 6e), MeCN (соединения 6a–d,f).

** Выходы соединений **6а–f**, полученных по методу Б.

вследствие отталкивания между атомами C(14) и H(13A) (расстояние 2.59 Å,

сумма ван-дер-ваальсовых радиусов [14] 2.87 Å). Стерические эффекты (укороченные внутримолекулярные контакты C(16)...N(5) 3.059 (сумма ван-дер-ваальсовых радиусов 3.21), N(3)...H(16B) 2.55 (2.66), C(16)...H(3A) 2.56, C(16)...H(22A) 2.77 Å, C(14)...H(18A) 2.73 Å) обусловливают также разворот плоскости двойной связи C(14)–C(15) как относительно фенильного заместителя C(17)...C(22), так и плоскости гидразонного фрагмента (торсионные углы C(14)–C(15)–C(17)–C(18) 38.6(5)° и C(15)–C(14)–C(7)–N(4) –60.0(6)°). Это сопровождается нарушением сопряжения между π -системами двойной связи и упомянутых выше фрагментов, о чем свидетельствует удлинение связей C(14)–C(7) и C(15)–C(17) до 1.494(5) и 1.487(5) Å соответственно (среднее значение для сопряженных связей C(*sp*²)–C(*sp*²) составляет 1.43 Å [15]).

Интересно отметить образование в кристалле укороченного межмолекулярного контакта Br(1)...C(19)' (x, y, 1+z) 3.51 Å (сумма ван-дер-ваальсовых радиусов 3.68 Å [15]), который указывает на наличие аттрактивного взаимодействия Br... π (угол C–Br...C составляет 164.1°), которое можно рассматривать как галогенную связь [16].

При попытке осуществить циклизацию гидразона **10** нагреванием его суспензии в этаноле в присутствии оснований (Et₃N, морфолин) была получена сложная смесь продуктов, разделить которую нам не удалось.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры (таблетки КВг) зарегистрированы на приборе Руе Unicam SP3-300. Спектры ЯМР ¹Н и ¹³С записаны на приборе Varian Mercury 400 (400 и 100 МГц соответственно) в ДМСО-d₆, внутренний стандарт ТМС. УФ спектры соединения **10** получены на приборе UV-vis Spectrometer Lambda 20 в метаноле, масс-спектры соединений **3**, **8** – методом ВЖХ на приборе AGILENT/100-Series (ХИ, ацетонитрил, 0.05% муравьиной кислоты). Контроль за ходом реакций и чистотой полученных соединений осуществлялся с помощью TCX на пластинках Silufol UV-254. Физико-химические характеристики синтезированных соединений пред-ставлены в табл. 6.

2,4-Дифенил-1Н-пиррол-1-амин (**2**) получают по методике, приведенной в работе [9]. ИК спектр, v, см⁻¹: 3370 (NH), 3350 (NH), 3045, 1595, 1470, 880, 745, 690.

Бромид 1-метил-3,5-дифенилпиридазин-1-ия (3). Смесь 0.48 г (3.32 ммоль) гидросульфата 1-метилгидразиния и 0.28 г (3.32 ммоль) NaHCO₃ в 50 мл этанола нагревают 10 мин и отфильтровывают твердый остаток. К фильтрату прибавляют 1 г (3.32 ммоль) γ -бромдипнона **1** и кипятят смесь 30 мин. Растворитель упаривают, остаток перекристаллизовывают из AcOH. ИК спектр, v, см⁻¹: 3020, 1600 (C=N), 1385, 1250, 755, 667. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 10.49 (1H, с, H-6); 9.31 (1H, с, H-4); 8.34 (2H, д. д, ³*J* = 8.0, ⁴*J* = 4.0, H-2',6'); 8.28 (2H, м, H-2",6"); 7.69 (6H, м, H-3'–H-5', H-3"–H-5"); 4.71 (3H, с, CH₃). Спектр ЯМР ¹³С, δ , м. д.: 161.29 (C-3); 147.48 (C-6); 146.86 (C-5); 133.09 (C-4'); 133.01 (C-4"); 132.88 (C-1'); 131.57 (C-1"); 130.31 (C-3',5'); 130.13 (C-3",5"); 129.03 (C-4); 129.01 (C-2',6'); 128.80 (C-2",6"); 52.98 (CH₃). Масс-спектр, *m*/*z* (*I*_{0TH}, %): 249 (70), 247 [M–Br]⁺ (100).

