Х. А. Асадов^{*}, Г. Г. Микаилов^a, С. Н. Гусейнова^a, Р. Н. Бурангулова, Р. Ж. Валиулина, А. М. Магеррамов^a, Ф. И. Гусейнов

ТИОЦИАНАТОКАРБОНИЛЬНЫЕ СОЕДИНЕНИЯ

РЕАКЦИЯ ФОСФОРИЛ-α-ТИОЦИАНАТОАЦЕТАЛЬДЕГИДОВ И ИХ АЦЕТАЛЕЙ С ДИЭТИЛАМИНОМ

Впервые изучены реакции фосфорилированных α-тиоцианатоацетальдегидов и их ацеталей с диэтиламином, результатом которых является синтез С-фосфорилированных тиазолидиновых циклов.

Ключевые слова: О,N-ацетали, диэтиламид натрия, диэтиламин, тиазолидины, тиазолин, тиоцианатоацетали, фосфорилированные αтиоцианатоальдегиды.

Производные тиазола и его гидрированного аналога – тиазолидина – занимают особое место среди биоактивных гетероциклов, содержащих в своем составе как атом азота, так и атом серы. Известно, что многие функциональные производные этих гетероциклов широко используются в медицинской практике как лекарственные препараты, модулирующие процессы иммунитета, противомикробные и противопаразитные препараты [1].

 α -Тиоцианатокарбонильные соединения, в частности тиоцианатокетоны, являются удобными ключевыми реагентами в синтезе тиазольных и тиазолидиновых гетероциклов [2–10]. Использование в качестве исходных субстратов фосфорилированных α -тиоцианатоальдегидов в целях синтеза аналогичных объектов в литературе не описано. Кроме того, введение фармакофорной фосфорильной группы в такие циклы является задачей довольно проблематичной.

Показано, что взаимодействие альдегидов **1**, препаративные методы синтеза которых разработаны нами [11], с диэтиламином независимо от количества последнего протекает исключительно по альдегидной группе и приводит к образованию O,N-ацеталей **2** (табл. 1).

Ход реакции контролировали с помощью ЯМР ¹Н и ИК спектроскопии. При смешивании реагентов в CCl₄ образуется бесцветный обильный осадок, в спектре ЯМР ¹Н которого отсутствует дублет альдегидной группы (9.7–10.0) и появляется сигнал в виде дублета в области 4.55 м. д. (${}^{3}J_{\rm PH} = 12.5$ Гц), характерный для полуаминального метинового протона. В ИК спектре цвиттер-иона **3** отсутствует полоса поглощения альдегидной группы (1710–1740) и появляется полоса валентных колебаний при 2584 см⁻¹, характерная для аммонийных групп.

Таблица 1

Соеди-	Брутто-	<u>Н</u> Вь	<u>Найдено, %</u> Вычислено, %		Т. пл., °С	Выход,
нение	формула	Ν	Р	S		/0
2a	$C_{14}H_{27}N_2O_6PS$	<u>7.26</u> 7.33	<u>8.17</u> 8.12	<u>8.11</u> 8.38	145–146	65
2b	$C_{17}H_{27}N_2O_4PS$	<u>7.36</u> 7.25	<u>8.14</u> 8.03	<u>8.38</u> 8.29	136–138	62
4 a	$C_{14}H_{27}N_2O_6PS$	<u>7.16</u> 7.33	<u>8.07</u> 8.12	<u>8.46</u> 8.38	Масло	60
4b	$C_{17}H_{27}N_2O_4PS$	<u>7.26</u> 7.25	<u>8.10</u> 8.03	<u>8.36</u> 8.29	Масло	72
6a	$C_{18}H_{37}N_2O_7PS$	<u>6.17</u> 6.14	<u>6.74</u> 6.80	<u>7.18</u> 7.02	Масло	82
6b	$C_{21}H_{37}N_2O_5PS$	<u>6.06</u> 6.09	<u>6.70</u> 6.74	<u>6.88</u> 6.96	Масло	86
7a	$C_{16}H_{31}N_2O_6PS$	<u>6.96</u> 6.83	<u>7.69</u> 7.56	<u>7.75</u> 7.80	157–159	65 (59)*
7b	$C_{19}H_{31}N_2O_4PS$	<u>6.69</u> 6.76	<u>7.50</u> 7.49	<u>7.75</u> 7.73	149–152	68 (62)*

Характеристики синтезированных соединений

* Выход при синтезе из ацеталей 5 и диэтиламида натрия.

