А. Н. Федотов, Е. В. Трофимова, В. А. Романов, С. С. Мочалов, Ю. С. Шабаров, Н. С. Зефиров

СИНТЕЗ

2-АМИНО-4Н-3,1-БЕНЗОКСАЗИНОВ И 2-АМИНО-4Н-3,1-БЕНЗОТИА-ЗИНОВ ПЕРЕГРУППИРОВКОЙ *о*-ЦИКЛОПРОПИЛФЕНИЛ-ЗАМЕЩЕННЫХ МОЧЕВИН И ТИОМОЧЕВИН

Синтезированы 2-циклопропилфенилзамещенные мочевины и тиомочевины и изучено их поведение в условиях кислотно-катализируемого раскрытия циклопропанового кольца. Показано, что под действием конц. H₂SO₄ или трифторуксусной кислоты указанные мочевины и тиомочевины способны перегруппировываться в соответствующие производные 3,1-бензоксазина и 3,1-бензотиазина.

Ключевые слова: 2-ариламино-3,1-бензоксазины, 2-ариламино-3,1-бензотиазины, таутомеры, N-(2-циклопропил)фенилмочевины, N-(2-циклопропил)фенилтиомочевины, внутримолекулярные перегруппировки.

Функционально замещенные циклопропаны, ставшие в настоящее время легкодоступными, находят все большее применение как исходные вещества в синтезе разнообразных органических соединений, образующихся в результате трансформации трехуглеродного цикла под действием инициирующих эту трансформацию реагентов. В результате таких трансформаций могут образовываться либо насыщенные и ненасыщенные ациклические продукты раскрытия циклопропанового кольца [1-4], либо карбо- или гетероциклические [5-11]. Особенно много работ посвящено так называемым донорно-акцепторным функционально замещенным циклопропанам [11]. Реакции в этом случае протекают преимущественно с участием (или влиянием) заместителей, непосредственно связанных с трехуглеродным циклом. Значительно меньше изучены превращения циклопропилсодержащих соединений, в которых участвуют заместители, непосредственно несвязанные с циклопропановым кольцом. Вместе с тем, найденные примеры превращений такого типа [9, 12–14], указывают на то, что синтетические возможности функционально замещенных циклопропанов могут быть значительно расширены. Определенные перспективы здесь связаны с внутримолекулярными кислотно-катализируемыми реакциями орто-замещенных арилциклопропанов, которые в настоящее время легко доступны, благодаря уникальному орто-ориентирующему влиянию циклопропанового заместителя в реакции электрофильного нитрования [15–17].

В развитие исследований такого плана и в целях поиска новых при-

меров внутримолекулярных перегруппировок *орто*-функционально замещенных арилциклопропанов, мы синтезировали 2-циклопропилфенилзамещенные мочевины и соответствующие тиомочевины и изучили их превращения в трифторуксусной и конц. H₂SO₄ кислотах. Предполагалось, что кислотно-катализируемое раскрытие циклопропанового кольца в соответствующих циклопропилзамещенных мочевинах и тиомочевинах будет инициировать взаимодействие возникающего карбениевого иона бензильного типа с внутренним нуклеофилом (мочевинным или тиомочевинным фрагментом), следствием которого будет образование 2-аминозамещенных 3,1-бензоксазинов и 3,1-бензотиазинов или изомерных им соединений.

Необходимые циклопропилзамещенные мочевины **2а–і** и тиомоче-вины **3а–d** (табл. 1) были синтезированы взаимодействием 2-циклопропиланилина (1) с арилизоцианатами* и с арилизотиоцианатами.

2 a R = H, b R = Ph, c R = p-Me₂CHC₆H₄, d R = p-MeC₆H₄, e R = p-MeOC₆H₄, f R = p-ClC₆H₄, g R = C₆H₄CO₂Et-p, h R = p-O₂NC₆H₄, i R = p-MeC₆H₄SO₂; 3 a R = Ph, b R = o-EtC₆H₄, c R = o-MeOC₆H₄, d R = p-EtOC₆H₄

Следует отметить, что при интерпретации масс-спектров синтезированных циклопропилзамещенных мочевин 2a-i и тиомочевин 3a-d было не только подтверждено их строение, но и получены данные в пользу высокой вероятности превращения циклопропановых производных 2a-i и 3a-d в соответствующие гетероциклы под действием кислот. На это указывал тот факт, что при диссоциативной ионизации 2-циклопропилзамещенных мочевин и тиомочевин под действием электронного удара сразу же происходит формирование гетероциклических ионов типа A_1 (см. схему), образование которых в условиях кислотной перегруппировки в соответствующие гетероциклические соединения является необходимым.

^{*} Соединение 2а получено реакцией 2-циклопропиланилина (1) с цианатом калия (см. экспериментальную часть).

I X = O, m/z 132, II X = S, m/z 148

117

Действительно, как далее было нами показано, *о*-циклопропилзамещенные мочевины 2a-i и тиомочевины 3a-d под действием кислот способны с высоким выходом превращаться в 2-аминозамещенные 3,1-бензоксазины 4a-i* и 3,1-бензотиазины 5a-d**. При этом оказалось, что если циклопропилзамещенные мочевины 2a-i способны перегруппировываться в 2-амино-4H-3,1-бензоксазины 4a-i как в трифторуксусной, так и в конц. H_2SO_4 кислотах, то тиомочевины 3a-d образуют соответствующие 2-амино-4H-3,1-бензотиазины 5a-d только под действием серной кислоты; в трифторуксусной кислоте тиомочевины 3a-d практически не изменяются.

