Е. Л. Муханов^а, Ю. С. Алексеенко⁶, Б. С. Лукьянов^а*, В. И. Минкин^{а,6}, С. О. Безуглый⁶, А. Н. Утенышев^в, В. В. Ткачев^в, С. М. Алдошин^в

ФОТО- и ТЕРМОХРОМНЫЕ СПИРАНЫ 32*. СИНТЕЗ И ФОТОХРОМИЗМ 3-МЕТИЛ-4-ОКСОСПИРО-(2,3-ДИГИДРОНАФТО[2,1-*e*]-1,3-ОКСАЗИН-2,2'-[2H]ХРОМЕНОВ)

Получены спиропираны нафтоксазинонового ряда, содержащие различные заместители в [2H]-хроменовой части молекулы. Пространственное строение спиропирана, содержащего *орто*-расположенные гидрокси- и формильную группы, установлено методом РСА. Изучены фотохромные свойства полученных соединений.

Ключевые слова: нафтоксазинон, спиропиран, фотохромизм.

Явление фотохромизма – способность вещества претерпевать обратимое изменение спектра поглощения под действием активирующего излучения различного спектрального состава – широко используется в современной молекулярной электронике для создания оптических переключателей и устройств трехмерной молекулярной памяти. Из органических фотохромных материалов особое внимание привлекают спиропираны, претерпевающие под действием УФ излучения фото-инициированную валентную изомеризацию, сопровождающуюся разрывом связи С_{спиро}–О с образованием окрашенных хиноидно-бетаиновых структур, обратная перегруппировка которых в исходную спироформу происходит под действием видимого света или спонтанно [2–4].

Одним из наиболее распространенных путей регулирования спектральных и фотохимических свойств соединений этого класса является варьирование заместителей в [2H]-хроменовой части [5]. Другое направление модификации свойств фотохромных спиропиранов, которому и посвящено проведенное исследование, состоит в варьировании гетаренового компонента и изучении влияния его структуры на фотодинамические характеристики спиропиранов. Настоящая работа – продолжение наших исследований [6].

3-Метил-4-оксоспиро(2,3-дигидронафто[2,1-*e*]-1,3-оксазин-2,2'-[2H]хроме- ны) 4 были получены двустадийным синтезом. На первом этапе кипячением перхлората 2,3-диметил-4-оксодигидронафто[2,1-*e*][1,3]оксазиния (1) и соответствующего *о*-гидроксиароматического альдегида в кислой среде получают перхлораты 2-[β-(2-гидроксиарил)винил]-3-метил-4-оксо* Сообщение 31 см. [1].

дигидронафто[2,1-*e*]-1,3-оксазиния **3** с выходами 25–45%. Эти соединения представляют собой интенсивно окрашенные оранжево-красные кристаллические вещества, которые в дальнейшем использовали без промежуточной очистки. Перхлораты **3**, суспендированные в абсолютном эфире, подвергали обработке триэтиламином, что приводило к отщеп-лению HClO₄ и циклизации с образованием спиропиранов **4**.

a R = 6'-Me, **b** R = 6'-Me, 8'-CHO; **c** R = 7'-OH, 8'-CHO; **d** R = 6'-NO₂; **e** R = 8'-NO₂; **f** R = 6'-OMe; **g** R = 6'-Cl

Таблица 1

Соеди-	Брутто-формула	В	Найдено, ычислено	Т. пл.,	Выход,	
нение		С	Н	Ν	÷C	70
4a	C ₂₂ H ₁₇ NO ₃	<u>76.89</u> 76.97	$\frac{5.03}{4.97}$	$\frac{4.01}{4.08}$	162	45
4b	C ₂₃ H ₁₇ NO ₄	<u>74.51</u> 74.39	<u>4.46</u> 4.58	<u>3.89</u> 3.77	201	42
4c	C ₂₂ H ₁₅ NO ₅	<u>70.76</u> 70.78	$\frac{4.01}{4.02}$	<u>3.71</u> 3.75	191	45
4d	$C_{21}H_{14}N_2O_5$	<u>67.41</u> 67.38	<u>3.72</u> 3.74	<u>7.56</u> 7.49	205	35
4e	$C_{21}H_{14}N_2O_5$	<u>67.45</u> 67.38	<u>3.73</u> 3.74	<u>7.48</u> 7.49	177	33
4f	C ₂₂ H ₁₇ NO ₄	<u>73.61</u> 73.54	<u>4.72</u> 4.74	<u>3.89</u> 3.90	201	36
4g*	C ₂₁ H ₁₄ ClNO ₃	<u>69.34</u> 69.33	<u>3.93</u> 3.86	<u>3.91</u> 3.86	154	49

