Л. М. Потиха*, Р. М. Гуцул, В. А. Ковтуненко

конденсированные изохинолины

33.* СИНТЕЗ 1'-R-СПИРО[7H,8H-2a,7a-ДИАЗАЦИКЛОПЕНТА[fg]НАФТАЦЕН-2,4'(1'H)-ПИРИДИН]-1,8(2H)-ДИОНОВ

Нагревание 5,13-дигидро-11Н-изохино[3,2-*b*]хиназолин-11-она с изоникотиноилхлоридом в пиридине приводит к 6-изоникотиноил-5,13-дигидро-11Н-изохино[3,2-*b*]хиназолин-11-ону. Иодиды 1-алкил-4-[(11-оксо-5,13-дигидро-11Н-изохино[3,2-*b*]хиназолин-6-ил)карбонил]пиридиния, полученные алкилированием 6-изоникотиноил-5,13-дигидро-11Н-изохино[3,2-*b*]хиназолин-11-она алкилиодидами, в присутствии NaH превращаются в 1'-R-спиро[7H,8H-2a,7a-диазациклопента[*fg*]нафтацен-2,4'(1'H)-пиридин]-1,8(2H)-дионы. Изучены химические и спектральные свойства полученных спиросоединений.

Ключевые слова: 2a,7a-диазациклопента[fg]нафтацен, енамины, изохино[3,2-b]хиназолин, спиро-1,4-дигидропиридин, алкилирование, ацилирование.

Особенностью строения молекулы 5,13-дигидро-11Н-изохино[3,2-b]хиназолин-11-она (1), обусловливающей его активность в реакциях с электрофильными реагентами является наличие структурного фрагмента вторичного енамина. Ранее [2] нами было изучено ацилирование и алкилирование изохино[3,2-b]хиназолинона 1, приводящее к 6- и/или 5-замещенным производным соединения 1 в зависимости от условий проведения реакций и природы электрофильного реагента. При использовании в этой реакции биэлектрофила (оксалилхлорида) был получен конденсированный по енаминной триаде продукт – 7H,8H-2a,7a-диазациклопента[fg]нафтацен-1,2,8-трион. Это позволило надеяться на положительный результат циклизаций и в случае других биэлектрофилов, а именно – гетероциклизаций на основе четвертичных солей 4-пиридилкетонов. Данный тип гетероциклизации, приводящий к образованию производных спиро-1,4-дигидропиридина, был нами использован ранее [3, 4] в синтезе мостиковых гетероциклических систем. Первой стадией в таких превращениях является ацилирование вторичных енаминов изоникотиноилхлоридом [3-7], а циклические продукты образуются при депротонировании с помощью оснований четвертичных пиридиниевых солей, полученных из изоникотиноилпроизводных.

При нагревании в пиридине соединения 1 с изоникотиноилхлоридом, как и в случае других, изученных нами ранее производных 3-аминоизохинолина [6, 7], образуется продукт С-ацилирования – 6-изоникотиноил-5,13-дигидро-11Н-изохино[3,2-*b*]хиназолин-11-он (2). Использование избытка ацилирующего реагента не приводит к изменению направления реакции или

^{*} Сообщение 32 см. [1].

a R = Me, **b** R = Et

к существенному увеличению выхода продукта **2**. При нагревании реакционной смеси в ДМФА в присутствии гидрида натрия (условия образования $N_{(5)}$ -ацилпроизводных изохино[3,2-*b*]хиназолинона **1** [2]) получена сложная смесь неидентифицированных продуктов. Строение соединения **2** установлено на основании спектральных характеристик (табл. 1–3). В первую очередь это сохранение сигнала группы NH в его спектрах ЯМР ¹H (с, δ 12.02 м. д.) и ИК ($v_{NH} = 3450 \text{ см}^{-1}$), а также отсутствие сигнала протона H-6 в спектре ЯМР ¹H, наблюдавшегося в области 5.85 м. д. для исходного изохино[3,2-*b*]хиназолинона **1** [8].