Таблица 2

2
2
Ξ
e
Ξ
2
Ħ
ē.
2
<u> </u>
×.
Ξ
H
Ξ
3
2
<u>o</u>
9
2
83
Ĕ.
È
Ξ
Ð
Ξ.
2
5
2
2
ē
¥.
<u>_</u>
9
3
<u> </u>
E
4
Ξ
А
5
ğ
2
Ť.
Ĕ
5
\mathbf{U}

	ИК спектр, v, см ⁻¹	Спектр ЯМР ¹ Н, δ, м. д. (<i>J</i> , Гц)*	Спектр ЯМР ³¹ Р, 8, м. д. (85% Н ₃ РО ₄)
1290 (P=C (C=O); 21 3310 (OH)); 1685 (C=O); 1700 40 (SCN); 2580 (⁺ NH);)	1.2 (15H, m, 5CH ₃); 2.8 (2H, κ , ³ J _{HH} = 7.5, CH ₂); 3.3 (2H, κ , ³ J _{HH} = 7.5, CH ₂); 3.8–4.2 (6H, m, 30CH ₂); 4.55 (1H, μ , ³ J _{PH} = 12.5, CH–O); 9.80 (1H, ym. c, OH)	16.83
1290 (P= (C=O); 2 3391 (OF	O);1590–1595 (Ph); 1679 153 (SCN); 2584 (⁺ NH); H)	1.15 (12H, m, 4CH ₃); 2.6 (2H, K, ${}^{3}J_{HH} = 7.5$, CH ₂); 3.2 (2H, K, ${}^{3}J_{HH} = 7.5$ CH ₂); 3.8–4.2 (4H, m, 20CH ₂); 4.55 (1H, ${}_{4}$, ${}^{3}J_{PH} = 12.5$, CHO); 7.20 (3H, m, C ₆ H ₅); 7.7 (2H, m, C ₆ H ₅); 9.6 (1H, ym. c, OH)	17.55
1267 (P= (C=O); 2	=O); 1685 (C=O); 1710 979 (NH)	1.20 (15H, m, 5CH ₃); 2.7 (2H, k, ${}^{3}J_{\rm HH} = 7.5$, CH ₅); 3.3 (2H, k, ${}^{3}J_{\rm HH} = 7.5$, CH ₂); 3.8–4.30 (6H, m, 30CH ₂); 5.10–5.20 (1H, д. д. ${}^{3}J_{\rm PH} = 12.5$, ${}^{3}J_{\rm HH} = 15$, CH–0); 8.0 (1H, c, NH)	16.79, 17.35
1264 (P . 1590–15	=O); 1679 (C=O); 598 (Ph); 2981 (NH)	1.30 (12H, m, 4CH ₃); 2.8 (2H, k, ${}^{3}J_{HH} = 7.5$, CH ₂); 3.35 (2H, k, ${}^{3}J_{HH} = 7.5$, CH ₂); 3.80–4.00 (4H, m, 2OCH ₂); 5.00–5.2 (1H, д. д, ${}^{3}J_{PH} = 12.5$, ${}^{3}J_{HH} = 15$, CH–O); 7.35 (3H, m, C ₆ H ₅); 7.6 (2H, m, C ₆ H ₅); 8.00 (1H, yun. c, NH)	16.83, 17.55
1095 (C (P=O);]	-O-C); 1640 (C=N); 1230 1630 (C=O); 2870 (=NH)	1.2 (21H, м, 7CH ₃); 2.85 (2H, к, ³ J _{HH} = 7.5, CH ₂); 3.3 (2H, к, ³ J _{HH} = 7.5, CH ₂); 3.8–4.3 (10H, м, 50CH ₂); 5.15 (1H, д, ³ J _{PH} = 2.5, CH–0); 7.7 (1H, уш. с, NH)	16.78
1090 (C (P=O);	O-C); 1635 (C=N); 1232 1650 (C=O); 2870 (=NH)	1.2 (18H, m, 6CH ₃); 3.0 (2H, k, ${}^{3}J_{HH} = 7.5$, CH ₂); 3.5 (2H, k, ${}^{3}J_{HH} = 7.5$, CH ₂); 3.9–4.4 (8H, m, 40CH ₂); 5.25 (1H, $_{JL}$, ${}^{3}J_{PH} = 2.5$, CHO); 7.30 (3H, m, C ₆ H ₅); 7.65 (1H, yu. c, NH); 7.95 (3H, m, C ₆ H ₅)	16.89
1150 (C (C=N);	OC); 1267 (P=O); 1635 1680 (C=O)	1.15 (18H, m, 6CH ₃); 3.3 (4H, m, 2CH ₂); 3.7–4.3 (8H, m, 40CH ₂); 5.1 (1H, c, CH–NEt ₂)	19.74
1150 (C 1595 (Pl	-0-C); 1262 (P=O); 1590- 1); 1635 (C=N)	0.85 (6H, m, 2CH ₃); 1.05 (3H, m, CH ₃); 1.20 (6H, m, 2CH ₃); 3.45 (4H, m, 2CH ₂); 3.68 (2H, m, OCH ₂); 3.8 (4H, m, 1.5OCH ₂); 5.07 (1H, c, CH–NEt ₂); 7.35 (3H, m, C ₆ H ₅); 7.7 (2H, m, C ₆ H ₅)	16.04, 17.54

