О. В. Сурикова, А. Г. Михайловский, Е. В. Вихарева, М. И. Вахрин

РЕАКЦИЯ АЗОСОЧЕТАНИЯ 1-БЕНЗИЛ-3,4-ДИГИДРОИЗОХИНОЛИНОВ С СОЛЯМИ ДИАЗОНИЯ И СВОЙСТВА ЕЕ ПРОДУКТОВ

Показано, что основание дротаверина и 1-бензил-3,3-диметил-3,4-дигидроизохинолин реагируют с солями диазония с образованием гидразонов. Положение *К*-полосы в УФ спектрах полученных соединений зависит от природы заместителей в ароматичеком цикле, частота поглощения коррелирует с константами Гаммета.

Ключевые слова: 1-бензил-3,4-дигидроизохинолины, гидразоны, енамины, соли диазония, корреляция с константами Гаммета, УФ спектры поглощения.

Ранее были изучены реакции азосочетания енаминов ряда 1,2,3,4-тетрагидроизохинолина с солями диазония [1, 2]. В химии и фармакологии широко известны 1-бензил-3,4-дигидроизохинолины, которые также проявляют свойства енаминов [3], в частности, основание дротаверина (ношпы) [4]. Реакция азосочетания 1-бензил-3,4-дигидроизохинолинов с солями диазония до настоящего времени не изучена.

Целью данной работы являются синтез и исследование строения продуктов реакции азосочетания 1-бензил-3,4-дигидроизохинолинов с солями диазония.

Исследования показали, что при сочетании основания дротаверина 1 с солями диазония образуются гидразоны 2a-g. Аналогично взаимодействие основания 3 с хлоридом *n*-толилдиазония приводит к гидразону 4.

Продукты азосочетания представляют собой оранжевые или красные кристаллические вещества, идентифицированные в виде гидрохлоридов, за исключением *n*-нитропроизводного **2b**, для которого устойчиво основание (табл. 1). Все гидрохлориды трудно растворимы в воде.

Спектры ЯМР ¹Н производных дротаверина **2а–g** (табл. 2) свидетельствуют в пользу структуры гидразона. В спектрах этих веществ, в отличие от спектра исходного основания дротаверина, отсутствует синглет метиленовых протонов бензильной группы и присутствуют синглеты протонов групп NH гидразона (8.7–9.7) и NH⁺ цикла (11.6–12.3 м. д.). В спектре основания **2b** сигнал группы NH⁺ цикла отсутствует. В спектрах оснований этих веществ, выделенных действием на гидрохлориды 25% раствором аммиака, также отсутствует синглет группы NH⁺ и присутствует синглет протонов группы NH гидразона (~9.5 м. д.). Одна из метиленовых групп OC<u>H₂</u>CH₃ проявляется в виде квадруплета в несколько

более сильном поле, чем остальные (3.7–3.9 м. д.). Вероятно, это объясняется возможностью прямого полярного сопряжения этоксигрупп с положительно заряженным центром.

Спектр основания соединения 4 (табл. 2), также выделенного из гидрохлорида обработкой аммиаком, содержит два синглета протонов метильных групп в положении 3, два синглета протонов группы H-4 и мультиплет ароматических протонов. Кроме того, наблюдается два сигнала групп NH (9.1 и 10.5 м. д.). Эти факты свидетельствует о том, что основание соединения 4 существует в растворе в виде азогидразонных таутомеров. Судя по интегральной интенсивности сигналов, оба таутомера присутствуют примерно в равных количествах. Преобладание формы гидразона у соединений 2a-g может быть объяснено наличием четырех электронодонорных этоксигрупп, стабилизирующих π -дефицитный диазадиеновый фрагмент.

Таблица 1

Характеристики синтезированных соединений

Соеди- нение	Х	Брутто-формула		<u>Найде</u> Вычисл	<u>ено, %</u> пено, %	Т. пл., °С	Выход, %	
			С	Н	Cl	Ν		
2a	Н	$C_{30}H_{35}N_3O_4\bullet HCl$	<u>66.8</u> 67.0	<u>6.5</u> 6.7	<u>6.5</u> 6.6	<u>7.9</u> 7.8	140–142	80
2b	<i>p</i> -NO ₂	$C_{30}H_{34}N_4O_6$	<u>65.7</u> 65.9	<u>6.2</u> 6.3	-	$\frac{10.4}{10.3}$	143–145	62
2c	<i>m</i> -NO ₂	$C_{30}H_{34}N_4O_6{}^\bullet HCl$	<u>61.7</u> 61.8	<u>5.9</u> 6.1	<u>5.8</u> 6.1	<u>9.7</u> 9.6	124–126	65
2d	<i>p</i> -CO ₂ Et	C ₃₃ H ₃₉ N ₃ O ₆ •HCl	<u>64.8</u> 65.0	<u>6.5</u> 6.6	<u>3.7</u> 3.8	<u>6.9</u> 6.9	147–148	67
2e	<i>m</i> -Cl	C ₃₀ H ₃₄ ClN ₃ O ₄ •HCl	<u>62.8</u> 62.9	<u>6.1</u> 6.2	<u>12.3</u> 12.4	<u>7.5</u> 7.3	142–143	55
2f	<i>p</i> -Me	$C_{31}H_{37}N_3O_4\bullet HCl$	<u>67.3</u> 67.4	<u>6.7</u> 6.9	<u>6.2</u> 6.4	<u>7.6</u> 7.6	190–192	70
2g	<i>p</i> -MeO	$C_{31}H_{37}N_3O_5$ •HCl	<u>65.4</u> 65.5	<u>6.6</u> 6.7	<u>6.1</u> 6.2	<u>7.2</u> 7.4	105–107	66
4	_	C ₂₅ H ₂₅ N ₃ •HCl	<u>74.3</u> 74.4	<u>6.3</u> 6.4	<u>8.7</u> 8.8	$\frac{10.5}{10.4}$	280 (разл.)	78

