Э. Лукевиц*, Д. Зарума^а, Я. Ашакс^а, И. Шестакова, И. Домрачева, В. Бридане, Э. Ященко

СИНТЕЗ И ЦИТОТОКСИЧНОСТЬ МЕТИЛЗАМЕЩЕННЫХ 8-ХИНОЛИНСЕЛЕНОЛАТОВ РУТЕНИЯ, РОДИЯ, ОСМИЯ И ИРИДИЯ

Синтезирован ряд 2-метил-, 4-метил- и 2,4-диметил-8-хинолинселенолатов рутения, родия, осмия и иридия и изучена их цитотоксичность на опухолевых клетках НТ-1080 (фибросаркома человека) и MG-22A (гепатома мыши). Установлено, что высокой цитотоксичностью к обеим линиям клеток обладают все комплексы осмия. Их токсичность по отношению к нормальным фибробластам мышиных эмбрионов NIH 3T3 зависит от положения и количества метильных групп в хинолиновом кольце и уменьшается в ряду 2-Me > 4-Me > 2,4-Me₂. Наибольшей селективностью цитотоксического действия отличаются 4-метил-8-хинолинселенолат иридия и 2-метил-8-хинолинселенолат рутения.

Ключевые слова: метил-8-хинолинселенолаты иридия, осмия, родия, рутения, синтез, токсичность, цитотоксичность.

Успешное применение комплексов платины в химиотерапии опухолей, наличие нежелательных побочных эффектов, с одной стороны, и резистентность некоторых опухолей к этим препаратам, с другой стороны [1], способствовали развитию исследований противоопухолевой активности комплексов других металлов [2].

Наиболее перспективными для создания новых противоопухолевых средств оказались комплексы и металлоорганические производные рутения, обладающие низкой общей токсичностью и селективно аккумулирующиеся в опухолевых клетках [3–20]. Два из них уже проходят клинические испытания [2–4], а порфиринсодержащие рутениевые комплексы, проявляющие высокую фототоксичность по отношению к клеткам меланомы, являются перспективными агентами для фотодинамической химиотерапии опухолей [21].

Фотосенсибилизирующим эффектом по отношению к клеткам меланомы обладают и аналогичные комплексы родия, осмия и иридия [21]. Некоторые комплексы родия проявили бо́льшую цитотоксичность по отношению к клеткам карциномы легких А549 и молочной железы Т47D, чем их рутениевые аналоги [22], что указывает на перспективность поиска новых противоопухолевых средств и среди соединений родия [23–26]. Сравнимой цитотоксичностью к различным опухолевым клеткам обладает и ряд комплексов осмия [22, 27–31].

Нами установлено, что при использовании в качестве лиганда 8-хинолинтиола [32–34] или 8-хинолинселенола [35] высокой цитотоксичностью к опухолевым клеткам фибросаркомы человека HT-1080 и гепатомы мышей MG-22A обладают не только комплексы, содержащие атом рутения, родия и осмия, но и комплексы иридия [32–35]. Некоторые полипиридиловые комплексы иридия активно ингибируют рост клеток опухолей человека MCF-7 (рак молочной железы) и HT-29 (рак толстой кишки) [36].

Рост ряда опухолей ингибируют и соединения селена [35, 37–51], поэтому для конструирования цитотоксических металлокомплексов мы использовали селенсодержащие лиганды – 8-хинолинселенол [35] и его метилпроизводные [51]. При этом было установлено:

цитотоксичность 8-хинолинселенолатов металлов зависит от природы комплексообразующего металла;

комплексы, наиболее активные по отношению к опухолевым клеткам, чаще всего являются и наиболее токсичными для нормальных клеток;

токсичность комплексов можно варьировать введением заместителей в хинолиновое кольцо [35, 51], но, как и в случае аналогичных 8-хинолинтиолатов [32–34], влияние заместителей малоселективно.