N,N-Диметил-2,4-дифенил-1Н-пиррол-1-амин (4). К раствору 0.5 г (2.13 ммоль) 1-аминопиррола 2 в 45 мл ацетонитрила прибавляют 0.13 мл (2.13 ммоль) метилиодида и кипятят 1 ч. Затем прибавляют еще 0.13 мл метилиодида и кипятят 2 ч. Растворитель упаривают. К остатку (масло) добавляют 10 мл 2-пропанола и нагревают до полного растворения. Выпавший после

охлаждения осадок отфильтровывают, промывают 2-пропанолом.

N-(Арилметилиден)-2,4-дифенил-1Н-пиррол-1-амины 5а,b. К раствору 0.5 г (2.13 ммоль) 1-аминопиррола **2** в 60 мл этанола прибавляют 0.22 мл (2.13 ммоль) бензальдегида или анисового альдегида и кипятят 30 мин. Выпавший после охлаждения осадок отфильтровывают, промывают спиртом.

N-(2,4-Дифенил-1Н-пиррол-1-ил)амиды карбоновых кислот ба–f. А. Смесь 1 г (3.32 ммоль) γ-бромдипнона 1, 0.27 г ацетата натрия и 0.45 г (3.32 ммоль) гидразида бензойной кислоты сплавляют на масляной бане при 120–130 °С в тече-ние 15 мин. После охлаждения к сплаву добавляют 10 мл воды и тщательно растирают. Отфильтровывают твердый остаток, тщательно промывают водой, 2-пропанолом и перекристаллизовывают. Выход 0.4 г (36%).

Б. Смесь 1 г (3.32 ммоль) ү-бромдипнона 1 и 3.32 ммоль гидразида карбоновой кислоты в 50 мл этанола нагревают до полного растворения ү-бромдипнона и кипятят еще 3 ч. Выпавший после охлаждения осадок отфильтровывают, промывают спиртом.

N-2,4-Трифенил-1Н-пиррол-1-амин (8). Реакцию проводят по методике, приведенной в работе [9]. Смесь 1 г (3.32 ммоль) γ -бромдипнона 1 и 0.33 мл (3.32 ммоль) фенилгидразина в 50 мл спирта кипятят 15 мин. Растворитель упаривают, остаток растворяют в спирте при нагревании. Охлаждают раствор в течение 1 ч, при этом выпадает осадок 1,3,5-трифенил-1,4-дигидропиридазина 7. Из фильтрата через 3 сут выпадает осадок соединения 8, который отфильровывают и промывают небольшим количеством 2-пропанола. Масс-спектр, m/z ($I_{\text{отн}}$, %): 311 [M + 1]⁺ (100), 309 [M–1]⁺ (20).

2,4-Динитрофенилгидразон (**Z**)-**4**-бром-1,3-дифенил-2-бутен-1-она (10). Смесь 1 г (3.32 ммоль) γ-бромдипнона **1** и 0.66 г (3.32 ммоль) 2,4-динитрофенилгидразина в 50 мл спирта кипятят 3 ч. Раствор охлаждают и отфильтровывают выпавший осадок. Промывают спиртом и перекристаллизовывают из уксусной кислоты. ИК спектр, v, см⁻¹: 3300 (NH), 1610 (C=N), 1569 (^{as}NO₂), 1500, 1420, 1335 (^sNO₂), 1313, 1112, 760. УФ спектр, λ_{max} , нм (ε•10⁻³): 202 (45.13), 247 (23.34, перегиб), 382 (26.12). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 11.43 (1H, с, NH); 8.93 (1H, д. ⁴*J* = 1.2, H-3'); 8.42 (1H, д. д. ³*J* = 8.0, ⁴*J* = 1.2, H-5'); 8.21 (1H, д. ³*J* = 8.0, H-6'); 7.90 (2H, м, H-2",6"); 7.77 (2H, д. ³*J* = 7.5, H-2"',6"'); 7.57–7.42 (6H, м, H-3"-H-5", H-3"'-H-5"'); 6.80 (1H, с, H-2); 4.31 (2H, с, C(4)H₂). Спектр ЯМР ¹³С, δ, м. д.: 151.95 (C-1); 146.0 (C-3); 144.3 (C-1'); 138.4 (C-4'); 137.5 (C-1'''); 135.5 (C-1''); 131.3 (C-4''); 130.94 (C-5'); 130.53 (C-2'); 129.95 (C-4'''); 129.6 (C-3'',5'''); 129.4 (C-3''',5'''); 127.68 (C-2",6"); 127.5 (C-2''',6'''); 123.6 (C-3'); 122.3 (C-2); 117.33 (C-6'); 30.03 (C-4).

