И. Б. Дзвинчук*, Н. А. Толмачова, А. Н. Чернега, М. О. Лозинский

АРОМАТИЗАЦИЯ С ДЕЗАРИЛИРОВАНИЕМ ПРИ ЦИКЛОКОНДЕНСАЦИИ ПО ГАНЧУ 4-(ДИМЕТИЛАМИНО)-БЕНЗАЛЬДЕГИДА, ЦИКЛОГЕКСАН-1,3-ДИОНОВ И НЕКОТОРЫХ 1,3-[N,C]-ДИНУКЛЕОФИЛОВ

Трехкомпонентная циклоконденсация по Ганчу 4-(диметиламино)бензальдегида, циклогексан-1,3-дионов и некоторых 1,3-[N,C]-динуклеофилов (5-амино-3-метил-1-фенилпиразола, 3,5-диметоксианилина и 4-амино-1,3-диметилпиримидин-2,6-диона) протекает в кипящей уксусной кислоте с отщеплением N,N-диметиланилина и образованием поликонденсированных гетероциклических систем с γ-незамещенным пиридиновым циклом (пиразоло[3,4-*b*]хинолина, акридина и пиримидо[4,5-*b*]хинолина).

Ключевые слова: акридины, пиразоло[3,4-*b*]хинолины, пиримидо[4,5-*b*]хинолины, ароматизация, дезарилирование, реакция Ганча.

Синтез по Ганчу пиридинов, в том числе и конденсированных с другими циклами, состоит из двух стадий: образования 1,4-дигидропиридинового цикла и его последующего окисления [1–5]. Метод совершенствуется практикой органической химии уже 125 лет и приобрел принципиальные изменения при получении соединений с γ-незамещенным пиридиновым циклом, поскольку классическая схема с использованием формальдегида дает неудовлетворительные результаты [6].

Во-первых, установлено, что формальдегид можно заменить рядом других альдегидов. Так, 1,4-дигидропиридины, полученные из некоторых алифатических альдегидов [6–10], полифторбензальдегидов [11] и 4-(диметиламино)бензальдегида (1) [12], ароматизируются с отщеплением заместителя в γ-положении при действии, соответственно, определенных окислителей, цианида натрия и электрофильных реагентов.

Во-вторых, предложены способы преобразования двухстадийного синтеза в одностадийный. Например, 1,4-дигидропиридины, полученные из антипирин-4-карбальдегида, ароматизируются с отщеплением антипирина уже в условиях образования (20 °C, 18 ч), хотя исходный альдегид необходимо предварительно превращать в более реакционноспособную хлорпиридиниевую соль [13]. Нами найдено, что для такой цели более удобен упомянутый выше альдегид 1. При проведении реакции с его участием в кипящей уксусной кислоте (120 °C, 2 ч), как показано в синтезе производных акридина [14], пиразоло[3,4-*b*]пиридина [15] и пиридо[2,3-*d*]-пиримидина [16], в одном процессе объединяются и образование 1,4-дигидропиридинового цикла, и его ароматизация, которая, вопреки данным [5], протекает не с сохранением 4-(диметиламино)фенильного заместителя, а с избирательным отщеплением N,N-диметиланилина.

В последнем методе синтеза используются доступные, устойчивые и малотоксичные исходные материалы, а целевые продукты выделяются из реакционных смесей легко и с высоким выходом. С целью расширения границ метода в настоящей работе впервые изучено трехкомпонентное взаимодействие альдегида 1, циклогексан-1,3-дионов 2a,b и некоторых 1,3-[N,C]динуклеофилов – аминопиразола 3, диметоксианилина 4 и аминопиримидиндиона 5.

Нами найдено, что взаимодействие реагентов 1, 2 и 3–5 в кипящей уксусной кислоте протекает через 1,4-дигидропиридинсодержащие соединения типа 6–8, которые ароматизируются с отщеплением N,N-диметиланилина и образованием, соответственно, производных пиразоло[3,4-*b*]-хинолина 9, акридина 10 и пиримидо[4,5-*b*]хинолина 11.