Взаимодействие 6-изоникотиноил-5,13-дигидро-11Н-изохино[3,2-b]хиназолин-11-она 2 с метил- или этилиодидом в ацетонитриле приводит к образованию четвертичных пиридиниевых солей строения За, b. На это указывают слабопольные сдвиги сигналов протонов пиридинового цикла в их спектрах ЯМР ¹Н ($\Delta\delta \sim 0.7$ для α -протонов и $\Delta\delta \sim 0.4$ м. д. для β-протонов) по сравнению с соответствующими сигналами в исходном соединении 2 и сохранение сигнала группы NH. Нагревание солей 3a,b в пиридине или в присутствии алкоголятов натрия не приводит к заметным изменениям в их структуре. Нам удалось осуществить циклизацию этих соединений только под действием более сильного основания – гидрида натрия с образованием с высоким выходом (~80%) 1'-алкил-спиро[7H,8H-2a,7a-диазациклопента[fg]нафтацен-2,4'(1'H)-пиридин]-1,8(2H)-дионов 4a.b. Эти соединения нерастворимы в неполярных и трудно растворимы в полярных растворителях, устойчивы к действию разбавленных растворов щелочи (10-20%) и неустойчивы при нагревании в кислотах. В последнем случае легко протекает расщепление пиррольного цикла структуры 4а, b по связи C(2)–N(2a) с образованием четвертичных пиридиниевых солей строения 3.

Об образовании производных спиро-1,4-дигидропиридина свидетель-

ствует наличие в их спектрах ЯМР ¹Н характерной [3–7] для данного типа соединений спектральной картины: двух сигналов α - и β -протонов в виде двухпротонных дублетов с вицинальной КССВ 7–8 Гц в областях 5.0–8.0 и 4.5–5.0 м. д. соответственно (табл. 1). Для доказательства строения спиропродуктов **4а,b** были измерены спектры ЯМР ¹³С (табл. 2) и NOESY, а также применены методы гетероядерной (HMBC и HMQC) двумерной корреляционной спектроскопии. Гомо- и гетероядерные корреляции для соединения **4b** приведены в табл. 4. Имеющиеся данные позволяют