С целью уменьшения токсичности и увеличения селективности цитотоксического действия 8-хинолинселенолатов металлов мы синтезировали серии 2-метил- (1), 4-метил- (2) и 2,4-диметил-8-хинолинселенолатов (3) рутения (а), родия (b), осмия (c) и иридия (d) (табл. 1) и изучили их цитотоксичность на двух линиях опухолевых клеток HT-1080 и MG-22A, а также на нормальных мышиных фибробластах NIH 3T3, которые служили и для оценки токсичности соединений (альтернативный метод определения LD₅₀ [52]).

1–3 a M = Ru, **b** M = Rh, **c** M = Os, **d** M = Ir

Полученные результаты (табл. 2) показывают, что в изученных сериях соединений наибольшей цитотоксичностью к опухолевым клеткам HT-1080 и MG-22A обладают комплексы осмия (LC₅₀ 3 мкг/мл). При этом их активность мало зависит от характера лиганда, и соединения с метильными группами в хинолиновом кольце **1с–3с** почти столь же цитотоксичны, как и комплекс с незамещенным 8-хинолинселенольным лигандом [35]. В то же время их токсичность сильно зависит от строения лиганда и уменьшается в ряду заместителей 2-Me > 4-Me > 2,4-Me₂. В такой же последовательности уменьшается и токсичность комплексов рутения, иридия и родия. Комплексы родия и иридия являются наименее токсичными во всех исследованных рядах соединений (LD₅₀ > 2000 мг/кг).

Таблица 1 231

Соели-	Брутто- формула		_		
нение			Выход, %		
	1-1-5	C	Н	N	
1a	$C_{30}H_{24}N_3RuSe_3$	<u>46.83</u> 47.13	<u>3.23</u> 3.16	<u>5.57</u> 5.49	76
1b	$C_{30}H_{24}N_3RhSe_3$	<u>46.60</u> 47.02	<u>3.26</u> 3.15	<u>5.40</u> 5.48	75
1c	$\mathrm{C}_{30}\mathrm{H}_{24}\mathrm{N}_{3}\mathrm{OsSe}_{3}$	<u>42.50</u> 42.21	$\frac{2.75}{2.83}$	<u>4.83</u> 4.92	70
1d	$C_{30}H_{24}IrN_3Se_3$	<u>42.20</u> 42.11	<u>2.76</u> 2.83	<u>4.80</u> 4.91	74
2a	$C_{30}H_{24}N_3RuSe_3$	<u>46.79</u> 47.13	<u>3.29</u> 3.16	<u>5.61</u> 5.49	75
2b	$C_{30}H_{24}N_3RhSe_3$	<u>47.30</u> 47.02	<u>3.02</u> 3.15	<u>5.38</u> 5.48	73
2c	$C_{30}H_{24}N_3OsSe_3$	<u>42.52</u> 42.21	$\frac{2.70}{2.83}$	<u>4.85</u> 4.92	70
2d	$C_{30}H_{24}IrN_3Se_3$	<u>41.76</u> 42.11	<u>2.76</u> 2.83	<u>4.96</u> 4.91	75
3a	$C_{33}H_{30}N_3RuSe_3$	<u>48.66</u> 49.14	<u>3.85</u> 3.75	<u>5.34</u> 5.21	75
3b	$C_{33}H_{30}N_3RhSe_3$	<u>49.50</u> 49.03	<u>3.62</u> 3.74	<u>5.10</u> 5.20	76
3c	$\mathrm{C}_{33}\mathrm{H}_{30}\mathrm{N}_{3}\mathrm{OsSe}_{3}$	$\frac{44.70}{44.25}$	<u>3.25</u> 3.38	<u>4.54</u> 4.69	60
3d	$C_{33}H_{30}IrN_3Se_3$	<u>44.53</u> 44.15	<u>3.24</u> 3.37	<u>4.85</u> 4.69	70