3.	Метил-4-оксоспи	юо(2.3-дигид	ронафто[]	2.1-el-	1.3-оксазин-2.2	'-[2H]-хромены]) 4
-							, -

* Найдено, %: Cl 9.10. Вычислено, %: Cl 9.21.

Таблица 2

Co-	ИК спектры, v, см $^{-1}$			Спектры ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)			
еди- нение	C=0	C=C	Сспиро-О	N–CH ₃ (3H, c)	H-3' (1Н, д)	H-4' и аром. протоны	другие протоны (с)
4a	1662	1634	972	3.20	6.12	6.64-8.06	2.30
4b	1673	1660, 1633	986	3.22	(J = 9.7) 6.23 (J = 10.0)	7.07-8.02	(3H, 6'-CH ₃) 2.32 (3H, 6'-CH ₃); 9.88
4c	1673	1647	973	3.20	6.07 (<i>J</i> = 10.0)	6.60-8.03	(1H, 8'-CHO) 9.78 (1H, 8'-CHO); 11.64 (1H, 7) (1D)
4d	1679	1629	970, 940	3.00	6.32 (J = 9.9)	7.10-8.40	(IH, / -OH)
4e	1673	1647, 1620	971	3.22	6.32 (J = 9.6)	7.06-8.03	
4f	1680	1639	927	3.20	6.15 ($I = 9.7$)	6.60-8.05	3.80 (3H, OCH ₂)
4g	1660	1640	972	3.18	6.19 (J = 9.7)	6.67-8.03	(511, 00113)

Спектральные характеристики спиропиранов 4

В ИК спектрах полученных спиропиранов (табл. 2) присутствуют характеристические полосы валентных колебаний в области 1660–1680 (С=О оксазинонового фрагмента), 1620–1660 (связи С=С пиранового фрагмента), а также полосы, характерные для связи С_{спиро}–О, в интервале 925–990 см⁻¹.

В спектрах ЯМР ¹Н спиропиранов **4** (табл. 2) в области 3.18–3.22 м. д. присутствуют сигналы протонов группы N–CH₃. Также в спектре имеются дублетные сигналы протонов, находящихся в положении 3' бензо-пиранового фрагмента, в области 6.12–6.32 м. д. (J = 9.6–10.0 Гц), что характерно для всех спиропирановых структур.

Образование спиропирана **4с** теоретически может проходить по каждой из двух формильных групп исходного 2,4-дигидроксиизофталевого альдегида **5**. При помощи данных спектроскопии ЯМР ¹Н была доказана спиропирановая структура соединения **4c**: характеристическим для его спектра ЯМР ¹Н является наличие дублетного сигнала протона H-3' ($J = 10.0 \, \Gamma$ ц) при 6.07 м. д. [2H]-хроменового фрагмента, а также синглетных сигналов протонов формильной и гидроксильной групп при 9.78 и 11.64 м. д. соответственно. Значительный слабопольный сдвиг сигналов протонов группы ОН объясняется наличием внутримолекулярных водородных связей.

Взаимное расположение групп ОН и СНО в [2H]-хроменовой части молекулы спиропирана **4c** было установлено по аналогии со спиропираном **6** [6].

Соединение 4с кристаллизуется в виде двух независимых молекул, общий вид которых представлен на рис. 1 (заметим, что номера атомов второй молекулы увеличены на 20 относительно номеров первой молекулы). Две независимые молекулы незначительно отличаются друг от друга характером распределения длин связей (табл. 3) и величин валентных углов (табл. 4). В обеих независимых молекулах исследованного соединения бензопирановый с дополнительно аннелированным бензольным кольцом и бензоксазиноновый фрагменты, как и в исследованных ранее индолиновых и бензоксазиноновых производных спиропиранов, расположены почти ортогонально друг другу и индивидуально непланарны.