Таблица 1

Соеди-	Химические сдвиги, δ, м. д. (Ј, Гц)				
нение	N ₍₅₎ H 1H, c	ArH	H-13 2H, c	Другие сигналы	
2	12.02	8.64 (2H, π , ${}^{3}J$ = 6.0, H-2',6'); 8.10 (1H, π , ${}^{3}J$ = 8.0, H-10); 7.45 (2H, π , ${}^{3}J$ = 6.0, H-3',5'); 7.26 (2H, m , H-3,8); 7.19 (1H, π , ${}^{3}J$ = 7.5, H-9); 7.09 (1H, π , ${}^{3}J$ = 7.5, H-2); 7.04 (1H, π , ${}^{3}J$ = 7.5, H-4); 6.85 (1H, π , ${}^{3}J$ = 8.0, H-7)	5.23	_	
3a	12.16	9.02 (2H, π , ${}^{3}J$ = 6.0, H-2',6'); 8.14 (3H, M, H-10,3',5'); 7.41 (1H, π , ${}^{3}J$ = 8.0, H-1); 7.35 (1H, π , ${}^{3}J$ = 7.5, H-3); 7.27 (2H, M, H-8,9); 7.14 (1H, π , ${}^{3}J$ = 7.5, H-2); 7.05 (1H, π , ${}^{3}J$ = 8.0, H-4); 6.99 (1H, π , ${}^{3}J$ = 8.0, H-7)	5.26	4.36 (3H, c, CH ₃)	
3b	12.05	9.12 (2H, π , ${}^{3}J$ = 6.0, H-2',6'); 8.18 (3H, M, H-10,3',5'); 7.42 (1H, π , ${}^{3}J$ = 8.0, H-1); 7.37 (1H, π , ${}^{3}J$ = 7.5, H-3); 7.28 (2H, M, H-8,9); 7.15 (1H, π , ${}^{3}J$ = 7.5, H-2); 7.08 (1H, π , ${}^{3}J$ = 8.0, H-4); 6.98 (1H, π , ${}^{3}J$ = 8.0, H-7)	5.27	4.63 (2H, κ , ³ <i>J</i> = 6.8, CH ₂); 1.54 (3H, τ , ³ <i>J</i> = 6.8, CH ₃)	
4a	_	8.24 (1H, μ , ${}^{3}J$ = 8.0, H-12); 8.08 (1H, μ , ${}^{3}J$ = 8.0, H-9); 7.68 (1H, π , ${}^{3}J$ = 7.5, H-11); 7.30 (2H, M , H-6,10); 7.16 (1H, π , ${}^{3}J$ = 7.5, H-4); 7.00 (1H, π , ${}^{3}J$ = 7.5, H-5); 6.74 (1H, μ , ${}^{3}J$ = 8.0, H-3)	5.07 H-7	6.76 (2H, д, ³ <i>J</i> = 7.2, H-2',6'); 4.37 (2H, д, ³ <i>J</i> = 7.2, H-3',5'); 3.25 (3H, с, CH ₃)	
4b	_	8.21 (1H, π , ³ <i>J</i> = 8.0, H-12); 8.04 (1H, π , ³ <i>J</i> = 8.0, H-9); 7.64 (1H, π , ³ <i>J</i> = 7.5, H-11); 7.26 (2H, M , H-6,10); 7.10 (1H, π , ³ <i>J</i> = 7.5, H-4); 6.96 (1H, π , ³ <i>J</i> = 7.5, H-5); 6.65 (1H, π , ³ <i>J</i> = 8.0, H-3)	5.03 H-7	6.72 (2H, π , ³ J = 7.2, H-2',6'); 4.38 (2H, π , ³ J = 7.2, H-3',5'); 3.48 (2H, κ , ³ J = 6.8, CH ₂); 1.25 (3H, T, ³ J = 6.8, CH ₃)	

Спектры ЯМР ¹Н ацилизохино[3,2-*b*]хиназолин-11-онов 2, 3а,b и 1'-R-спиро[7Н,8Н-2а,7а-диазациклопента[*fg*]нафтацен-2,4'(1'Н)пиридин]-1,8(2Н)-дионов 4а,b

Таблица 2

Соеди-	Химические сдвиги, б, м. д.					
нение	Четвертичные	Третичные	Вторичные, первичные			
2	192.0 (6-C=O); 161.43 (11); 148.90 (5a); 147.92 (6a); 136.12 (4a); 133.62 (4'); 120.86 (10a); 118.86 (13a); 94.17 (6)	150.79 (2', 6'); 132.42 (8); 129.17 (3); 127.98 (10); 127.14 (1); 125.79 (7); 124.35 (2, 9); 122.76 (3', 5'); 116.10 (4)	42.85 (13)			
3a	187.14 (6-C=O); 161.59 (11); 155.74 (5a); 149.19 (6a); 135.31 (4a); 133.12 (4'); 121.20 (10a); 119.17 (13a); 94.55 (6)	146.97 (2', 6'); 133.12 (8); 129.31 (3); 128.24 (10); 127.12 (1); 126.90 (3', 5'); 126.13 (7); 125.00 (9); 124.86 (2); 116.40 (4)	48.55 (CH ₃); 42.93 (13)			
3b	187.09 (6-C=O); 161.62 (11); 156.11 (5a;149.18 (6a); 135.36 (4a); 133.25 (4'); 121.25 (10a); 119.34 (13a); 94.69 (6)	145.90 (2', 6'); 133.14 (8); 129.30 (3); 128.24 (10); 127.32 (1, 3', 5'); 125.97 (7); 125.01 (9); 124.91 (2); 116.25 (4)	56.93 (1'-CH ₂); 42.91 (13); 16.70 (CH ₃)			
4a	_	_	-			
4b	194.59 (1); 162.42 (8); 154.98 (12c); 133.75 (12a); 131.71 (2b); 121.01 (8a); 118.47 (6a); 88.62 (12b); 72.93 (2/4')	135.13 (2', 6'); 134.68 (11); 128.44 (9); 128.21 (4, 6); 124.90 (10); 122.90 (5); 122.14 (12); 113.43 (3); 96.18 (3', 5')	48.69 (1'-CH ₂); 42.78 (7); 16.95 (CH ₃)			