Характеристики 8-хинолинселенолатов металлов 1-3

В отличие от комплексов осмия цитотоксичность метил-8-хинолинселенолатов рутения, иридия и родия существенно зависит от положения и количества метильных групп в хинолиновом кольце. Так, если активность 2-метилпроизводного рутения **1a** (LC₅₀ 3 мкг/мл) сравнима с активностью аналогичного комплекса осмия **1c**, то его 4-метил- (**2a**) и 2,4-диметилпроизводные (**3a**) значительно менее активны. Их цитотоксичность уменьшается в ряду лигандов 2-Me > 4-Me > 2,4-Me₂. В ряду комплексов иридия наибольшей цитотоксичностью отличается 4-метилпроизводное **2d** (LC₅₀ 8 мкг/мл), менее активным является 2-метилпроизводное **1d**, а 2,4-диметилпроизводное **3d** оказалось неактивным. Из производных родия, проявивших умеренную цитотоксичность, наименьшим действием на клетки HT-1080 и MG-22A (тест CV) обладало 2-метилпроизводное **1b**.

Все изученные 4-метил-8-хинолинселенолаты рутения, родия, осмия и иридия **2а–d** несколько менее активны по отношению к опухолевым клеткам, чем аналогичные 4-метил-8-хинолинтиолаты, но последние в 2–3 раза более токсичны для нормальных клеток 3ТЗ [ЗЗ].

Следует отметить, что соединения осмия 1с–3с и иридия 1d, 2d, обладающие высокой цитотоксичностью к опухолевым клеткам, заметно индуцировали образование в них оксида азота (табл. 2).

Таблица 2

Соеди- нение	LC ₅₀ , мкг/мл								
	HT-1080			MG-22A			3T3	LD ₅₀ , мг/кг	
	CV	MTT	NO	CV	MTT	NO	NR		
1a	3	4	58	3	3	47	37	841	
1b	100	32	10	100	33	10	**	>2000	
1c	3	3	233	3	3	133	10	512	
1d	28	20	275	27	29	275	300	2255	
2a	20	25	150	10	27	233	34	826	
2b	36	28	67	66	90	16	1000	3549	
2c	3	3	114	3	3	400	20	682	
2d	8	9	150	9	8	128	494	2822	
3a	27	24	54	36	23	67	90	1291	
3b	60	40	10	38	36	50	**	>2000	
3c	4	3	200	5	5	160	40	895	
3d	**	**	8	**	**	11	532	3050	
	1	•						•	

Цитотоксичность 8-хинолинселенолатов 1-3*

* LC₅₀ – концентрация, вызывающая гибель 50% клеток; CV – кристаллический фиолетовый (действие на клеточные мембраны); МТТ – бромид 3-(4,5-диметилтиазол-2-ил)-2,5-дифенил-2H-тетразолия (влияние на активность митохондриальных ферментов в клетке); NR – нейтральный красный; NO – степень генерирования NO, определенная и вычисленная по методике [53]; LD₅₀ – острая токсичность.

** Цитотоксический эффект отсутствует.

Таким образом установлено, что 8-хинолинселенолат осмия [35] и его 2-метил, 4-метил- и 2,4-диметилпроизводные обладают высокой цитотоксичностью по отношению к опухолевым клеткам HT-1080 и MG-22A, а 2-метил-8-хинолинселенолат рутения **1a** и 4-метил-8-хинолинселенолат иридия **2d** превосходят их по селективности цитотоксического действия.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Элементные анализы выполнены с помощью анализатора Analyser CHN (Чехословакия).

Синтез 2-метил-8-хинолинселенолатов металлов 1 (общая методика). В 1 мл 3М соляной кислоты растворяют 0.1 г (0.23 ммоль) ди(2-метил-8-хинолил)диселенида, прибавляют 5 мл этанола, 0.5 мл 50% раствора H_3PO_2 и оставляют на 5 мин. К полученному раствору 2-метил-8-хинолинселенола прибавляют 3 мл насыщенного раствора ацетата натрия и при перемешивании раствор соли металла в 3 мл воды: 0.05 г (0.14 ммоль) $K_2[Ru(H_2O)Cl_5]$, 0.05 г (0.13 ммоль) (NH₄)₃[RhCl₆]·H₂O, 0.12 г (0.16 ммоль) K₃OsBr₆, 0.06 г (0.12 ммоль) (NH₄)₃[IrCl₆]·H₂O. Реакционную смесь нагревают 10 мин на водяной бане. Образовавшийся осадок 2-метил-8-хинолинселенолатов **1а–d** отфильтровывают, промывают водой, сушат на воздухе и перекристаллизовывают из хлороформа (табл. 1).