2, 6–11 a R = H, **b** R = Me; **6–8** $Ar = 4-Me_2NC_6H_4$

Реакция по данной схеме (метод А) завершается за 2 ч, причем образовавшийся в ней N,N-диметиланилин не мешает выделению целевых продуктов. Продукты 9 и 11 выделяются с выходами 76–94% при разбавлении реакционных смесей водой, а акридины 10 – с выходами 75–82% после удаления уксусной кислоты и промывания.

Таблица 1

Соеди-	Брутто-формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Выход, %
нение		С	Н	Ν	-	(метод)
6b	$C_{27}H_{30}N_4O$	<u>75.31</u> 76.03	<u>6.76</u> 7.09	<u>13.47</u> 13.13	223–225	96
7b	$C_{25}H_{30}N_2O_3$	<u>73.54</u> 73.86	<u>7.23</u> 7.44	<u>6.72</u> 6.89	288–289.5	89
8b	$C_{23}H_{28}N_4O_3$	<u>67.80</u> 67.63	<u>6.69</u> 6.91	<u>13.88</u> 13.72	210-211	77
9a	C ₁₇ H ₁₅ N ₃ O	<u>73.48</u> 73.63	<u>5.57</u> 5.45	<u>15.07</u> 15.15	123–124	87 (A)
9b	$C_{19}H_{19}N_3O$	<u>74.64</u> 74.73	<u>6.34</u> 6.27	<u>13.58</u> 13.76	164.5–166 (130 [17])	94 (А), 95 (Б)
10a	$C_{15}H_{15}NO_3$	<u>69.88</u> 70.02	<u>5.76</u> 5.88	<u>5.28</u> 5.44	151-152.5	75 (A)
10b	C ₁₇ H ₁₉ NO ₃	<u>71.42</u> 71.56	<u>6.57</u> 6.71	<u>4.78</u> 4.91	154–155.5	82 (А), 85 (Б)
11a	$C_{13}H_{13}N_3O_3$	<u>60.08</u> 62.23	<u>5.18</u> 5.05	<u>16.15</u> 16.21	186.5–188	76 (A)
11b	$C_{15}H_{17}N_3O_3$	<u>62.56</u> 62.71	<u>5.85</u> 5.96	<u>14.53</u> 14.62	182–183.5	92 (А), 95 (Б)

Характеристики синтезированных соединений

Процесс можно остановить на стадии образования соединений, содержащих 1,4-дигидропиридиновый цикл. Так, в трехкомпонентных циклоконденсациях с участием димедона 2b в 2-пропаноле образуются, соответственно, продукты 6b и 7b, а в уксусной кислоте при 80 °C – продукт 8b. При кипячении соединений 6b–8b в уксусной кислоте также образуются продукты 9b–11b (метод Б). Выходы на обеих стадиях высоки, однако двухстадийная схема синтеза этих соединений не имеет преимуществ перед одностадийной, поскольку выигрыш в общих выходах несущественный, а временные и материальные затраты заметно возрастают.

Отметим, что все синтезированные соединения ранее не были известны, хотя, как очевидно, легко образуются из достаточно доступных реагентов. Данные [17] о синтезе соединения **9b** при сплавлении димедона с аминоформилпиразолом **12** не соответствуют действительности, поскольку его характеристики (температура плавления и параметры спектра ЯМР ¹Н) резко отличаются от выявленных нами.