Обнаруженное различие в поведении *o*-циклопропилзамещенных мочевин **2a**-i и тиомочевин **3a**-d в реакции с трифторуксусной кислотой по-видимому обусловлено повышенной способностью тиомочевинного фрагмента (по сравнению с мочевинным) к протонированию в принятых условиях, что придает ему свойства сильного электроноакцепторного заместителя, который и ингибирует раскрытие циклопропанового кольца тиомочевин **3a**-d под действием относительно слабой трифторуксусной кислоты. В пользу этого предположения свидетельствует, например, тот факт, что ни *o*-нитро-, ни *o*-цианофенилциклопропаны не перегруппировываются

^{*} Значения R для соединений 4а-і те же, что и для соединений 2а-і.

^{**} Значения R для соединений 5а-d те же, что и для соединений 3а-d.

Таблица 1

Соеди-	Брутто-	о- <u>Найдено, %</u> Вычислено, %		Т. пл., °С (растворитель для	Выход		
нение	формула	С	Н	N	перекристаллизации)	%	
1	2	3	4	5	6	7	
2a	$C_{10}H_{12}N_2O$	<u>68.33</u>	7.03	<u>15.62</u>	193–194	91	
31	CUNO	68.16 76.26	6.86	15.89	(спирт–вода)	02	
20	$C_{16} \Pi_{16} \Pi_{2} O$	<u>76.36</u> 76.16	<u>6.35</u> 6.39	$\frac{10.81}{11.10}$	(эфир-петр. эфир)	92	
2c	C ₁₉ H ₂₂ N ₂ O	77.68	7.67	9.70	140–141	81	
	.,	77.52	7.53	9.52	(бензол)		
2d	$C_{17}H_{18}N_2O$	76.26	<u>6.65</u>	<u>10.34</u>	134–135	85	
	a w w a	76.66	6.81	10.52	(бензол)		
2e	$C_{17}H_{18}N_2O_2$	$\frac{72.63}{72.32}$	<u>6.55</u> 6.43	<u>9.82</u> 9.92	167–168 (бенгол)	75	
2f	CicHisClN2O	67.45	5 38	6.46	185–186	91	
21	01611301120	67.02	5.27	6.77	(спирт)	71	
2g	$C_{19}H_{20}N_2O_3$	70.61	6.41	8.45	145–146	65	
_		70.35	6.21	8.63	(спирт)		
2h	$C_{16}H_{15}N_3O_3$	<u>64.93</u>	<u>5.35</u>	<u>13.83</u>	162–163	92	
. .	C H N O C	64.64	5.09	14.13	(спирт)	0.5	
21	$C_{17}H_{18}N_2O_3S$	<u>61.97</u> 61.80	<u>5.65</u> 5.49	<u>8.27</u> 8.48	148–149 (спирт)	95	
3a	C16H16N2S	71.85	6.12	10.09	133–134	90	
Uu	0101101 (20	71.61	6.01	10.44	(эфир–петр. эфир)	10	
3b	$C_{18}H_{20}N_2S$	<u>72.75</u>	<u>6.91</u>	<u>9.12</u>	142–143	91	
		72.93	6.80	9.45	(хлороформ-		
2		(0.50	(10	6.15	петр. эфир)	0.5	
30	$C_{17}H_{18}N_2OS$	<u>68.50</u> 68.43	<u>6.12</u> 6.08	<u>6.15</u> 6.39	12/-128 (хлороформ-	85	
		00.45	0.00	0.57	петр. эфир)		
3d	$C_{18}H_{20}N_2OS$	<u>69.45</u>	6.32	8.71	166–167	75	
		69.20	6.45	8.97	(хлороформ-		
		(0.45	6.00	15 72	петр. эфир)	7.5	
4a	$C_{10}H_{12}N_2O$	<u>68.45</u> 68.16	<u>6.98</u> 6.86	<u>15.73</u> 15.89	Масло	/5	
4b	C16H16N2O	76 47	6.00	10.09	89-91	67	
	0101101 (20)	76.16	6.39	11.10	(эфир)	0,	
4c	$C_{19}H_{22}N_2O$	<u>77.66</u>	<u>7.70</u>	<u>9.68</u>	Масло	72	
		77.52	7.53	9.52			
4d	$C_{17}H_{18}N_2O$	$\frac{76.31}{76.66}$	$\frac{6.55}{6.91}$	$\frac{10.23}{10.52}$	86-88	86	
10	СНИО	70.00 72.56	0.81 6.68	0.75	(CHUPT) 95.96	45	
40	$C_{17} \Pi_{18} \Pi_2 O_2$	$\frac{72.30}{72.32}$	6.42	$\frac{9.73}{9.92}$	93-90 (хлороформ-гексан)	43	
4f	C ₁₆ H ₁₅ ClCN ₂ O	<u>67.33</u>	5.44	9.55	120–121	86	
	10 10 2-	67.02	5.27	9.77	(эфир-петр. эфир		
					[40–70 °C])		
4g	$C_{19}H_{20}N_2O_3$	$\frac{70.78}{70.25}$	<u>6.48</u>	<u>8.32</u>	138–139 (vuonoteense meet	65	
		/0.55	0.21	0.03	(хлороформ-нетр.		