4c-A

Рис. 1. Общий вид независимых молекул 4с-А и 4с-В

Непланарность дополнительно аннелированного бензоксазинонового фрагмента в независимой молекуле 4с-А обусловлена перегибом по линии N(3)...O(1) на угол 37.3°, а непланарность бензопиранового фрагмента вызвана перегибами по линиям C(3')-O(1') и C(4')-O(1') на углы 20.30° и 8.10° соответственно. Непланарность аналогичных фрагментов в независимой молекуле 4с-В обусловлена перегибами по линиям N(23)...O(21) на угол 30.3° и C(23')-O(21') и C(24')-O(21') на углы 15.9° и 5.4° соответственно. Подобное строение имеет и ранее изученное соединение без дополнительно аннелированного бензольного кольца 6 [6]: непланарность бензоксазинонового фрагмента в этом соединении обусловлена перегибом по линии N(3)...O(1) на угол 33.9°, а непланарность бензопиранового фрагмента вызвана перегибами по линиям С(3')-О(1') и С(4')-О(1') на углы 22.6° и 7.5° соответственно. Атомы O(1), C(4), N(3), O(4) и O(21), C(24), N(23), O(24) расположены в плоскостях соответствующих нафталиновых фрагментов. Таким образом, геометрическое строение Сспиро-узла и бензопиранового фрагмента в независимых молекулах соединения 4с аналогично строению ранее исследованных индолиновых и бензоксазиновых спиропиранов. Также как и в соединении 6, включение в дополнительно аннелированный бензоксазиноновый фрагмент соединения 4с карбонильной группы С(4)=О(2) приводит к существенному изменению электронной и геометрической картины строения N-узла. Выход атомов N(3) и N(23) из соответствующих плоскостей координирующих атомов C(2'A), C(4), C(3) соединения 4с-А и C(2'B), C(24), C(23) соединения 4с-В составляет 0.171 и 0.162 Å, соответственно (0.152 Å в соединении 6), сумма валентных углов при атоме N(3) равна 355.6° и при атоме N(23) -356.1° (356.1° в соединении 6). Длина амидной связи в независимых молекулах 4с-А и 4с-В равна, соответственно, N(3)-C(4) = 1.375(4) и N(23)-C(24) = 1.375 (4) Å (1.361(3) Å в соединении 6), что свидетельствует о заметном сопряжении неподеленной электронной пары атома N с π-связью карбонильной группы. Амидное сопряжение существенно ослабляет взаимодействие неподеленной электронной пары атома N с σ^* -орбиталью Кроме того, геометрическое расположение связи связи С_{спиро}-O(1'). Сспиро-О(1') относительно координационной плоскости атома азота - $C_{cпиро}C(4)C(3)$ становится менее благоприятным для орбитальных *n*- σ^* -взаимодействий. С другой стороны, наличие при атоме С(8') формильной группы увеличивает электроноакцепторное влияние на атом O(1'). Об этом свидетельствует некоторое укорочение связи О(1')-С(9') в сравнении с аналогичными соединениями до 1.357(3) Å в независимой молекуле 4с-А и 1.366(3) Å в независимой молекуле 4с-В. Увеличение электроноакцепторного влияния 8'-заместителя увеличивает полярность связи Сспиро-O(1') и дополнительно усиливает $n-\sigma^*$ -взаимодействие в сравнении с ранее изученными спиропиранами. В результате этого длины связей C(2'A)-O(1') = 1.446(3) и C(2'A)-O(1) = 1.419(4) Å в независимой молекуле **4с-А** и C(2'B)-O(21') = 1.447(3) и C(2'B)-O(21) = 1.406(3) Å в независимой молекуле 4с-В, аналогичные значения в соединении 6 C(2'2)-O(1') == 1.454(2) и C(2'2)-O(1) = 1.414(2) Å.