* Спектры ЯМР¹Н снимали в С₆D₆ (соединения 2a,b и 7a,b) и ацетоне-d₆ (соединения 4a,b и 6a,b).

Установлено, что при кипячении соединения 2 в толуоле происходит внутримолекулярная гетероциклизация с образованием С-фосфорилированного тиазолидина 4. Гетероцикл 4 представляет собой масло желтого цвета, хорошо растворяющееся во многих органических растворителях. Процесс гетероциклизации полуаминалей 2 протекает с участием группы ОН и тиоцианатного фрагмента. Реакция завершается за 10 ч при 105–110 °C.

Сопоставление ИК спектров (табл. 2) соединений **2** и **4** показывает, что полоса поглощения при 2584 (⁺NHEt₂) исчезает, при этом появляется интенсивная полоса валентных колебаний вторичной аминогруппы при 2981, а также полоса при 1679 см⁻¹, характеризующая группу С₍₂₎=О. Деформационные колебания фосфорильной группы в гетероциклах **4** по сравнению с О, N-ацеталями **2** смещаются от 1290 до 1264 см⁻¹. Отсутствие полосы группы SCN при 2130–2160 см⁻¹ свидетельствует о вовлечении данного фрагмента молекулы в циклизацию.

В спектре ЯМР ¹Н (табл. 2) соединений **4** сигнал метинового протона регистрируется в виде дублета дублетов при 5.0–5.2 с ${}^{3}J_{\rm PH} = 12.5$ и ${}^{3}J_{\rm HH} = 15$ Гц, а сигнал вторичной аминогруппы в виде синглета – при 8.0 м. д. Такое сильное смещение положения резонансного сигнала метинового протона в область слабых полей (от 4.55 до 5.0–5.2 м. д.) свидетельствует о протекании внутримолекулярной гетероциклизации. Присутствие в спектре ЯМР ³¹Р соединений **4** двух резонансных сигналов атома фосфора доказывает образование смеси диастереомеров (табл. 2).

Полученные данные о взаимодействии фосфорилированных α-тиоцианатоальдегидов 1 с диэтиламином являются достаточно интересными, так как анализ литературы показал, что аналогичные реакции моногалоген- и дигалогенуксусных аналогов альдегидов 1 со вторичными аминами при комнатной температуре протекают по схеме галоформного распада с разрывом связи С–СНО альдегида и соответствующего формилированного амина [12, 13]. Это, видимо, связано с тем, что в случае галогенкарбонильных аналогов стабильность продукта присоединения амина к альдегидной группе – цвиттер-иона – возрастает за счет повышения устойчивости аммонийного фрагмента. В этом случае разрыв ослабленной связи С(Hal)–С становится более выгодным и протекает быстрее, чем разрыв связи N–H. В случае замены галогена на менее электроноакцепторный тиоцианатофрагмент галоформного распада не наблюдается.