Таблица 2

	Химические сдвиги, б, м. д. (Ј, Гц)									
Соеди- нение	4С <u>Н</u> ₃ СН ₂ О, (12Н, 4т)	СН ₃ С <u>Н</u> 2О, (2Н, к)	3CH ₃ C <u>H</u> ₂ O, (6Н, 3к)	Н-4, (2Н, м)	СН ₂ –N, (2Н, м)	Ar, м	NH, с гидразона	NH⁺, с цикла	Остальные протоны	
2a	1.2-1.5 (J = 6.8)	3.8 (J = 6.8)	4.0–4.3 (<i>J</i> = 6.8)	3.2	3.9	6.5–7.5 (10H)	8.9	12.1	_	
2b	1.1–1.5 (<i>J</i> = 7.0)	3.9 (<i>J</i> = 7.0)	4.0–4.3 (<i>J</i> = 7.0)	3.1	4.2	6.7–8.3 (9H)	9.7	-	_	
2c	1.1–1.7 (<i>J</i> = 7.1)	3.8 (<i>J</i> = 7.1)	4.0–4.2 (<i>J</i> = 7.1)	3.1	4.2	6.7–8.2 (9H)	9.5	11.7	_	
2d	1.1–1.5 (<i>J</i> = 6.9)	3.8 (<i>J</i> = 6.9)	3.9–4.2 (<i>J</i> = 6.9)	3.2	4.1	6.7–8.2 (9H)	9.8	_*	С <u>H</u> ₃ CH ₂ OCO, т, <i>J</i> = 7.3, в области 1.1–1.5; CH ₃ C <u>H</u> ₂ OCO, к, <i>J</i> = 7.3, в области 3.8–3.9	
2e	1.1–1.6 (<i>J</i> = 7.0)	3.7 (J = 7.0)	4.0–4.2 (<i>J</i> = 7.0)	3.0	4.1	6.7–8.1 (9H)	9.3	11.7	_	
2f	1.2–1.5 (<i>J</i> = 6.9)	3.9(J=6.9)	4.1–4.3 (<i>J</i> = 6.9)	3.3	4.1	6.8–7.4 (9H)	9.1	12.3	2.3 (c, CH ₃ –Ar)	
2g	1.2–1.6 (<i>J</i> = 7.0)	3.6 (J = 7.0)	4.0–4.2 (<i>J</i> = 7.0)	3.0	4.0	6.6–7.2 (9H)	8.7	11.6	3.7 (c, CH ₃ O)	
4	_	_	_	_	_	_	_	_	1.1 (3H, c) и 1.4 (3H, c), 3-(CH ₃) ₂ ; 2.3 (3H, c, CH ₃ -Ar); 2.8 (1H, c) и 2.9 (1H, c), H-4	

Спектры ЯМР ¹Н синтезированных соединений

* Протон находится в обмене с водой растворителя.

ИК спектры оснований соединений 2a-g и 4 содержат полосы валентных колебаний групп C=N (1620–1630) и NH (3120 см⁻¹).

УФ спектры поглощения гидрохлоридов полученных веществ (табл. 3) регистрировали в 0.01 моль/л водном растворе HCl, начиная с длины волны 200 нм. Для всех спектров характерно наличие ароматической β-полосы π → π *-перехода [5–7], максимум поглощения которой лежит вблизи 200 нм, при этом значении длины волны lg є 4.66-4.84. Ароматическая *р*-полоса наблюдается в области 236–260 нм (lg є 4.26–4.43), К-полоса общей цепи π-сопряжения [8, 9] находится в области 305–450 нм (Ід є 3.91–4.28). Как видно из представленных данных, положение К-полосы сильно зависит от природы заместителя в ароматическом ядре фенилазогруппы. В литературе имеются примеры корреляции частот поглощения в УФ спектрах с константами заместителя [10, 11]. Сопоставление значений частот поглощения с гамметовскими константами крайних заместителей [12] показывает отклонение от корреляции для крайних заместителей, обладающих максимальными электронодонорными или акцепторными свойствами (MeO и NO₂). При их исключении в пределах серии гидрохлоридов соединений 2а-д выполняется соотношение:

$$\Delta v = 0.32 v (r = 0.98; s = 0.08; n = 4),$$

где Δv – сдвиг частоты поглощения (см⁻¹) относительно незамещенного фенила. В целом видно, что с ростом донорных свойств заместителя имеет место батохромный сдвиг *К*-полосы сопряжения. Сравнительно небольшое значение ρ (0.32) свидетельствует о среднем по значению влиянии заместителя на энергию электронного возбуждения ионизированной молекулы гидразонов.