Связь	<i>l</i> , Å	Связь	<i>l</i> , Å	Связь	<i>l</i> , Å
O(1)–C(14)	1.370(3)	C(2'A)–C(3')	1.491(4)	C(28)–C(29)	1.405(5)
O(1)–C(2'A)	1.419(4)	C(3')–C(4')	1.325(4)	C(29)–C(30)	1.348(4)
O(4)–C(4)	1.219(3)	C(4')-C(10')	1.440(5)	C(30)–C(31)	1.417(4)
N(3)–C(4)	1.375(4)	C(5')–C(6')	1.355(5)	C(31)–C(34)	1.412(4)
N(3)-C(2'A)	1.425(4)	C(5')–C(10')	1.398(5)	C(31)–C(32)	1.418(4)
N(3)–C(3)	1.463(4)	C(6')–C(7')	1.391(5)	C(33)–C(34)	1.362(4)
C(4)–C(13)	1.460(4)	C(7')–C(8')	1.405(4)	C(2'B)–O(21')	1.447(3)
C(5)–C(6)	1.349(5)	C(8')–C(9')	1.390(4)	C(2'B)–C(23')	1.485(4)
C(5)–C(13)	1.431(4)	C(8')–C(11')	1.423(4)	O(21')–C(29')	1.366(3)
C(6)–C(12)	1.424(5)	C(9')–C(10')	1.382(4)	O(27')–C(27')	1.337(4)
C(7)–C(8)	1.376(6)	O(21)–C(34)	1.372(3)	O(31')–C(31')	1.211(4)
C(7)–C(12)	1.411(5)	O(21)–C(2'B)	1.406(3)	C(23')–C(24')	1.311(4)
C(8)–C(9)	1.381(6)	O(24)–C(24)	1.223(3)	C(24')–C(30')	1.444(4)
C(9)–C(10)	1.361(5)	N(23)-C(24)	1.378(4)	C(25')–C(26')	1.362(5)
C(10)–C(11)	1.410(5)	N(23)-C(2'B)	1.433(4)	C(25')–C(30')	1.391(4)
C(11)–C(14)	1.413(4)	N(23)-C(23)	1.454(4)	C(26')–C(27')	1.377(5)
C(11)–C(12)	1.426(4)	C(24)–C(33)	1.459(4)	C(27')–C(28')	1.409(4)
C(13)–C(14)	1.356(4)	C(25)–C(26)	1.350(5)	C(28')–C(29')	1.392(4)
O(1')–C(9')	1.357(3)	C(25)–C(33)	1.423(4)	C(28')–C(31')	1.437(4)
O(1')–C(2'A)	1.446(3)	C(26)–C(32)	1.410(4)	C(29')–C(30')	1.381(4)
O(7')–C(7')	1.339(4)	C(27)–C(28)	1.360(5)		
O(11')–C(11')	1.224(4)	C(27)–C(32)	1.400(5)		

Длины связей (l) в двух независимых молекулах соединения 4с

Молекулярное строение обеих независимых молекул **4с-A**, **4с-B**, также как и молекулярное строение ранее изученного соединения **6** характеризуется наличием сильных внутримолекулярных водородных связей между гидроксильным атомом водорода и формильным атомом кислорода. Параметры внутримолекулярных водородных связей: O(11')...H(7') = 1.86(3), O(11')...O(7') = 2.598(4) Å, $O(11')H(7')O(7') = 130.8^{\circ}$ в молекуле **4с-A** и O(31')...H(27') = 1.62(3), O(31')...O(27') = 2.629(4) Å, $O(31')H(27')O(27') = 124.9^{\circ}$ в молекуле **4с-B** (O(3')...H(2') = 1.63(3), O(2')...O(3') = 2.586(3) Å, $O(2')H(2')O(3') = 145.6^{\circ}$ для соединения **6**).

Спиропираны **4а,b** не проявляют фотохромных свойств при облучении их спиртовых растворов в стационарном режиме при низких (-70 °C) температурах вне зависимости от длины волны активирующего излучения (λ_{max} 313, λ_{max} 365 нм или нефильтрованным светом).