При взаимодействии ацеталей 5, полученных при обработке альдегидов 1 триэтилортоформиатом в кислой среде [14], с диэтиламином направление реакции изменяется – аминогруппа присоединяется по сильно поляризованной связи C=N с образованием фосфорилированных производных тиомочевин 6, которые при кипячении в ксилоле превращаются в тиазолины 7. Тиоцианатоацетали 5 циклизуются в гетероциклы 7 также под действием диэтиламида натрия.

Полученные соединения 6 представляют собой полукристаллические масла, а соединения 7 – кристаллические вещества (табл. 1).

В ИК спектрах соединений 6, 7 наблюдаются интенсивные полосы поглощения колебаний групп С–О–С (1150), С=N (1635), С=О (1680 см⁻¹). Валентные колебания группы Р=О проявляются в виде слабых сигналов (при 1232 для соединений 6 и 1262 см⁻¹ для соединений 7), полоса поглощения группы =NH соединений 6 наблюдается в области 2870 см⁻¹.

В спектрах ЯМР ¹Н (ацетон-d₆) соединений **6** присутствует дублет (${}^{3}J_{PH}$ = 2.5 Гц) ~5.25 м. д., относящийся к протону ацетального фрагмента. Низкое значение КССВ для протона группы СН–О может быть связано с влиянием стерических факторов на величину двугранного угла. Резонансный сигнал протона иминогруппы характеризуется уширенным синглетом при 7.7 м. д. Соединения 7, кроме характерных сигналов этильных и этоксильных групп, имеют синглет в области 5.07 м. д., соответствующий протону H-2. Отсутствие синглета протона иминогруппы при 7.7 м. д. и интегральные интенсивности сигналов протонов фрагмента ЕtO подтверждают протекание циклизации соединения **6** с участием групп =NH и EtO (с отщеплением EtOH). Отнесение всех остальных сигналов приведено в табл. 2. Спектр ЯМР ³¹Р характеризуется резонансными сигналами атомов фосфора от двух диастереомеров при 16.04 и 17.54 м. д. Следует отметить, что физико-химические характери-

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры суспензий образцов в вазелиновом масле или таблетках KBr получены на спектрометре UR-20, спектры ЯМР ¹H – на спектрометре Tesla BW-567 (200 МГц, ГМДС) и Bruker MSL-600 (600 МГц, ГМДС), спектры ЯМР ³¹P – на спектрометре Bruker MSL-400 (162 МГц, 85% H₃PO₄).

Диэтиловый эфир 2-гидрокси-2-диэтиламино-1-фенил-1-тиоцианатофос-128 фоновой кислоты (2b). К раствору 3.13 г (0.01 моль) тиоцианатоальдегида 1b в 15 мл абсолютного CCl₄ при перемешивании добавляют 10% избыток 0.8 г (0.011 моль) диэтиламина в 5 мл CCl₄. Реакционную смесь перемешивают 5 ч при комнатной температуре. Образовавшийся бесцветный обильный осадок, отфильтровывают, промывают охлажденным эфиром и получают 2.39 г кристаллов белого цвета.

Диэтиловый эфир 2-гидрокси-2-диэтиламино-1-этоксикарбонил-1-тиоцианатофосфоновой кислоты (2а) получают аналогично.

4-Диэтиламино-5-диэтоксифосфорил-2-оксо-5-фенил-4,5-тиазолидин (4b). Раствор 3.86 г (0.01 моль) соединения **2b** в 15 мл толуола кипятят 10 ч. Растворитель удаляют и выделяют 2.78 г гетероцикла **4b** в виде масла.

4-Диэтиламино-5-диэтоксифосфорил-2-оксо-5-этоксикарбонил-4,5-тиазолидин (4а) получают аналогично.

Диэтилацеталь 2-диэтоксифосфорил-2-фенил-2-(1-имино-1-диэтиламинометил)тиоацетальдегида (6b). Раствор 3.87 г (0.01 моль) тиоцианато-ацеталя 5b и 0.8 г (0.011 моль, 10% избыток) диэтиламина в 30 мл абсолютного бензола кипятят 8 ч. После удаления растворителя выделяют 3.96 г соединения 6b в виде полукристаллического масла бордового цвета.