Спектры ЯМР ¹³С соединений 2-4

произвести полные отнесения сигналов в протоннных и углеродных спектрах и сделать выводы о структуре изучаемого соединения. На рисунке показаны отнесения сигналов и стрелками – структурно-значимые корреляции HMBC.

Так, для соединения **4b** β -протоны дигидропиридинового фрагмента с δ 4.38 м. д. имеют корреляции с двумя четвертичными атомами углерода, поглощающими при 194.6 и 72.9 м. д., которые отвечают атому углерода группы C₍₁₎=O и спироатому C-2/4'. Последний атом имеет также корреляции с сигналами α -протонов при 6.72 м. д. Отнесение сигнала карбонильного атома C-8 (162.4 м. д.) осуществляется на основании корреляции с сигналом ароматического протона H-9 (8.04 м. д.). В наиболее

Таблица З

ИК спектры соединений 2-4

Соеди- нение	ν, cm ⁻¹
2	3450 (NH), 1678 (C=O), 1591, 1562, 1500, 1333, 785, 740
3a	3438 (NH), 3043, 1682 (C=O), 1588, 1559, 1459, 1326, 782, 760
3b	3452 (NH), 3039, 1675 (C=O), 1586, 1557, 1503, 1326, 777, 761
4 a	1655 (C=O), 1619, 1561, 1544, 1499, 1397, 1222, 1147, 1054, 900, 752
4b	1665 (C=O), 1595, 1560, 1540, 1498, 1397, 1054, 900, 765

Структурно-значимые корреляции НМВС для соединения 4b

слабом поле в спектре ЯМР ¹Н наблюдается сигнал протона H-12 (8.21 м. д.), который попадает в область дезэкранирования карбонильной группы в положении 1. Этот протон имеет корреляцию с сигналом четвертичного атома углерода при 88.6 м. д., отнесенному к атому C-12b. Значение химического сдвига узлового атома C-12c (155.0 м. д.) определяется по наиболее вероятной для него корреляции с сигналом протонов метиленовой группы H-7 (5.03 м. д.), отстоящих от него на 3 химические связи.

Таблица 4

Спектр ЯМР	Корреляции, б, м. д.			
'Η, δ, м. д.	NOESY	HMQC	HMBC	
8.21	_	122.14	88.62, 124.9, 121.0	
8.04	7.26	128.44	134.68, 162.42	
7.64	8.21	134.68	133.75, 128.44	
7.26	5.03, 6.96, 7.64, 8.04	128.21, 124.9	131.71, 128.21, 122.14, 121.0	
7.10	6.65	128.21	131.71, 128.21	
6.96	7.26	122.9	118.47, 113.43	
6.72	3.48, 4.38	135.13	96.18, 72.93, 48.69, 135.13	
6.65	7.10	113.43	122.9, 118.47	
5.03	7.26	42.78	131.71, 128.21, 118.47, 154.98	
4.38	6.72	96.18	96.18, 72.93, 135.13, 194.59	
3.48	6.72, 1.25	48.69	16.95, 135.13	
1.25	3.48	16.95	48.69	