Таблица 4

Угол	ω, град.	Угол	ω, град.
C(14)–O(1)–C(2'A)	116.0(2)	C(34)–O(21)–C(2'B)	118.3(2)
C(4) = N(3) = C(2'A)	119.3(2)	C(24)-N(23)-C(2'B)	121.5(2)
C(4) - N(3) - C(3)	118 7(3)	C(24)-N(23)-C(23)	117 9(3)
C(2'A) = N(3) = C(3)	117 6(2)	C(2'B) = N(23) = C(23)	116 7(3)
O(4) - C(4) - N(3)	121.9(3)	O(24)-C(24)-N(23)	121 5(3)
O(4)-C(4)-C(13)	123 3(3)	O(24)-C(24)-C(33)	123 5(3)
N(3) - C(4) - C(13)	114 7(3)	N(23)-C(24)-C(33)	115.0(3)
C(6) - C(5) - C(13)	120 5(3)	C(26) - C(25) - C(33)	120 7(3)
C(5) - C(6) - C(12)	121.9(3)	C(25) - C(26) - C(32)	121.7(3)
C(8) - C(7) - C(12)	121 2(4)	C(28)-C(27)-C(32)	121.5(3)
C(7) - C(8) - C(9)	120.6(4)	C(27)-C(28)-C(29)	119.7(3)
C(10)-C(9)-C(8)	120.5(4)	C(30)-C(29)-C(28)	121.0(3)
C(9) - C(10) - C(11)	120.7(4)	C(29)-C(30)-C(31)	120.4(3)
C(10)-C(11)-C(14)	123.6(3)	C(34)-C(31)-C(30)	123.2(3)
C(10)-C(11)-C(12)	119.5(3)	C(34)-C(31)-C(32)	117.8(3)
C(14)-C(11)-C(12)	116.9(3)	C(30)-C(31)-C(32)	119.0(3)
C(7)-C(12)-C(6)	123.9(3)	C(27)-C(32)-C(26)	122.8(3)
C(7)-C(12)-C(11)	117.5(3)	C(27)-C(32)-C(31)	118.5(3)
C(6)-C(12)-C(11)	118.5(3)	C(26)-C(32)-C(31)	118.7(3)
C(14)-C(13)-C(5)	117.7(3)	C(34)–C(33)–C(25)	118.1(3)
C(14)-C(13)-C(4)	121.2(3)	C(34)–C(33)–C(24)	120.6(3)
C(5)-C(13)-C(4)	121.0(3)	C(25)-C(33)-C(24)	121.3(3)
C(13)-C(14)-O(1)	119.9(3)	C(33)–C(34)–O(21)	120.5(3)
C(13)–C(14)–C(11)	124.3(3)	C(33)–C(34)–C(31)	123.0(3)
O(1)-C(14)-C(11)	115.7(3)	O(21)-C(34)-C(31)	116.5(2)
C(9')-O(1')–C(2'A)	119.8(2)	O(21)–C(2'B)–N(23)	112.5(2)
O(1)-C(2'A)-N(3)	112.0(2)	O(21)–C(2'B)–O(21')	107.8(2)
O(1)-C(2'A)-O(1')	106.3(2)	N(23)-C(2'B)-O(21')	105.1(2)
N(3)-C(2'A)-O(1')	105.6(2)	O(21)–C(2'B)–C(23')	105.6(2)
O(1)–C(2'A)–C(3')	105.3(2)	N(23)-C(2'B)-C(23')	113.2(3)
N(3)-C(2'A)-C(3')	115.4(3)	O(21')–C(2'B)–C(23')	112.6(2)
O(1')-C(2'A)-C(3')	111.9(3)	C(29')-O(21')-C(2'B)	121.4(2)
C(4')–C(3')–C(2'A)	119.9(3)	C(24')-C(23')-C(2'B)	121.2(3)
C(3')-C(4')-C(10')	122.1(3)	C(23')-C(24')-C(30')	122.1(3)
C(6')-C(5')-C(10')	123.4(3)	C(26')–C(25')–C(30')	123.2(3)
C(5')–C(6')–C(7')	119.0(3)	C(25')–C(26')–C(27')	119.2(3)
O(7')–C(7')–C(6')	118.2(3)	O(27')–C(27')–C(26')	118.7(3)
O(7')-C(7')-C(8')	121.8(3)	O(27')–C(27')–C(28')	121.5(3)
C(6')–C(7')–C(8')	120.0(3)	C(26')–C(27')–C(28')	119.9(3)
C(9')–C(8')–C(7')	118.8(3)	C(29')–C(28')–C(27')	119.0(3)
C(9')–C(8')–C(11')	121.4(3)	C(29')–C(28')–C(31')	120.5(3)
C(7')–C(8')–C(11')	119.8(3)	C(27')-C(28')-C(31')	120.4(3)
O(11')-C(11')-C(8')	125.1(3)	O(31')-C(31')-C(28')	125.3(4)
O(1')-C(9')-C(10')	121.0(3)	O(21')–C(29')–C(30')	121.0(3)
O(1')-C(9')-C(8')	117.0(2)	O(21')–C(29')–C(28')	117.6(3)
C(10')–C(9')–C(8')	122.0(3)	C(30')–C(29')–C(28')	121.4(3)
C(9')-C(10')-C(5')	116.9(3)	C(29')–C(30')–C(25')	117.3(3)
C(9')-C(10')-C(4')	117.4(3)	C(29')–C(30')–C(24')	117.7(3)
C(5')-C(10')-C(4')	125.7(3)	C(25')-C(30')-C(24')	124.9(3)