4-Метил-8-хинолинселенолаты 2а-d получают из ди(4-метил-8-хинолил)диселенида по приведенной выше методике. Выходы и результаты элементного анализа полученных комплексов приведены в табл. 1. **2,4-Диметил-8-хинолинселенолаты 3а-d** получают из ди(2,4-диметил-8-хинолил)диселенида по аналогичной методике (табл. 1).

Цитотоксичность соединений 1–3 (табл. 2) *in vitro* в отношении монослойных опухолевых клеток HT-1080 (фибросаркома человека) и MG-22A (гепатома мыши) и нормальных клеток NIH 3T3 (эмбриональные фибробласты мыши) определены на 96 луночных панелях с использованием красителей CV, MTT и NR по методике, описанной в [54]. Ожидаемую острую токсичность (LD₅₀, мг/кг) вычисляли по методу [52], используя полученные на культуре клеток 3T3 данные.

СПИСОК ЛИТЕРАТУРЫ

- V. Brabec, J. Kasparkova, in: *Metallotherapeutic Drugs & Metal-Based Diagnostic Agents*, M. Gielen, E. R. T. Tiekink (Eds.), J. Willey & Sons, Ltd., Chichester, 2005, p. 489.
- 2. P. C. Bruijnincx, P. J. Sadler, Current Opinion in Chemical Biology, 12, 197 (2008).
- O. Lentzen, C. Moucheron, A. Kirsch-De Mesmaeker, in: *Metallotherapeutic Drugs* & *Metal-Based Diagnostic Agents*, M. Gielen, E. R. T. Tiekink (Eds.), J. Willey & Sons, Ltd., Chichester, 2005, p. 359.
- 4. P. J. Dyson, G. Sava, Dalton Trans., 1929 (2006).
- 5. I. Kostova, Curr. Med. Chem., 13, 1085 (2006).
- 6. H. A. Wee, P. J. Dyson, Eur. J. Inorg. Chem., 4003 (2006).
- E. Meggers, G. E. Atilla-Gokcumen, H. Bregman, J. Maksimoska, S. P. Mulcahy, N. Pagano, D. S. Williams, *Synlett*, 1177 (2007).
- S. S. Karki, S. Thota, S. Y. Darj, J. Balzarini, E. De Clercq, *Bioorg. Med. Chem.*, 15, 6632 (2007).
- 9. C. A. Vock, W. H. Ang, C. Scolaro, A. D. Phillips, L. Lagopoulos, L. Juillerat-Jeanneret, G. Sava, R. Scopelliti, P. J. Dyson, J. Med. Chem., 50, 2166 (2007).
- M. Auzias, B. Therrien, G. Süss-Fink, P. Štěpnička, H. A. Wee, P. J. Dyson, *Inorg. Chem.*, 47, 578 (2008).
- I. Bratsos, A. Bergamo, G. Sava, T. Gianferrara, E. Zangrando, E. Alessio, J. Inorg. Biochem., 102, 606 (2008).
- I. Bratsos, S. Jedner, A. Bergamo, G. Sava, T. Gianferrara, E. Zangrando, E. Alessio, *J. Inorg. Biochem.*, 102, 1120 (2008).
- S. J. Dougan, A. Habtemariam, S. E. McHale, S. Parsons, P. J. Sadler, *Proc. Natl. Acad. Sci. USA*, 105, 11628 (2008).
- B. Dutta, C. Scolaro, R. Scopelliti, P. J. Dyson, K. Severin, Organometallics, 27, 1355 (2008).
- A. Garza-Ortiz, P. V. Maheswari, M. Siegler, A. L. Spek, J. Reedijk, *Inorg. Chem.*, 47, 6964 (2008).
- M. Gras, B. Therrien, G. Süss-Fink, P. Štěpnička, A. K. Renfrew, P. J. Dyson, J. Organomet. Chem., 693, 3419 (2008).
- M.-G. Mendoza-Ferri, C. G. Hartinger, R. E. Eichinger, N. Stolyarova, K. Severin, M. A. Jakupec, A. A. Nazarov, B. K. Keppler, *Organometallics*, 27, 2405 (2008).
- C. Tan, J. Liu, H. Li, W. Zheng, S. Shi, L. Chen, L. Ji, J. Inorg. Biochem., 102, 347 (2008).
- 19. C. Tan, J. Liu, L. Chen, S. Shi, L. Ji, J. Inorg. Biochem., 102, 1644 (2008).
- C. A. Vock, A. K. Renfrew, R. Scopelliti, L. Juillerat-Jeanneret, P. J. Dyson, *Eur. J. Inorg. Chem.*, 1661 (2008).
- F. Schmitt, P. Govindaswamy, G. Süss-Fink, W. H. Ang, P. J. Dyson, L. Juillerat-Jeanneret, B. Therrien, J. Med. Chem., 51, 1811 (2008).