Протон-протонные и протон-углеродные корреляции для соединения 4b

С целью оценки биологического потенциала описанных в работе веществ был произведен расчет спектра биологической активности. В расчетах была использована программа PASS (Prediction of Activity Spectra for Substances) [9-11]. В основу выборки активных соединений положена многоуровневая оценка ближайшего окружения атомов и сравнение рассчитанных 2D дескрипторов с набором таковых, отвечающих либо высокой активности, либо ее отсутствию. Конечный результат представляется программой как вероятность проявления соединением активности (*p*_a) и неактивности (*p*_i) в долях единицы. Был рассчитан спектр для более 3000 типов активностей для каждого соединения, порогом активности было выбрано $p_a > 0.75$; $p_i < 0.2$. Среди активностей, характерных для соединений 2-4, следует отметить предсказанное свойство эффективного торможения синтеза холестерина путем ингибирования фарнезолдегидрогеназы, контролирующей трансформацию фарнезилпирофосфата в сквален. Если для соединения 3b показатель p_a составляет 0.852 $[p_i = 0.034]$, то у спироструктуры 4b он достигает значения 0.938 [p_i = 0.006]. Заслуживают упоминания также предсказанные антиацилхолинэстеразная активность соединения **3a** [$p_a = 0.906$, *p*_i = 0.002] и свойства корректора коронарной недостаточности у соединения **2** $[p_a = 0.852, p_i = 0.084].$

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры таблеток соединений с КВг зарегистрированы на приборе Hewlett Packard UR 20. Спектры ЯМР ¹Н и ¹³С синтезированных продуктов и эксперименты по гомоядерной корреляции COSY произведены на спектрометре Varian Mercury-400 (400 и 100 МГц соответственно) в ДМСО-d₆, внутренний стандарт ТМС. Масс-спектры соединений получены методом ВЖХ на приборе AGILENT/100-Series (ХИ, ацетонитрил, 0.05% муравьиной кислоты). Контроль за ходом реакций и чистотой полученных продуктов осуществлялся с помощью TCX на пластинках Silufol UV-254.

5,13-Дигидро-11Н-изохино[3,2-*b*]хиназолин-11-он (1) получен согласно [8].

6-Изоникотиноил-5,13-дигидро-11Н-изохино[3,2-*b***]хиназолин-11-он (2). Растворяют 0.25 г (1 ммоль) изохинохиназолина 1 при нагревании в 15 мл безводного пиридина, добавляют 0.19 г (1.1 ммоль) изоникотиноилхлорида. Смесь кипятят 3–5 ч, охлаждают и добавляют 50 мл воды. Выпавший осадок отфильтро-вывают и промывают 2-пропанолом, кристаллизуют из ДМФА. Выход 0.24 г (68%). Т. пл. 230–231 °C (из ДМФА). Масс-спектр, m/z (I, %): 354.0 [M+1]⁺ (100). Найдено, %: N 11.80. С₂₂H₁₅N₃O₂. Вычислено, %: N 11.89.**

Иодиды 1-алкил-4-[(11-оксо-5,13-дигидро-11Н-изохино[3,2-*b*]хиназолин-6ил)карбонил]пиридиния 3а,b. Растворяют 0.35 г (1 ммоль) изоникотиноилизохино[3,2-*b*]хиназолинона 2 при нагревании в 20 мл ДМФА, добавляют 1.05 ммоль метил- или этилиодида. Смесь кипятят 2–3 ч, охлаждают и упаривают в вакууме растворитель до половины объема. При охлаждении раствора через 3 ч выпадает кристаллический осадок, который отфильтровывают, промывают эфиром и перекристаллизовывают из смеси ДМФА–2-пропанол, 1:1.

Соединение За. Выход 0.47 г (95.5%). Т. пл. 294–295 °С (ДМФА–2-пропанол). Масс-спектр, *m/z* (*I*, %): 368.0 [M–I]⁺ (100). Найдено, %: N 8.50. С₂₃H₁₈IN₃O₂. Вычислено, %: N 8.48.