Характеристики соединений 2–5

119

Окончание таблицы 1

1	2	3	4	5	6	7
4h	$C_{16}H_{15}N_3O_3$	<u>64.81</u> 64.64	<u>5.26</u>	<u>13.87</u> 14.13	155–156 (спирт)	90
4 i	$C_{17}H_{18}N_2O_3S$	<u>62.22</u> 61.80	<u>5.76</u> 5.49	<u>8.31</u> 8.48	106–107 (эфир)	84
5a	$C_{16}H_{16}N_2S$	<u>71.96</u> 71.60	<u>6.18</u> 6.01	<u>10.25</u> 10.44	194–195 (эфир–петр. эфир [40–70 °C])	89
5b	$C_{18}H_{20}N_{2}S \\$	<u>72.67</u> 72.93	<u>7.02</u> 6.80	<u>9.60</u> 9.45	123–124 (хлороформ–петр. эфир [40–70 °С])	81
5c	$\mathrm{C_{17}H_{18}N_2OS}$	<u>68.69</u> 68.43	<u>6.18</u> 6.08	<u>9.46</u> 9.39	109–110 (хлороформ-гексан)	55
5d	$C_{18}H_{20}N_2OS$	<u>69.66</u> 69.20	<u>6.52</u> 6.45	<u>9.07</u> 8.96	123–125 (хлороформ–петр. эфир [40–70 °C])	83

под действием трифторуксусной кислоты, тогда как под действием конц. H₂SO₄ они количественно превращаются в соответствующие продукты трансформации трехуглеродного цикла [12, 18]. Интересно отметить, что не содержащий электроноакцепторных заместителей фенилциклопропан, или фенилциклопропаны, в *орто*-положении которых находятся слабые электроноакцепторные заместители [5, 14, 19], под действием трифторуксусной кислоты, также как циклопропилсодержащие мочевины **2а–i**, с высокими выходами превращаются в соответствующие продукты трансформации циклопропанового кольца.

Дополнительным фактом, позволяющим с уверенностью говорить о правильной идентификации продуктов перегруппировки циклопропановых соединений **2а-i** и **3а-d**, служит полная корреляция спектральных характеристик гетероциклов **4а-i** и **5а-c** (табл. 2) с соответствующими характеристиками многочисленных соединений-аналогов (см., например, данные работ [20–23]).

Таким образом, кислотно-катализируемую перегруппировку арилциклопропанов, содержащих в *орто*-положении к циклопропановому заместителю мочевинный или тиомочевинный фрагменты, можно с успехом использовать в синтезе 2-аминозамещенных 4H-3,1-бензоксазинов и 4H-3,1бензотиазинов.

В рамках выполненного исследования интересно обсудить следующее. Практически во всех работах, касающихся методов синтеза 2-амино-4H-3,1-бензоксазинов или 2-амино-4H-3,1-бензотиазинов, совершенно не обсуждается вопрос об альтернативных структурах указанных гетероциклических соединений – соответствующих иминопроизводных 3,1-бензоксазин-2-она или 3,1-бензотиазин-2-она (типа **6b** или **9**). Примечательно, что, несмотря на большое число синтезированных 2-амино-4H-3,1-бензоксазинов и 2-амино-4H-3,1-бензотиазинов, изучение их строения методом РСА практически не проводилось. Спектральные характеристики соединений 2–5