Таблица 2

ИК и ЯМР ¹Н спектры синтезированных соединений

Соеди- нение	ИК спектр, v _{C=O} , см ⁻¹	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)			
6b	1620	0.95 и 1.02 (3H и 3H, два с, 7-, 7-CH ₃); 1.91 (3H, с, 3-CH ₃); 1.95 и 2.15 (1H и 1H, два д, <i>J</i> = 16, H-8,8); 2.51 (2H, м, H-6,6); 2.82 (6H, с, N(CH ₃) ₂); 4.86 (1H, с, H-4); 6.61 и 7.01 (2H и 2H, два д, <i>J</i> = 8.1, C ₆ H ₄); 7.38 (1H, м, H-4 Ph); 7.51 (4H, м, H-2,3,5,6 Ph); 9.33 (1H, с, H-9)			
7b	1630	0.90 и 1.00 (3H и 3H, два с, 3-, 3-CH ₃); 1.95 и 2.13 (1H и 1H, два д, <i>J</i> = 16.0, H-4,4); 2.31 и 2.42 (1H и 1H, два д, <i>J</i> = 17.0, H-2,2); 2.75 (6H, с, N(CH ₃) ₂); 3.64 и 3.69 (3H и 3H, два с, 6-, 8-OCH ₃); 5.02 (1H, с, H-9); 6.11 и 6.13 (1H и 1H, два д, <i>J</i> = 2.0, H-5,7); 6.48 и 6.91 (2H и 2H, два д, <i>J</i> = 9.0, C ₆ H ₄); 9.20 (1H, с, H-10)			
8b	1655, 1680	0.91 и 1.04 (3H и 3H, два с, 8-, 8-СН ₃); 2.02 и 2.20 (1H и 1H, два д, <i>J</i> = 16.0, H-9,9); 2.55 и 2.60 (1H и 1H, два д, <i>J</i> = 16.0, H-7,7); 2.79 (6H, с, N(CH ₃) ₂); 3.09 (3H, с, 1-СН ₃); 3.44 (3H, с, 3-СН ₃); 4.75 (1H, с, H-5); 6.54 и 7.01 (2H и 2H, два д, <i>J</i> = 8.4, C ₆ H ₄); 8.94 (1H, с, H-10)			
9a	1680	2.13 (2H, м, H-7,7); 2.60 (3H, с, CH ₃); 2.70 (2H, т, <i>J</i> = 6.0, H-8,8); 3.18 (2H, т, <i>J</i> = 6.0, H-6,6); 7.34 (1H, т, <i>J</i> = 7.5, H-4 Ph); 7.56 (2H, т, <i>J</i> = 7.8, H-3,5 Ph); 8.25 (2H, д, <i>J</i> = 7.5, H-2,6 Ph); 8.72 (1H, с, H-4)			
9b	1700	1.06 (6H, c, 7-, 7-CH ₃); 2.61 (2H, c, H-8,8); 2.62 (3H, c, 3-CH ₃); 3.12 (2H, c, H-6,6); 7.33 (1H, $T, J = 7.5, H-4 Ph$); 7.56 (2H, $T, J = 7.8, H-3,5$ Ph); 8.28 (2H, $\pi, J = 7.5, H-2,6$ Ph); 8.73 (1H, c, H-4)			
10a	1680	2.11 (2H, м, H-3,3); 2.67 (2H, т, <i>J</i> = 6.0, H-4,4); 3.12 (2H, т, <i>J</i> = 7.5, H-2,2); 3.91 (3H, с, 6-CH ₃); 3.96 (3H, с, 8-CH ₃); 6.62 (1H, д, <i>J</i> = 2.0, H-7); 6.93 (1H, д, <i>J</i> = 2.0, H-5); 8.76 (1H, с, H-9)			
10b	1690	1.03 (6H, c, 3-CH ₃); 2.58 (2H, c, H-4,4); 3.04 (2H, c, H-2,2); 3.92 (3H, c, 6-OCH ₃); 3.97 (3H, c, 8-OCH ₃); 6.65 (1H, c, H-7); 6.96 (1H, c, H-5); 8.77 (1H, c, H-9)			
11a	1670, 1690, 1710	2.11 (2H, м, H-8,8); 2.66 (2H, т, <i>J</i> = 6.5, H-9,9); 3.10 (2H, т, <i>J</i> = 6.5, H-7,7); 3.27 (3H, с, 1-CH ₃); 3.55 (3H, с, 3-CH ₃); 8.56 (1H, с, H-5)			
11b	1650, 1670, 1700	1.05 (6H, c, 8-, 8-CH ₃); 2.60 (2H, c, H-9,9); 3.06 (2H, c, H-7,7); 3.29 (3H, c, 1-CH ₃); 3.58 (3H, c, 3-CH ₃); 8.60 (1H, c, H-5)			

Строение соединения **9b** установлено нами рентгеноструктурным методом (рис. 1 и 2, табл. 3). Центральный гетероциклический фрагмент N(1)C(1–5) плоский (максимальное среднеквадратичное отклонение атомов составляет лишь 0.007 Å), как и практически лежащий в той же плоскости (соответствующий двугранный угол 0.99°) пиразольный цикл N(2)N(3)C(1)C(2)C(10), который также плоский (максимальное среднеквадратичное отклонение составляет 0.003 Å). Двугранный угол между пиразольным циклом N(1)N(2)C(1)C(2)C(10) и фенильным кольцом C(14)–C(19) составляет 9.5°. Кольцо C(4)–C(9) неплоское и имеет конформацию *полукресла* с уплощением фрагмента C(9)C(4)C(5) (соответствующие модифицированные параметры Кремера–Попла [18] S = 0.75, $\psi = 13.00^\circ$, $\theta = 35.88^\circ$).