Значение углов (@) в двух независимых молекулах соединения 4с по данным РСА

Рис. 2. УФ спектр поглощения спиропирана **4b** в толуоле до и после облучения в стационарном режиме светом с λ_{max} 365 нм при 20 °C

Однако при проведении эксперимента в толуоле при комнатной температуре растворы спиропиранов 4, содержащих π -акцепторные группы в положении 6', проявляют фотохромные свойства (рис. 2, табл. 5). Однако, в общем, дополнительно аннелированное бензольное кольцо приводит к уменьшению времени жизни фотоиндуцированной формы, что хорошо согласуется с результатами исследования 1,3,3-триметил-4,5-бензо-6-нитроспиро(индолин-2,2'-[2H-I]бензопирана) (7), которые показывают, что сильное уменьшение квантового выхода фотопревращения при аннелировании дополнительного ядра в гетареновом фрагменте индолинового спиропирана возможно объясняется безызлучательной дезактивацией возбужденного состояния (например, внутримолекулярным переносом энергии с пиранового цикла на индолиновый) [5].

Таблица 5

				Фотоиндуцированная форма		
Соеди- нение	R	$\lambda^{A}_{max},$ HM	$\epsilon (\lambda^{A}_{max}), M^{-1}cM^{-1}$	(λ^{B}_{max}) , нм	τ, c	
4 a	6'-Me	300	6190	Не наблюдается в условиях эксперимента		
4b	6'-Me 8'-CHO	329 342	6710 7940	600	0.89	
4c	7'-OH 8'-CHO	343	6690	Не наблюдается в условиях эксперимента		
4 e	8'-NO ₂	298 327	8000 7740	576 пл 615	3.1	
4f	6'-OMe	327	6780	Не наблюдается в условиях эксперимента		
4g	6'-Cl	300	6540	Не наблюдается в условиях эксперимента		

Характеристики спектров поглощения спиропиранов 4 в толуоле при 20 °С

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры в вазелиновом масле зарегистрированы на призменном двухлучевом спектрометре Specord IR-75 (калибровка прибора по полистиролу). Электронные спектры поглощения получены на спектрофотометре Agilent 8453. Спектры ЯМР ¹Н записаны на приборе Bruker 250 (250 МГц) и Varian Unity 300 (300 МГц) в импульсном Фурье-режиме в CDCl₃. Стандарт – остаточные сигналы протона CDCl₃.

3-Метилспиро(2,3-дигидронафто[2,1-*e***][1,3]оксазин-4-оксо-2,2'-[2H]-хромены) 4а–g.** Кипятят 3 мин в 15 мл уксусной кислоты смесь 3.25 г (0.01 моль) перхлората 2,3-диметил-4-оксодигидронафто[2,1-*e*][1,3]оксазиния (1) [7] и 0.01 моль соответствующего альдегида, реакционную смесь охлаждают, выпавший осадок соли **3** отфильтровывают, промывают абсолютным эфиром. К раствору осадка в 50 мл абсолютного эфира приливают 1.5 мл (0.01 моль) триэтиламина, через 6 ч эфир декантируют и упаривают, осадок спиропирана кристаллизуют из спирта (табл. 1 и 2).