Соеди- нение	ИК спектр, v, см ⁻¹	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)*	Масс-спектр <i>m/z</i> , (<i>I</i> _{отн} , %)
1	2	3	4
2a	3200, 3295 (NH), 3330, 3430, 1680 (C=O)	0.67 (2H, м), 1.01 (2H, м) и 1.94 (1H, м) – циклопропан; 6.48 (2H, уш. с, NH ₂); 7.07 (1H, д, <i>J</i> = 8.2, H-3); 7.14 (1H, т, <i>J</i> = 8.2, H-5); 7.22 (1H, т, <i>J</i> = 8.2, H-4); 7.28 (1H, с, NH); 7.52 (1H, д, <i>J</i> = 8.2, H-6)	176 [M] ⁺ (37.5)
2b	3100, 3315 (NH), 1680 (C=O)	0.65 (2H, м), 1.05 (2H, м) и 1.89 (1H, м) – цикло- пропан; 6.85 (1H, д, <i>J</i> = 7.8, H-3); 6.90 (1H, т, <i>J</i> = 7.8, H-5); 6.97 (1H, т, <i>J</i> = 7.8, H-4); 7.11 (1H, т, <i>J</i> = 8.0, H-4); 7.23 (2H, т, <i>J</i> = 8.0, H-3',5')**; 7.48 (2H, д, <i>J</i> = 8.0, H-2',6'); 7.81 (1H, c, NH); 7.96 (1H, д, <i>J</i> = 7.8, H-6); 8.91 (1H, c, NH)	252 [M] ⁺ (11.4)
2c	3100, 3300 (NH); 1680 (C=O)	0.62 (2H, м), 0.99 (2H, м), 1.87 (1H, м) – цикло- пропан; 1.21 (6H, д, <i>J</i> = 6.4, CH(C <u>H</u> ₃) ₂); 2.85 (1H, сп, C <u>H</u> (CH ₃) ₂); 6.94 (1H, т, <i>J</i> = 8.1, H-5); 7.02 (1H, д, <i>J</i> = 8.1, H-3); 7.15 (1H, т, <i>J</i> = 8.1, H-4); 7.17 (2H, д, <i>J</i> = 8.2, H-3',5'); 7.41 (2H, д <i>J</i> = 8.2, H-2',6'); 7.91 (1H, д, <i>J</i> = 8.1, H-6); 8.01(1H, c, NH); 9.14 (1H, c, NH)	294 [M] ⁺ (20.8)
2d	3100, 3300 (NH); 1680 (C=O)	0.61 (2H, м), 0.99 (2H, м) и 1.85 (1H, м) – цикло- пропан; 2.24 (3H, с, CH ₃); 6.93 (1H, т, <i>J</i> = 7.8, H-5); 7.01 (1H, д, <i>J</i> = 7.8, H-3); 7.09 (2H, д, <i>J</i> = 8.2, H-3',5'); 7.13 (1H, т, <i>J</i> = 7.8, H-4); 7.36 (2H, д, <i>J</i> = 8.2, H-2',6'); 7.89 (1H, д, <i>J</i> = 7.8, H-6); 8.03 (1H, c, NH); 9.15 (1H, c, NH)	266 [M] ⁺ (25.5)
2e	3085, 3300 (NH), 1675 (C=O)	0.68 (2H, м), 1.02 (2H, м) и 1.90 (1H, м) – цикло- пропан; 3.82 (3H, с, ОСН ₃); 6.88 (2H, д, <i>J</i> = 8.2, H-3',5'); 6.91 (1H, д, <i>J</i> = 7.8, H-3); 7.02 (1H, т, <i>J</i> = 7.8, H-5); 7.16 (1H, т, <i>J</i> = 7.8, H-4); 7.39 (2H, д, <i>J</i> = 8.2, H-2',6'); 7.91 (1H, д, <i>J</i> = 7.8, H-6); 8.01 (1H, с, NH); 9.02 (1H, с, NH)	282 [M] ⁺ (34.5)
2f	3100, 3310 (NH), 1675 (C=O)	0.62 (2H, м), 0.99 (2H, м) и 1.89 (1H, м) – цикло- пропан; 6.92 (1H, д, <i>J</i> = 7.8, H-3); 6.97 (1H, т, <i>J</i> = 7.8, H-5); 7.12 (1H, т, <i>J</i> = 7.8, H-4); 7.32 (2H, д, <i>J</i> = 8.3, H-2',6'); 7.52 (2H, д, <i>J</i> = 8.3, H-3',5'); 7.88 (1H, д, <i>J</i> = 7.8, H-6); 8.11 (1H, c, NH); 9.38 (1H, c, NH)	286 [M] ⁺ (17.2)
2g	3100, 3310 (NH), 1680, 1730 (C=O)	0.64 (2H, м), 1.02 (2H, м) и 1.91 (1H, м) – циклопропан; 1.35 (3H, т, $J = 6.3$, OCH ₂ CH ₃); 4.31 (2H, к, $J = 6.3$, OCH ₂ CH ₃); 7.01 (1H, д, $J = 7.8$, H-3); 7.04 (1H, т, $J = 7.8$, H-5); 7.19 (1H, т, $J = 7.8$, H-4); 7.66 (2H, д, $J = 8.2$, H-2',6'); 7.91 (1H, д, $J = 7.8$, H-6); 7. 94 (2H, д, $J = 8.2$, H-3',5'); 8.25 (1H, c, NH); 9.62 (1H, c, NH)	324 [M] ⁺ (22.5)
2h	3310, 3500 (NH), 1675 (C=O)	0.61 (2H, м), 0.98 (2H, м) и 1.86 (1H, м) – цикло- пропан; 6.98 (1H, д, <i>J</i> = 7.8, H-3); 7.01 (1H, т, <i>J</i> = 7.8, H-5); 7.18 (1H, т, <i>J</i> = 7.8, H-4); 7.71 (2H, д, <i>J</i> = 8.4, H-2',6'); 7.84 (1H, д, <i>J</i> = 7.8, H-6); 8.19 (2H, д, <i>J</i> = 8.4, H-3',5'); 8.28 (1H, c, NH)	297 [M] ⁺ (18.3)