Рис. 1. Общий вид молекулы соединения 9b

Состав и строение всех соединений подтверждаются также данными элементного анализа (табл. 1), ИК спектров и спектров ЯМР ¹Н (табл. 2). В частности, в спектре ЯМР ¹Н соединения **9b** химические сдвиги *гем*диметильной группировки (1.06 м. д.) и группы 3-СН₃ (2.62 м. д.) резко различаются, тогда как по данным [17] все три метильные группы проявляются одним девятипротонным синглетом (2.5 м. д.). Диастереотопные группы СН₃ и протоны групп СН₂ соединений **6b**, **7b** и **8b** резонируют как в их известных аналогах пиразоло[3,4-*b*]хинолинового типа [19].

Рис. 2. Фрагмент кристаллической упаковки соединения 9b

Связь	l, Å	Угол	ω, град.
N(1)–C(1)	1.340(2)	C(5)N(1)C(1)	114.66(13)
N(1)–C(5)	1.336(2)	C(1)N(2)N(3)	110.19(12)
N(2)–C(1)	1.367(2)	N(2)N(3)C(10)	107.15(12)
N(2)–N(3)	1.390(2)	N(3)C(10)C(2)	110.80(13)
C(10)–N(3)	1.312(2)	C(10)C(2)C(1)	107.15(12)
C(10)–C(2)	1.428(2)	C(2)C(1)N(2)	106.89(13)
C(2) - C(1)	1.408(2)		

Основные длины связей (1) и валентные углы (ω) молекулы соединения 9

Таким образом, метод синтеза, основанный на использовании в реакции Ганча 4-(диметиламино)бензальдегида, позволяет легко получать ранее неизвестные частично гидрированные производные пиразоло[3,4-*b*]хинолинов, акридинов и пиримидо[4,5-*b*]хинолинов, содержащих γ-неза-мещенный пиридиновый цикл.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакций и чистотой синтезированных соединений проводили методом TCX на пластинках Silufol UV-254 в системе растворителей бензол– этанол, 9 : 1, проявление в УФ свете. ИК спектры соединений записывали на приборе UR-20 в таблетках KBr. Спектры ЯМР ¹Н получали на спектрометре Bruker Avance DRX 500 (500 МГц) в ДМСО-d₆, стандарт ТМС.

Рентгеноструктурное исследование монокристалла, выращенного из раствора соединения 9b в этаноле, с линейными размерами $0.25 \times 0.31 \times 0.43$ мм проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf–Nonius CAD-4 (Си $K\alpha$ -излучение, $\lambda = 1.54178$ Å, тип сканирования $2\theta/\omega$, $\theta_{max} = 70^{\circ}$, сегмент сферы $-13 \le h \le 12$, $0 \le k \le 15$, $0 \le l \le 13$). Всего собрано 2929 отражений, из которых 2217 являются симметрически независимыми $(R_{int} = 0.01)$. Кристаллы соединения 9b моноклинные, a = 11.238(2), b = 12.584(2),c = 11.787(2) Å, $\beta = 108.88(2)^{\circ}$, V = 1577.15(11) Å³, M = 305.38, Z = 4, $d_{\text{BBFV}} = 1.29 \text{ r/cm}^3$, $\mu = 6.093$ см⁻¹, F(000) = 649.70, пространственная группа P21/n (N 15–17). Структура расшифрована прямым методом и уточнена МНК в полноматричном анизотропном приближении с использованием комплекса программ CRYSTALS [20]. В уточнении использовано 2217 отражений с $I > 3\sigma(I)$ (209 уточняемых параметров, число отражений на параметр 10.6). Атомы водорода были посажены геометрически и включены в уточнение с фиксированными тепловыми и позиционными параметрами. При уточнении была использована весовая схема Чебышева [21] с параметрами: 2.68, 2.93, 2.56, 0.813 и 0.574. Окончательные значения факторов расходимости R = 0.041 и $R_W = 0.046$, GooF = 0.990. Остаточная электронная плотность из разностного ряда Фурье составляет -0.19 и 0.17 е/Å³. Учет поглощения в кристалле был выполнен с помощью метода азимутального сканирования [22]. Полный набор рентгеноструктурных данных для соединения 1 депонирован в Кембриджском банке структурных данных (CCDC 664295).