²³⁴

- A. Dorcier, W. H. Ang, S. Bolaño, L. Gonsalvi, L. Juillerat-Jeanneret, G. Laurenzy, M. Peruzzini, A. D. Phillips, F. Zanobini, P. J. Dyson, *Organometallics*, 27, 4090 (2006).
- F. P. Pruchnik, in: *Metallotherapeutic Drugs & Metal-Based Diagnostic Agents*, M. Gielen, E. R. T. Tiekink (Eds.), J. Willey & Sons, Ltd., Chichester, 2005, p. 379.
- 24. D. A. Medvetz, K. D. Stakleff, T. Schreiber, P. D. Custer, K. Hindi, M. J. Panzner, D. D. Blanko, M. J. Tashner, C. A. Tessier, W. J. Youngs, *J. Med. Chem.*, **50**, 1703 (2007).
- 25. N. J. Wheate, C. R. Brodie, J. G. Collins, S. Kemp, J. R. Aldrich-Wright, *Mini-Rev. Med. Chem.*, 7, 627 (2007).
- 26. M. Harlos, I. Ott, R. Gust, H. Alborzinia, S. Wölfe, A. Kromm, W. S. Sheldrick, J. Med. Chem., 51, 3924 (2008).
- 27. A. F. A. Peacock, A. Habtemariam, S. A. Moggach, A. Prescimone, S. Parsons, P. J. Sadler, *Inorg. Chem.*, 46, 4049 (2007).
- 28. A. F. A. Peacock, M. Melchart, R. J. Deeth, A. Habtemariam, S. Parsons, P. J. Sadler, *Chem. Eur. J.*, **13**, 2601 (2007).
- 29. A. F. A. Peacock, S. Parsons, P. J. Sadler, J. Am. Chem. Soc., 129, 3348 (2007).
- H. Kostrhunova, J. Florian, O. Novakova, A. F. A. Peacock, P. J. Sadler, V. Brabec, J. Med. Chem., 51, 3635 (2008).
- I. N. Stepanenko, A. A. Krokhin, R. O. John, A. Roller, V. B. Arion, M. A. Jakupec, B. K. Keppler, *Inorg. Chem.*, 47, 7338(2008).
- 32. Э. Лукевиц, И. Шестакова, И. Домрачева, А. Нестерова, Д. Зарума, Я. Ашакс, *XГС*, 870 (2006). [*Chem. Heterocycl. Comp.*, **42**, 761 (2006)].
- 33. Э. Лукевиц, И. Шестакова, И. Домрачева, Э. Ященко, Д. Зарума, Я. Ашакс, *XГС*, 755 (2007). [*Chem. Heterocycl. Comp.*, **43**, 634 (2007)].
- 34. Э. Лукевиц, Д. Зарума, Я. Ашакс, И. Шестакова, И. Домрачева, А. Гулбе, В. Бридане, *XГС*, 711 (2008). [*Chem. Heterocycl. Comp.*, **44**, 559 (2008)].
- 35. Я. Ашакс, Ю. Банковский, Д. Зарума, И. Шестакова, И. Домрачева, А. Нестерова, Э. Лукевиц, *ХГС*, 905 (2004). [*Chem. Heterocycl. Comp.*, **40**, 776 (2004)].
- 36. M. A. Scharwitz, I. Ott, R. Gust, A. Kromm, W. S. Sheldrick, J. Inorg. Biochem., 102, 1623 (2008).
- 37. K. El-Bayoumy, Cancer Res., 45, 3631 (1985).