Кристаллографические данные. Кристаллы 10 моноклинные, выращенные из уксусной кислоты, C₂₂H₁₇BrN₄O₄, при 293 К: *a* = 11.5767(5) Å, *b* = 25.5245(9) Å, *c* = 7.3670(3) Å, β = 106.589(4)°, *V* = 2086.3(1) Å³, *M*_r = 481.31, *Z* = 4, пространственная группа *P*2₁/*c*, *d*_{выч}= 1.532 г/см³, μ (Мо*К* α) = 2.008 мм⁻¹, *F*(000) = 976. Параметры элементарной ячейки и интенсивности 16 116 отражений (4719 независимых, *R*_{int} = 0.037) измерены на дифрактометре Xcalibur 3 (Мо*К* α излучение, CCD-детектор, графитовый монохроматор, ω -сканирование, 2 θ_{max} = 55°). Структура расшифрована прямым методом по комплексу программ SHELXTL [17]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с *U*_{iso} = 1.2 *U*_{eq} неводородного атома, связанного с данным водородным. Структура уточнена по *F*² полноматричным МНК в анизотропном приближении для неводородных атомов до *wR*₂ = 0.149 по 4705 отражения (*R*₁ = 0.059 по 2803 отражениям с *F* > 4 σ (*F*), *S* = 1.00). Полные данные PCA могут быть получены в Cambridge Crystallographic Data Centre (CCDC 670372).

СПИСОК ЛИТЕРАТУРЫ

- 1. В. А. Ковтуненко, *Лекарственные средства с действием на центральную нервную систему*, ВТФ Перун, Киев, 1997.
- 2. С. Е. Коростова, А. И. Михалева, А. М. Васильцов, Б. А. Трофимов, *ЖОрХ*, **34**, 967 (1998).
- 3. R. C. Effland, J. T. Klein, US Pat. 4546105; Chem. Abstr., 104, 186307 (1986).
- 4. J. Kulagowski, J. Janusz, P. D. Leeson, UK Pat. 2265372; Chem. Abstr., 120, 134504 (1993).
- 5. W. Flitsch, U. Lewinski, R. Temme, B. Wibbeling, *Liebigs Ann. Chem.*, 623 (1990).
- 6. M. McLeod, N. Boudreault, Y. Leblanc, J. Org. Chem., 61, 1180 (1996).
- 7. Р. А. Гаджалы, В. М. Федосеев, Н. А. Неткачева, Ч. Н. Ахмедов, М. Ш. Султанова, *XГС*, 998 (1989). [*Chem. Heterocycl. Comp.*, **25**, 837 (1989)].
- 8. А. Н. Кост, И. И. Грандберг, А. П. Терентьев, С. И. Милованова, *ЖОХ*, **29**, 93 (1959).
- 9. Л. М. Потиха, В. А. Ковтуненко, *XГС*, 626 (2007). [*Chem. Heterocycl. Comp.*, **43**, 523 (2007)].
- 10. R. Faragher, T. L. Gilchrist, J. Chem. Soc., Perkin Trans. 1, 336 (1976).
- 11. Л. М. Потиха, В. А. Ковтуненко, XTC, 848 (2006). [Chem. Heterocycl. Comp., 42, 741 (2006)].
- 12. Y. Tamura, N. Tsujimoto, Tetrahedron, 28, 21 (1972).
- 13. M. Fischer, Liebigs Ann. Chem., 527, 1 (1932).
- 14. Ю. В. Зефиров, П. М. Зоркий, *Успехи химии*, **58**, 713 (1989).
- 15. H.-B. Burgi, J. D. Dunitz, *Structure Correlation*, VCH, Weinheim, 1994, vol. 2, p. 741.
- 16. J. I. Cook, C. A. Hunter, C. M. R. Low, A. Perez-Velasco, J. G. Vinter, *Angew. Chem.*, *Int. Ed.*, **46**, 3706 (2007).
- 17. G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev.5.1, 1998.

Киевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: potikha_l@mail.ru

Поступило 06.12.2007

^aИнститут монокристаллов НАН Украины, Харьков 61001, Украина e-mail: orlov@univer.kharkov.ua e-mail: roman@xray.isc.kharkov.com