4-[4-(Диметиламино)фенил]-3,7,7-триметил-1-фенил-1,4,6,7,8,9-гексагидро-5Н-пиразоло[3,4-*b***]хинолин-5-он (6b). Раствор соединений 1 (2.98 г, 20 ммоль), 2b (2.8 г, 20 ммоль) и 3 (3.46 г, 20 ммоль) в 7.5 мл 2-пропанола выдерживают 72 ч 249** при 15–20 °С. Выделившийся осадок отфильтровывают, промывают 2-пропанолом, гексаном и получают 4.1 г аналитически чистого продукта **6b**.

9-[4-(Диметиламино)фенил]-3,3-диметил-6,8-диметокси-3,4,9,10-тетрагидроакридин-1(2H)-он (7b). Смесь соединений 1 (0.298 г, 2 ммоль), 2b (0.28 г, 2 ммоль) и 4 (0.306 г, 2 ммоль) в 2 мл 2-пропанола выдерживают 30 мин при 75 °С. Остывшую массу фильтруют, осадок промывают 2-пропанолом, гексаном и получают 0.723 г аналитически чистого продукта 7b.

5-[4-(Диметиламино)фенил]-1,3,8,8-тетраметил-5,8,9,10-тетрагидропиримидо[4,5-*b***]хинолин-2,4,6(1H,3H,7H)-трион (8b). Смесь соединений 1 (1.49 г, 10 ммоль), 2b (1.4 г, 10 ммоль) и 5 (1.55 г, 10 ммоль) в 6 мл ледяной уксусной кислоты выдерживают 4 ч при 80 °С. Остывшую массу фильтруют, осадок промывают 2-пропанолом, кристаллизуют из пиридина и получают 2.5 г продукта 8b.**

3,7,7-Триметил-1-фенил-1,6,7,8-тетрагидро-5Н-пиразоло[3,4-*b***]хинолин-5он (9b). А. Смесь соединений 1** (0.596 г, 4 ммоль), **2b** (0.56 г, 4 ммоль) и **3** (0.692 г, 4 ммоль) в 4 мл ледяной уксусной кислоты выдерживают 2 ч при 120 °С. Кипящую реакционную смесь при перемешивании разбавляют 4 мл воды. Остывшую массу фильтруют, осадок промывают смесью 2-пропанол–вода, 1 : 1, кристаллизуют из смеси пиридин–вода, 1 : 1, и получают 1.149 г продукта **9b**.

Продукт 9а получают аналогично из соединений 1, 2а (0.56 г, 5 ммоль) и соединения 3.

Б. Смесь 1.7 г (4 ммоль) соединения **6b** и 4 мл ледяной уксусной кислоты выдерживают 2 ч при 120 °С. Продукт выделяют, как в методе A, и получают 1.163 г соединения **9b**, которое, по данным TCX и т. пл., идентично образцу, полученному по методу A.

3,3-Диметил-6,8-диметокси-3,4-дигидроакридин-1(2Н)-он (**10b**). А. Смесь соединений **1** (0.596 г, 4 ммоль), **2b** (0.7 г, 5 ммоль) и **4** (0.765 г, 5 ммоль) в 4 мл ледяной уксусной кислоты выдерживают 2 ч при 120 °С. Уксусную кислоту упаривают в вакууме водоструйного насоса. Остаток растворяют при нагревании в 4 мл ацетона. Горячий раствор разбавляют 4 мл 20 % водного раствора аммиака и 4 мл воды. Остывшую массу фильтруют, осадок промывают смесью 2-про-панол-вода, 1 : 2, кристаллизуют из смеси этанол-вода, 2 : 1, и получают 0.934 г продукта **10b**.

Продукт 10а получают аналогично из соединений 1, 2а и 4.