Диэтилацеталь 2-диэтоксифосфорил-2-этоксикарбонил-2-(1-имино-1-диэтиламинометил)тиоацетальдегида (ба) получают аналогично.

2-Диэтиламино-2Н,5Н-5-диэтоксифосфорил-5-фенил-4-этокси-1,3-тиазо-

лин (7b). Раствор 4.602 г (0.01 моль) ацеталя 6b в 10 мл абсолютного диаксана кипятят 8 ч. Растворитель отгоняют в вакууме, к полученному маслу добавляют 10 мл петролейного эфира и бензола (1:1). Выпавшие кристаллы (2.82 г) отфильтровывают, перекристаллизовавают из ацетонитрила и сушат.

2-Диэтиламино-2H,5H-5-диэтоксифосфорил-5-этоксикарбонил-4-этокси-1,3-тиазолин (7а) получают аналогично.

Синтез тиазолинов 7 реакцией ацеталей 5 с диэтиламидом натрия. К 0.23 г (0.01 моль) металлического натрия в 5 мл абсолютного бензола при-бавляют по каплям 0.73 г диэтиламина в 5 мл бензола. Реакционную массу пере-мешивают при 70–80 °С до полного растворения натрия. К полученной соли при-бавляют по каплям раствор 0.01 моль соответствующего ацеталя 5 и кипятят 10 ч. После удаления растворителя полученное масло растворяют в эфире, выпавшие кристаллы отфильтровывают, сушат на воздухе и перекристаллизовывают из ацетонитрила или смеси спирт–вода, 1:1. Выходы гетероциклов 7а и 7b приведены в табл. 1.

Работа выполнена при финансовой поддержке РФФИ (грант 07-03-00316-а) и гранта Президента РФ (МК-4043.2007.3).

СПИСОК ЛИТЕРАТУРЫ

- 1. М. Д. Машковский, *Лекарственные средства*, Картя Молдовеняскэ, Кишинев, 1989, т. 2, 528 с.
- 2. D. Fajkusova, P. Pazdera, Phosphorus, Sulfur and Silicon, 180, 1683 (2005).
- 3. П. И. Ягодинец, *ЖОХ*, **68**, 1312 (1998).
- 4. G. M. Sharma, H. S. Sachdev, N. K. Ralhan, H. Singh, G. S. Sandhu, K. Gandhi, K. S. Narang, *Tetrahedron*, **15**, 53 (1961).
- 5. S. M. Sandhi, N. K. Ralhan, Indian J. Chem., 15B, 697 (1977).
- 6. R. A. Mathes, J. T. Gregory, J. Am. Chem. Soc., 74, 3867 (1952).

- 7. M. I. Logoja, K. Nauwelaerts, C. Bal-Mahieu, M. Pasqualini, C. Bailly, P. Herdewijn, *Collect. Czech. Chem. Commun.*, **69**, 1491 (2004).
- T. Zimmermann, G. W. Fischer, J. Teller, H. Dehne, B. Olk, J. Prakt. Chem., 331, 843 (1989).
- 9. H. K. Gakhar, S. Bharadwaj, A. Jain, J. Indian Chem. Soc., 58, 1017 (1981).
- 10. J. Teller, H. Dehne, T. Zimmermann, J. Prakt. Chem., 332, 543 (1990).
- 11. Ф. И. Гусейнов, Х. А. Асадов, Р. Н. Бурангулова, *ЖОрХ*, **38**, 1267 (2002).
- 12. Ф. И. Гусейнов, Г. Ю. Климентова, В. В. Москва, *ЖОрХ*, **4**, 496 (1994).
- В. М. Исмаилов, В. В. Москва, Ф. И. Гусейнов, Т. В. Зыкова, И. С. Садыков, ЖОХ, 56, 2005 (1986).
- 14. Х. А. Асадов, Дис. канд. хим. наук, Казань, 2001, 148 с.

Казанский государственный технологический университет, Казань 420015, Россия e-mail: esedoglu@mail.ru Поступило 06.11.2007

^аБакинский государственный университет, Баку AZ-1148, Азербайджан e-mail: mikail 05@mail.ru