П родолжение таблицы 2

		продолжение	гаолицы 2
1	2	3	4
2i	3100, 3350 (NH), 1660 (C=O)	0.59 (2H, м), 0.93 (2H, м) и 1.74 (1H, м) – цикло- пропан; 2.38 (3H, с, CH ₃); 7.01 (1H, д, <i>J</i> = 7.8, H-3); 7.02 (1H, т, <i>J</i> = 7.8, H-5); 7.14 (1H, т, <i>J</i> = 7.8, H-4); 7.41 (1H, с, NH); 7.43 (2H, д, <i>J</i> = 8.3, H-3',5'); 7.68 (1H, д, <i>J</i> = 7.8, H-6); 7.92 (2H, д, <i>J</i> = 8.3, H-2',6'); 8.29 (1H, с, NH)	330 [M] ⁺ (5.6)
3a	3160, 3340 (NH), 1470 (C=S)	0.65 (2H, м), 0.93 (2H, м) и 2.01 (1H, м) – цикло- пропан; 6.95 (1H, д, $J = 7.8$, H-3); 7.21 (3H, м, H-3',4',5'); 7.31 (2H, т, $J = 7.8$, H-4,5); 7.50 (1H, д, J = 7.8, H-6); 7.57 (2H, д, $J = 7.8$, H-2',6'); 8.98 (1H, c, NH); 9.45 (1H, c, NH)	268 [M] ⁺ (24.3)
3b	3130, 3350 (NH), 1460 (C=S)	0.66 (2H, м), 0.92 (2H, м) и 1.98 (1H, м) – цикло- пропан; 1.19 (3H, т, $J = 6.6$, CH ₂ CH ₃); 2.61 (2H, к, $J = 6.6$, CH ₂ CH ₃); 6.96 (1H, д, $J = 7.8$, H-3); 7.16 (4H, м, H-4,5,3',5'); 7.39 (3H, м, H-6,4',6'); 9.25 (1H, c, NH); 9.61 (1H, c, NH)	296 [M] ⁺ (19.5)
3c	3135, 3345 (NH), 1460 (C=S)	0.61 (2H, м), 0.91 (2H, м) и 1.99 (1H, м) – циклопропан; 3.84 (3H, с, OCH ₃); 6.94 (1H, д, <i>J</i> = 7.8, H-3); 7.06 (1H, т, <i>J</i> = 7.8, H-5); 7.21 (4H, м, H-4,3',4',5'); 7.43 (1H, т, <i>J</i> = 8.1, H-6'); 8.21 (1H, д, <i>J</i> = 7.8, H-6); 9.11 (1H, с, NH); 9.63 (1H, с, NH)	298 [M] ⁺ (38.5)
3d	3140, 3350 (NH), 1465 (C=S)	0.64 (2H, м), 0.94 (2H, м) и 1.97 (1H, м) – цикло- пропан, 1.39 (3H, т, $J = 6.4$, OCH ₂ CH ₃); 4.02 (2H, κ , $J = 6.4$, OCH ₂ CH ₃); 6.84 (2H, π , $J = 8.0$, H-3',5'); 6.93 (1H, π , $J = 7.8$, H-3); 7.12 (2H, м, H-4,5); 7.35 (2H, π , $J = 8.0$, H-2',6'); 7.47 (1H, π , $J = 7.8$, H-6); 8.95 (1H, c, NH); 9.36 (1H, c, NH)	312 [M] ⁺ (43.9)
4a	2700–3320 (солевой NH), 1655 (N=C)	0.96 (3H, т, <i>J</i> = 6.5, CH ₂ C <u>H</u> ₃); 1.81 (2H, м, C <u>H</u> ₂ CH ₃); 5.25 (1H, м, CH-бензильная); 5.91 (2H, с, NH ₂); 6.84 (1H, д, <i>J</i> = 7.8, H-5); 6.95 (1H, т, <i>J</i> = 7.8, H-7); 7.05 (1H, д, <i>J</i> = 7.8, H-8); 7.18 (1H, т, <i>J</i> = 7.8, H-6)	176 [M] ⁺ (21.3)
4b	2800–3200 (солевой NH), 1650 (N=C)	1.01 (3H, т, <i>J</i> = 6.4, CH ₂ C <u>H₃</u>); 1.92 (2H, м, C <u>H</u> ₂ CH ₃); 5.21 (1H, м, CH-бензильная); 6.91 (4H, м, H-5–8); 7.16 (1H, т, <i>J</i> = 8.0, H-4'); 7.25 (2H, т, <i>J</i> = 8.0, H-3',5'); 7.37 (2H, д, <i>J</i> = 8.0, H-2',6'); 9.18 (1H, уш. с, NH)	252 [M] ⁺ (3.1)
4c	2820–3200 (солевой NH), 1655 (N=C)	0.99 (3H, т, $J = 6.4$, CH ₂ C <u>H</u> ₃); 1.21 (6H, д, $J = 6.2$, CH(C <u>H</u> ₃) ₂); 1.99 (2H, м, C <u>H</u> ₂ CH ₃); 2.89 (1H, м, C <u>H</u> (CH ₃) ₂); 5.67 (1H, м, CH-бензильная); 7.11 (1H, д, $J = 7.8$, H-5); 7.17 (1H, т, $J = 7.8$, H-7); 7.25 (1H, д, $J = 7.8$, H-8); 7.28*** (2H, д, $J = 8.2$, H-3',5'); 7.34 (1H, т, $J = 7.8$, H-6); 7.45 (2H, д, J = 8.2, H-2',6')	294 [M] ⁺ (31.1)
4d	2820–3230 (солевой NH), 1650 (N=C)	0.95 (3H, т, $J = 6.3$, CH ₂ CH ₃); 1.95 (2H, м, CH ₂ CH ₃); 2.27 (3H, с, CH ₃); 5.64 (1H, м, CH-бензильная); 7.11 (1H, д, $J = 7.8$, H-5); 7.17 (1H, т, $J = 7.8$, H-7); 7.21 (2H, д, $J = 8.1$, H-3',5'); 7.22 (1H, д, $J = 7.8$, H-8); 7.23 (1H, с, NH); 7.32 (1H, т, $J = 7.8$, H-6); 7.43 (2H, д, $J = 8.1$, H-2',6')	266 [M] ⁺ (375)
4e	2750–3320 (солевой NH), 1660 (N=C)	1.05 (3H, т, $J = 6.5$, CH_2CH_3); 2.23 (2H, м, CH_2CH_3); 3.85 (3H, с, OCH_3); 5.90 (1H, м, CH-бензильная); 7.22–7.53 (9H, м, 8ArH, NH)	282 [M] ⁺ (8.3)