Б. Продукт **10b** получают из соединения **7b** по приведенному для соединения **9b** методу Б и выделяют как в приведенном выше методе А.

1,3,8,8-Тетраметил-8,9-дигидропиримидо[4,5-*b*]хинолин-2,4,6(1H,3H,7H)-

трион (11b). А. Смесь соединений 1 (0.596 г, 4 ммоль), 2b (0.56 г, 4 ммоль) и 5 (0.620 г, 4 ммоль) в 4 мл ледяной уксусной кислоты выдерживают 2 ч при 120 °C. Кипящую реакционную смесь при перемешивании разбавляют 4 мл воды. Остывшую массу отфильтровывают, осадок промывают смесью 2-пропанол–вода, 1 : 1, кристаллизуют из 2-пропанола и получают 1.058 г продукта 11b.

Продукт 11а получают аналогично из соединений 1, 2а и 5.

Б. Продукт **11b** получают из соединения **8b** по приведенному для соединения **9b** методу Б.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ф. Э. Саусиныш, Г. Я. Дубур, *ХГС*, 435 (1992). [*Chem. Heterocycl. Comp.*, **28**, 363 (1992)].
- 2. S. P. Chavan, R. K. Kharul, U. R. Kalkote, I. Shivakumar, *Synth. Commun.*, **33**, 1333 (2003).
- 3. C. Simon, T. Constantieux, J. Rodriguez, Eur. J. Org. Chem., 4957 (2004).
- 4. P. Shanmugasundaran, V. T. Ramakrishnan, *Indian J. Chem.*, **36B**, 17 (1997). 250

- 5. Г. Я. Ванаг, Э. И. Станкевич, *ЖОХ*, **30**, 3287 (1960).
- 6. Л. Титце, Т. Айхер, *Препаративная органическая химия*, Мир, Москва, 1999, с. 372, 413.
- 7. B. Love, K. M. Snader, J. Org. Chem., 30, 1914 (1965).
- 8. J.-J. Vanden Eynde, R. D'Orazio, Tetrahedron, 50, 2479 (1994).
- 9. M. Litvic, I. Cepanec, M. Filipan, K. Kos, A. Bartolincic, V. Druskovic, M. M. Tibi, V. Vincovic, *Heterocycles*, **65**, 23 (2005).
- 10. K. Goerlitzer, S. Klanck, Pharmazie, 54, 889 (1999).
- 11. T. McLnally, A. C. Tinker, J. Chem. Soc., Perkin Trans. 1, 1837 (1988).
- 12. R. G. R. Bacon, B. A. Osuntogun, J. Chem. Soc., Chem. Commun., 24, 1159 (1979).
- J.-J. Vanden Eynde, A. Mayence, A. Maquestiau, E. Anders, *Heterocycles*, 37, 815 (1994).
- 14. И. Б. Дзвинчук, Н. А. Толмачова, *XTC*, 554 (2001). [*Chem. Heterocycl. Comp.*, **37**, 506 (2001)].
- 15. И. Б. Дзвинчук, XTC, 578 (2007). [Chem. Heterocycl. Comp., 43, 474 (2007)].
- 16. И. Б. Дзвинчук, М. О. Лозинский, *XIC*, 585 (2007). [*Chem. Heterocycl. Comp.*, **43**, 480 (2007)].
- 17. V. K. Ahluwalia, A. Dahiya, V. K. Garg, Indian J. Chem., 36B, 88 (1997).
- 18. Н. С. Зефиров, В. А. Палюлин, ДАН, 252, 111 (1980).
- J. Quiroga, D. Mejia, B. Insuasty, R. Abonia, M. Nogueras, A. Sanchez, J. Cobo, J. N. Low, *Tetrahedron*, 57, 6947 (2001).
- 20. D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, *CRYSTALS*, *Iss. 10.* Chemical Crystallography Laboratory, Univ. of Oxford, 1996.
- 21. J. R. Carruthers, D. J. Watkin, Acta Crystallogr., A35, 698 (1979).
- 22. A. C. T. North, D. C. Phillips, F. S. Mathews, Acta Crystallogr., A24, 351 (1968).

Институт органической химии НАН Украины, Киев 02094, Украина e-mail: Rostov@bpci.kiev.ua Поступило 09.11.2007