Соединение 3b. Выход 0.48 г (94%). Т. пл. 281–282 °С (ДМФА–2-пропанол). Масс-спектр, *m/z* (*I*, %): 382.0 [М–I]⁺ (100), 383.2 (25). Найдено, %: N 8.29. С₂₄H₂₀IN₃O₂. Вычислено, %: N 8.25.

1'-R-Спиро[7H,8H-2a,7а-диазациклопента[fg]нафтацен-2,4'(1'Н)-пиридин-]-1,8(2H)-дионы 4a,b. Растворяют 1 ммоль соли 3a или 3b при нагревании в 50 мл безводного ДМФА. К охлажденному раствору добавляют 0.03 г (1.25 ммоль) NaH. Смесь перемешивают 10–20 мин при 30 °C. Раствор охлаждают, добавляют 100 мл воды и отфильтровывают осадок. Твердое вещество промывают эфиром и перекристаллизовывают из ДМФА.

Соединение 4а. Выход 0.3 г (82%). Т. пл. >320 °С (ДМФА). Масс-спектр, *m/z* (*I*, %): 157.2 (100), 368.0 [M+1]⁺ (65), 369.2 [M+2]⁺ (20). Найдено, %: N 11.45. С₂₃H₁₇N₃O₂. Вычислено, %: N 11.44.

Соединение 4b. Выход 0.29 г (76%). Т. пл. 285–287 °С (ДМФА). Масс-спектр, *m/z* (*I*, %): 382.0 [M+1]⁺ (100), 383.2 (25). Найдено, %: N 11.10. С₂₄H₁₉N₃O₂. Вычислено, %: N 11.02.

Авторы благодарят за поддержку исследований фирму "Енамин" (г. Киев, руководитель проф. А. А. Толмачев).

СПИСОК ЛИТЕРАТУРЫ

- А. В. Задорожный, В. А. Ковтуненко, А. В. Туров, Т. Т. Кучеренко, *ХГС*, 1053 (2008). [*Chem. Heterocycl. Comp.*, 44, 845 (2008)].
- 2. Л. М. Потиха, Р. М. Гуцул, В. А. Ковтуненко, Г. Г. Дубинина, А. А. Толмачев, *XГС*, 741 (2008). [*Chem. Heterocycl. Comp.*, **44**, 585 (2008)].
- 3. T. T. Kucherenko, R. Gutsul, V. M. Kisel, V. A. Kovtunenko, *Tetrahedron*, **60**, 211 (2004).
- 4. В. М. Кисиль, Л. М. Потиха, Р. М. Гуцул, В. А. Ковтуненко, А. В. Туров, *XГС*, 113 (2006). [*Chem. Heterocycl. Comp.*, **42**, 100 (2006)].
- 5. M. Sainsbury, N. L. Uttley, J. Chem. Soc., Perkin Trans. 1, 2109 (1977).
- 6. T. Naito, O. Miyata, I. Ninomiya, J. Chem. Soc., Chem. Commun., 517 (1979).
- 7. T. Naito, I. Ninomiya, Heterocycles, 15, 735 (1981).
- 8. Л. М. Потиха, Р. М. Гуцул, А. В. Туров, В. А. Ковтуненко, *XГС*, 273 (2008). [*Chem. Heterocycl. Comp.*, **44**, 208 (2008)].
- 9. D. A. Filimonov, V. V. Poroikov, Yu. V. Borodina, T. Gloriozova, J. Chem. Inf. Comput. Sci., **39**, 666 (1999).
- V. V. Poroikov, D. A. Filimonov, Yu. V. Borodina, A. A. Lagunin, A. Kos, J. Chem. Inf. Comput. Sci., 40, 1349 (2000).
- 11. V. V. Poroikov, D. A. Filimonov, J. Computer-Aided Mol. Design, 16, 819 (2002).

Киевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: potikha_l@mail.ru Поступило 12.09.2007