Окончание	таблицы	2

		Окончанис	таолицы 2
1	2	3	4
4f	2750–3300 (солевой NH), 1655 (N=C)	1.09 (3H, т, $J = 6.5$, CH_2CH_3); 2.11 (2H, м, CH_2CH_3); 5.62 (1H, м, CH-бензильная); 7.07 (1H, д, $J = 7.8$, H-5); 7.17 (1H, т, $J = 7.8$, H-7); 7.23 (1H, д, $J = 7.8$, H-8); 7.32 (1H, т, $J = 7.8$, H-6); 7.48*** (2H, д, $J = 8.1$, H-2',6'); 7.54 (2H, д, $J = 8.1$, H-3',5')	286 (91.0)
4g	2820–3230 (солевой NH), 1655 (N=C), 1728 (COOEt)	1.02 (3H, т, $J = 6.5$, CH ₂ CH ₃); 1.41 (3H, т, $J = 6.4$, OCH ₂ CH ₃). 2.10 (2H, м, CH ₂ CH ₃); 4.38 (2H, к, J = 6.4, OCH ₂ CH ₃); 5.63 (1H, м, CH-бензильная); 7.08 (1H, д, $J = 7.8$, H-5); 7.18 (1H, т, $J = 8.2$, H-7); 7.26 (1H, д, $J = 7.8$, H-8); 7.36 (1H, т, $J = 7.8$, H-6); 7.48 (2H, д, $J = 8.2$, H-2',6'); 7.65 (1H, c, NH); 8.03 (2H, д, $J = 8.2$, H-3',5')	324 (2.4)
4h	2750–3300 (солевой NH), 1655 (N=C)	1.03 (3H, т, $J = 6.5$, CH ₂ CH ₃); 1.98 (2H, м, CH ₂ CH ₃); 5.59 (1H, м, CH-бензильная); 7.11 (1H, уш. с, NH); 7.12 (1H, д, $J = 7.8$, H-5); 7.16 (1H, т, $J = 7.8$, H-7); 7.21 (1H, д, $J = 7.8$, H-8); 7.33 (1H, т, $J = 7.8$, H-6); 7.69 (2H, д, $J = 8.3$, H-2',6'); 8.26 (2H, д, $J = 8.3$, H-3',5')	_
4i	2700–3200 (солевой NH), 1650 (N=C)	0.91 (3H, т, <i>J</i> = 6.5, CH ₂ C <u>H₃</u>); 1.77 (2H, м, C <u>H₂</u> CH ₃); 2.32 (3H, с, CH ₃); 4.82 (1H, м, CH-бензильная); 7.24*** (6H, м, H-5,7,8,3',5'); 7.33 (1H, т, <i>J</i> = 7.8, H-6); 7.49 (2H, д, <i>J</i> = 8.2, H-2',6')	-48 [M ⁺] (11.4) -49 [M ⁺] (55.2)
5a	2600–3300 (солевой NH), 1640 (N=C)	0.95 (3H, т, <i>J</i> = 6.6, CH ₂ C <u>H₃</u>); 1.79 (2H, м, C <u>H</u> ₂ CH ₃); 4.18 (1H, м, CH-бензильная); 4.88 (1H, уш. с, NH); 7.19–7.42 (7H, м, H-5–8,3'–5'); 7.61 (2H, д, <i>J</i> = 8.0, H-2',6')	268 (44.2)
5b	2730–3220 (солевой NH), 1635 (N=C)	0.87 (3H, T, $J = 6.5$, CH_2CH_3); 1,16 (3H, T, $J = 6.3$, CH_2CH_3); 1.75 (2H, M, $CHCH_2CH_3$); 2.61 (2H, κ , $J = 6.3$, CH_2CH_3); 4.23 (1H, M, $CHCH_2CH_3$); 7.12–7.24 (3H, M), 7.25–7.31 (3H, M), 7.33–7.39 (3H, M) – 8ArH, NH	296 (83.7)
5c	2800–3310 (солевой NH), 1630 (N=C)	0.93 (3H, т, <i>J</i> = 6.5, CH ₂ C <u>H₃</u>); 1.81 (2H, м, C <u>H</u> ₂ CH ₃); 4.11 (3H, с, OCH ₃); 4.35 (1H, м, CH-бензильная); 7.12–7.41 (9H, м, 8ArH, NH)	298 (25.2)
5d	3140–3350 (солевой NH), 1655 (N=C)	0.89 (3H, T, $J = 6.5$, CHCH ₂ CH ₃); 1.35 (3H, T, $J = 6.4$, OCH ₂ CH ₃); 1.73 (2H, M, CHCH ₂ CH ₃); 4.01 (2H, K, $J = 6.4$, OCH ₂ CH ₃); 4.29 (1H, M, CHCH ₂ CH ₃); 6.72 (2H, π , $J = 8.1$, H-3',5'); 7.05 (1H, T, $J = 7.8$, H-7); 7.09 (2H, π , $J = 8.1$, H-2',6'); 7.15 (1H, π , $J = 7.8$, H-5); 7.18 (1H, T, $J = 7.8$, H-6); 7.35 (1H, c, NH); 7.56 (1H, π , $J = 7.8$, H-8)	312 (71.2)

^{*} Спектры ЯМР ¹Н измерены в CDCl₃ (соединения **2а–е,g,h** и **3а–с**) и ДМСО-d₆ (соединения **2f,i, 4а–i** и **5а–d**). ** Здесь и далее со штрихами пронумерованы атомы в арильном радикале заместителя R. *** Сигнал протона группы NH входит в мультиплет ароматических протонов.