- 38. B. S. Reddy, T. Tanaka, B. Simi, J. Nat. Cancer Inst., 75, 791 (1985).
- 39. E. Lukevics, P. Arsenyan, K. Rubina, I. Shestakova, I. Domracheva, A. Nesterova, J. Popelis, O. Pudova, *Appl. Organomet. Chem.*, **16**, 235 (2000).
- 40. E. Lukevics, P. Arsenyan, I. Shestakova, I. Domracheva, I. Kanepe, S. Belyakov, J. Popelis, O. Pudova, *Appl. Organomet. Chem.*, **16**, 228 (2000).
- 41. S. W. May, Expert Opinion on Investigational Drugs, 11, 1261 (2002).
- 42. M. Koketsu, H. Ishihara, Curr. Org. Chem., 7, 175 (2003).
- 43. A. J. Duffield-Lillico, I. Shureiqi, S. M. Lippman, J. Nat. Cancer Inst., 96, 1645 (2004).
- 44. C. W. Nogueira, G. Zeni, J. B. T. Rocha, Chem. Rev., 104, 6255 (2004).
- 45. M. Soriano-Garcia, Curr. Med. Chem., 11, 1657 (2004).
- 46. P. D. Whanger, in: *Nutrition and Cancer Prevention*, A. S. Award, P. G. Bradford (Eds.), CRC, Taylor and Francis Group, Boca Raton, London, New York, 2006, p. 189.
- 47. L. Letavayová, V. Vlčková, J. Brozmanová, Toxicology, 227, 1 (2006).
- 48. G.-X. Li, H. Hu, C. Jiang, T. Schuster, J. Lu, Int. J. Cancer, 120, 2034 (2007).
- 49. W. M. El-Sayed, T. Aboul-Fadl, J. C. Roberts, J. G. Lamb, M. R. Franklin, *Toxicology in Vitro*, **21**, 157 (2007).
- 50. W. Mól, M. Matyja, B. Filip, J. Wietrzyk, S. Boryczka, *Bioorg. Med. Chem.*, 16, 8136 (2008).

- 51. Э. Лукевиц, И. Шестакова, И. Домрачева, А. Нестерова, Я. Ашакс, Д. Зарума, *XIC*, 59 (2006). [*Chem. Heterocycl. Comp.*, **42**, 53 (2006)].
- 52. Guidance Document on Using in vitro Data to Estimate in vivo Starting Doses for *Acute Toxicity*, National Institute of Health, US Dept. of Health and Human Services, 2001, p. 12.
- 53. G. Veinberg, M. Vorona, I. Shestakova, I. Kanepe, O. Zharkova, R. Mezapuke, I. Turovskis, I. Kalvinsh, E. Lukevics, *Bioorg. Med. Chem.*, **8**, 1033 (2000).
- 54. E. Lukevics, L. Ignatovich, I. Sleiksha, V. Muravenko, I. Shestakova, S. Belyakov, J. Popelis, *Appl. Organometal. Chem.*, **20**, 454 (2006).

Латвийский институт органического синтеза, Рига LV-1006, Латвия e-mail: sinta@osi.lv Поступило 21.11.2008

^aИнститут неорганической химии РТУ, Саласпилс LV-2169, Латвия e-mail: nki@nki.lv