Параметры элементарной ячейки кристалла спиропирана 4с и трехмерный набор интенсивностей получены на четырехкружном дифрактометре KUMA-4 методом ω/2θ сканирования (МоКα-излучение, графитовый монохроматор) при 293(2) К. Поглощение не учитывалось – $\mu_{MoK\alpha} = 0.102 \text{ мм}^{-1}$. Светло-желтые кристаллы **4c** (из спирта) – триклинные: $C_{22}H_{15}NO_5$, M = 373.35; a = 7.7400(15), b= 13.256(3), c = 17.370(4) Å, $\alpha = 97.03(3), \beta = 93.84(3), \gamma = 97.15(3)$ °. V = 1748.9(6)Å³, Z = 4, $\rho_{\text{выч}} = 1.418 \text{ г/см}^3$, пр. гр. Р-1. Интенсивности 6830 рефлексов измерены при $2\theta \le 50.1^{\circ}$ с монокристалла размерами $0.4 \times 0.4 \times 0.35$ мм. После усреднения интенсивностей эквивалентных рефлексов рабочий массив измеренных F²(hkl) и $\sigma(F^2)$ составил 6051 независимый рефлекс, из которых 2779 с $F^2 > 4\sigma(F^2)$ принимали участие в последующих расчетах. Структура расшифрована прямым методом по программе SHELXS-97 [8] и уточнена полноматричным MHK относительно F^2 по программе SHELXL-97 [8] в анизотропном приближении для неводородных атомов. В кристаллической структуре 4с все атомы Н были локализованы в синтезе Фурье разностной электронной плотности. Далее координаты и изотропные тепловые параметры всех атомов Н вычислялись в процедуре МНК по модели "всадника" [8]. В последнем цикле полноматричного уточнения абсолютные сдвиги всех 100 варьируемых параметров структуры были меньше 0.001 о. Заключительные межатомные расстояния и валентные углы приведены в табл. 3 и 4. Конечные параметры уточнения: $R_1 = 0.051$, $wR_2 = 0.132$ по наблюдаемым рефлексам с $I \ge 2\sigma(I); R_2 = 0.069, wR_2 = 0.155$ по всем измеренным рефлексам: добротность "подгонки" S, соответственно, 0.862 и 0.862, максимальная и минимальная электронная плотность 0.222 и -0.358 эА⁻³.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (гранты 07-03-00234, 08-03-90029-Бел), Министерства образования и науки Российской Федерации (проект РНП.2.2.2.3.16011) и Гранта Президента Российской Федерации НШ-363.2008.3.

СПИСОК ЛИТЕРАТУРЫ

- 1. Н. А. Волошин, С. О. Безуглый, Е. В. Соловьева, А. В. Метелица, В. И. Минкин, *XTC*, 1513 (2008). [*Chem. Heterocycl. Comp.*, **44**, 1229 (2008)].
- 2. H. Bouas-Laurent, H. Durr, Organic Photochromism (IUPAC Technical Report), Pure Appl. Chem., 73, 639 (2001).

- S. M. Aldoshin, in: Organic Photochromic and Thermochromic Compounds, J. C. Carno, R. J. Gugliemetti (Eds.), Kluwer Acad., Plenum Publishers, New York, 1999, vol. 2, p. 297.
- 4. С. М. Алдошин, *Успехи химии*, **59**, 1144 (1990).
- 5. V. I. Minkin, Chem. Rev., 104, 2751 (2004).
- Ю. С. Алексеенко, Б. С. Лукьянов, А. Н. Утенышев, Е. Л. Муханов, М. Е. Клецкий, В. В. Ткачев, Н. Н. Кравченко, В. И. Минкин, С. М. Алдошин, *XTC*, 919 (2006). [*Chem. Heterocycl. Comp.*, 42, 803 (2006)].
- Е. Л. Муханов, Ю. С. Алексеенко, Б. С. Лукьянов, Ю. И. Рябухин, О. Н. Рящин, М. Б. Лукьянова, XГС, 458 (2006). [Chem. Heterocycl. Comp., 42, 408 (2006)].
- 8. G. M. Sheldrick, *SHELXL-97*, *Program for Refinement of Crystal Structures*, Univ. of Göttingen, Germany, 1997.

^аНаучно-исследовательский институт физической и органической химии Южного федерального университета, Ростов-на-Дону 344090, Россия e-mail: bluk@ipoc.rsu.ru

⁶Южный научный центр РАН, Ростов-на-Дону 344090, Россия

^вИнститут проблем химической физики РАН, Черноголовка 142432, Московская область, Россия Поступило 20.11.2008