Только в 2005 г. нами впервые были опубликованы данные по изучению строения гетероциклического соединения, образовавшегося в реакции N₍₁₎-(2-циклопропилфенил)-N₍₂₎-(2-этилфенил)тиомочевины **3b** под действием H₂SO₄, методом PCA [24]. При этом оказалось, что образовавшееся по указанной реакции гетероциклическое соединение по спектру ЯМР ¹Н (раствор в ДМСО-d₆) идентифицируется как 2-(*о*-этилфенил)амино-4-этил-4H-3,1-бензотиазин (5b), тогда как кристаллическая структура (по данным РСА) отвечает 2-этилфенилимино-4-этил-4Н-3,1-бензотиазину (6b). Этот результат позволяет предположить, что 2-аминобензоксазины и 2-аминобензотиазины в растворах и в кристаллическом состоянии могут находиться в разных таутомерных формах. В самом деле, если бы соединение, полученное из тиомочевины 3b в растворе сохраняло структуру **6b**, установленную для него методом PCA, то в спектре $\text{ЯМР}^{1}\text{H}$ следовало бы ожидать наличие слабопольного сигнала протона эндоциклической группы NH, значение химического сдвига которого, очевидно, должно было бы коррелировать со значениями химических сдвигов протонов подобных групп, найденных для соединений-аналогов 7-9 [22, 25].

Химический сдвиг протона группы NH, δ, м. д.: 9.43 (соединение 7), 9.49 (соединение 8), 11.5 (соединение 9).

Поскольку сигнал протона группы NH в спектре ЯМР ¹Н раствора вещества, полученного из тиомочевины **3b**, проявляется в области 7.25–7.33 м. д. (см. табл. 2 и [24]), что согласуется как со значениями химических сдвигов сигналов аналогичных протонов соединений **4a–i** и **5a,c,d** (табл. 2), так и со значениями химических сдвигов соответствующих протонов, описанных в литературе гетероциклических соединений указанного типа [20–23], можно с большой долей вероятности говорить о том, что образовавшийся в результате перегруппировки соединения **3b** гетероциклический продукт реакции в растворе находится в виде 2-амино-4H-3,1-бензотиазина **5b**, тогда как в кристалле он существует в виде таутомера **6b**.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н получены на спектрометре Varian VXR-400 (400 МГц). Химические сдвиги измерены относительно остаточных протонов недейтерированного растворителя (CDCl₃ и ДМСО-d₆). ИК спектры записаны на спектрометре UR-20 в пленке, вазелиновом масле и гексахлорбутадиене. Масс-спектры получены на приборе Finnigan SSQ-7000, тип GC-MS с использованием капиллярной колонки (30 м, неподвижная фаза ДВ-1, газ-носитель – гелий) и программированием температуры от 50 до 300 °С (10 град/мин). Энергия ионизации 70 эВ. Контроль за чистотой полученных соединений проводился на пластинках Silufol и на Al₂O₃ II ст. акт. (по Брокману), в системе эфир–хлороформ–петролейный эфир (40–70 °С), 1 : 1 : 3.

N-(2-Циклопропил)фенилмочевина (2а). К 75 мл смеси ледяной уксусной кислоты и воды (1:2 по объему) добавляют 6 г (0.045 моль) 2-аминофенилциклопропана (т. кип. 103–104 °С (9 мм рт. ст.), n^{20}_D 1.5812 [16]), нагревают до 35 °С и, поддерживая заданную температуру, при интенсивном перемешивании постепенно добавляют раствор 13 г (0.1 моль) цианата калия. Образовавшуюся суспензию перемешивают 10 мин и выдерживают 3 ч при 20 °С, разбавляют 30 мл воды, охлаждают до 0 °С, отфильтровывают выпавшие кристаллы, промывают их водой, тщательно отжимают и перекристаллизовывают из водного спирта (12 мл EtOH, 3 мл H₂O на 1 г неочищенного вещества **2а**). Выход 91%.

N-(2-Циклопропил)фенилмочевины 2b-i и **N-(2-циклопропил)фенилтиомочевины 3a-d** (общая методика). К раствору 0.01 моль 2-аминофенилциклопропана в 20 мл бензола при перемешивании добавляют 0.01 моль соответствующего арилизоцианата (или арилизотиоцианата) и кипятят 3 ч. В случае циклопропилфенилмочевин **2b-i** выпавшие после охлаждения до 20 °C кристаллы отфильтровывают, промывают холодным бензолом и высушивают на воздухе. В случае 2-циклопропилфенилтиомочевин **3a-d** бензол отгоняют, а остаток перекристаллизовывают из подходящего растворителя.

Перегруппировка N-(2-циклопропил)фенилмочевин 2а–і под действием трифторуксусной кислоты (общая методика). К 30 мл трифторуксусной кислоты при перемешивании постепенно добавляют 0.01 моль соответствующей циклопро-пилфенилмочевины 2а–і, нагревают до 40–45 °C и перемешивают при этой температуре 3 ч. Реакционную массу охлаждают до 20 °C, при перемешивании выливают в смесь льда и воды (150 г, 1:1) и нейтрализуют раствором аммиака. Органические соединения экстрагируют CH_2Cl_2 (2 × 50 мл), экстракт промывают водой и сушат $CaCl_2$, растворитель упаривают, остаток перекристаллизовывают из подходящего растворителя.

Перегруппировка N-(2-циклопропил)фенилтиомочевин За-d под действием конц. H_2SO_4 (общая методика). К 20 мл конц. H_2SO_4 (d 1.84), охлажденной до -20 °C, порциями добавляют 0.01 моль соответствующей тиомочевины За-d и перемешивают при той же температуре еще 1 ч. Образовавшийся прозрачный раствор выливают в смесь 100 г льда и 100 мл воды, осторожно нейтразизуют NaHCO₃ и экстрагируют CH₂Cl₂ (2 × 50 мл). Экстракт промывают из подходящего растворитель упаривают, остаток перекристаллизовывают из По приведенной выше методике из 1.35 г N₍₂₎-(4-метилфенил)-N₍₁₎-(2-цикло-пропилфенил)мочевины (2d) получают 1.01 г (75%) 2-(*п*-толил)амино-4-этил-4H-3,1-бензоксазина (4d); из 1.5 г N₍₂₎-(4-нитрофенил)-N₍₁₎-(2-циклопропилфенил)-мочевины (2h) – 1.21 г (81%) 2-(*п*-нитрофенил)амино-4-этил-4H-3,1-бензоксазина (4h). Спектры ЯМР ¹Н соединений 4d и 4h, полученных по этому методу, идентичны спектрам соответствующих соединений, полученных перегруппировкой мочевин 2d и 2h под действием трифторуксусной кислоты. Проба смешения образцов депрессии температуры плавления не давала.

Работа выполнена при финансовой поддержке гранта "Ведущая школа академика Н. С. Зефирова".

СПИСОК ЛИТЕРАТУРЫ

- 1. Р. Я. Левина, В. Н. Костин, В. А. Тартаковский, *ЖОХ*, 27, 881 (1957).
- 2. R. J. Ouellette, R. D. Robins, A. South, J. Am. Chem. Soc., 90, 1619 (1968).
- Yu. S. Shabarov, S. S. Mochalov, T. S. Oretskaya, V. V. Karpova, J. Organomet. Chem., 150, 7 (1978).
- Ю. С. Шабаров, С. С. Мочалов, С. А. Благодатских, Р. Я. Левина, Вестн. МГУ, сер. хим., 6, 689 (1972).
- 5. Ю. С. Шабаров, С. С. Мочалов, С. А. Благодатских, Р. Я. Левина, *ЖОрХ*, **6**, 2038 (1970).
- 6. S. Danishefsky, Acc. Chem. Res., 12, 66 (1979).
- 7. H. N. C. Wong, M.-Y. Hon, C-W. Tse, Y.-C. Yip, Chem. Rev., 89, 165 (1989).
- 8. H.-V. Reissig, R. Zimmer, Chem. Rev., 103, 1151 (2003).
- 9. С. С. Мочалов, Р. А. Газзаева, *XTC*, 1123 (2003). [*Chem. Heterocycl. Comp.*, **39**, 975 (2003)].
- 10. Y.-H. Yang, M. Shi, Tetrahedron, 62, 2420 (2006).
- 11. M. Yu, B. L. Padenkopf, Tetrahedron, 61, 321 (2005).
- 12. Ю. С. Шабаров, С. С. Мочалов, И. П. Степанова, ДАН, 189, 1028 (1969).
- С. С. Мочалов, А. Н. Федотов, А. А. Борисенко, В. В. Ткачев, Г. В. Шилов, А. Н. Утенышев, С. М. Алдошин, Н. С. Зефиров, ДАН, **391**, 646 (2003).
- С. С. Мочалов, Р. А. Газзаева, А. Н. Федотов, Ю. С. Шабаров, Н. С. Зефиров, XГС, 922 (2003). [Chem. Heterocycl. Comp., 39, 794 (2003)].
- 15. H. Hart, C. Levitt, J. Org. Chem., 24, 1261 (1959).
- 16. Ю. С. Шабаров, В. К. Потапов, Р. Я. Левина, ЖОХ, 34, 3127 (1964).
- 17. Ю. С. Шабаров, С. С. Мочалов, ЖОрХ, 8, 2085 (1972).
- Т. Г. Кутателадзе, А. Н. Федотов, С. С. Мочалов, Ю. С. Шабаров, А. с. СССР, 1502570; Б. И., № 31, 134 (1989).
- 19. А. Н. Федотов, И. Н. Шишкина, Т. Г. Кутателадзе, С. С. Мочалов, Ю. С. Шабаров, *XIC*, 1063 (1987). [*Chem. Heterocycl. Comp.*, **23**, 849 (1987)].
- 20. J. Gonda, P. Kristian, Coll. Czech. Chem. Commun., 51, 2802; 2810 (1986).
- 21. J. Gonda, M. Barnikol, Coll. Czech. Chem. Commun., 55, 752 (1990).
- 22. P. Molina, A. Arques, A. Molina, Synthesis, 21 (1991).
- 23. A. Hari, B. L. Willer, Org. Lett., 2, 3667 (2000).
- 24. А. Н. Федотов, Е. В. Трофимова, В. А. Сидоров, К. А. Потехин, В. А. Романов, С. С. Мочалов, Н. С. Зефиров, *ДАН*, **405**, 65 (2005).
- 25. P. J. Garatt, C. J. Hobbs, R. Wrigglesworth, Tetrahedron, 45, 829 (1989).

Московский государственный университет им. М. В. Ломоносова, Москва 119992, Россия e-mail: fed@org.chem.msu.ru Поступило 03.04.2007