Таблица З

	<i>К</i> -полоса, v•10 ³ см ⁻¹			
β (при 200 нм)	$p(\lambda_{\max})$	$K(\lambda_{\max})$	ν	Δν
200 (4.83)	254 (4.41)	430 (4.08)	23.27	0
200 (4.68)	237 (4.26)	305 (4.02)	34.23	+10.4
200 (4.73)	236 (4.39)	310 (4.24)	32.27	+9.0
200 (4.74)	236 (4.43)	314 (4.26)	31.83	+8.56
200 (4.84)	250 (4.31)	450 (4.28)	22.23	-1.04
200 (4.69)	260 (4.32)	458 (3.91)	21.83	-1.44
200 (4.66)	245 (4.31)	455 (4.27)	-	-
	β (при 200 нм) 200 (4.83) 200 (4.68) 200 (4.73) 200 (4.74) 200 (4.84) 200 (4.69) 200 (4.66)	λ , HM (lg ε) β (при 200 нм) p (λ_{max})200 (4.83)254 (4.41)200 (4.68)237 (4.26)200 (4.73)236 (4.39)200 (4.74)236 (4.43)200 (4.84)250 (4.31)200 (4.69)260 (4.32)200 (4.66)245 (4.31)	λ , нм (lg є) β (при 200 нм) p (λ_{max}) K (λ_{max})200 (4.83)254 (4.41)430 (4.08)200 (4.68)237 (4.26)305 (4.02)200 (4.73)236 (4.39)310 (4.24)200 (4.74)236 (4.43)314 (4.26)200 (4.84)250 (4.31)450 (4.28)200 (4.69)260 (4.32)458 (3.91)200 (4.66)245 (4.31)455 (4.27)	λ , нм (lg є)К-полоса, β (при 200 нм) p (λ_{max}) K (λ_{max}) v 200 (4.83)254 (4.41)430 (4.08)23.27200 (4.68)237 (4.26)305 (4.02)34.23200 (4.73)236 (4.39)310 (4.24)32.27200 (4.74)236 (4.43)314 (4.26)31.83200 (4.84)250 (4.31)450 (4.28)22.23200 (4.69)260 (4.32)458 (3.91)21.83200 (4.66)245 (4.31)455 (4.27)-

УФ спектры поглощения синтезированных соединений

* Соединение 2b в данных условиях нерастворимо.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н регистрировали на приборе Bruker-300 (300 МГц) в ДМСОd₆ (**2b**,**d**) и CDCl₃ (все остальные), внутренний стандарт ГМДС (0.05 м. д. от ТМС), ИК спектры – на спектрометре Specord-80 в вазелиновом масле, УФ спектры получали на спектро-фотометре СФ-2000 в концентрации 0.5•10⁻⁴ моль/л. Контроль чистоты полученных веществ осуществляли методом TCX на пластин-ках Silufol UV-254 в системе ацетон–этанол–хлороформ, 1:3:6, исходные вещества и продукты реакций окрашены в видимой области спектра.

Соединение 3 описано в работе [13]. Все вещества перекристаллизованы из ацетонитрила.

Арилгидразоны (3,4-диэтоксифенил)(6,7-диэтокси-3,4-дигидроизохинолил-1)кетона 2а-д и *п*-толилгидразон фенил(3,3-диметил-3,4-дигидроизохинолил-1)кетона (4). Диазотирование и азосочетание осуществляют в смеси спиртвода, 1:1 (по объему).

Диазотирование осуществляют по методике, приведенной в работе [2].

Азосочетание. Растворяют при кипячении 10 ммоль основания азосоставляющей в 100 мл водно-спиртовой смеси, температуру которой доводят до 5–7 °C. К охлажденному раствору приливают соль диазония, полученную смесь выдер-живают еще 30 мин при той же температуре. Затем медленно, по каплям добав-ляют насыщенный раствор ацетата натрия, при этом выпадает окрашенный оса-док. После добавления избытка раствора ацетата натрия смесь выдерживают еще 1 ч, сняв охлаждение и периодически перемешивая. Выпавший осадок отфильтро-вывают, тщательно промывают водой, сушат и перекристаллизовывают.

СПИСОК ЛИТЕРАТУРЫ

- В. С. Шкляев, Б. Б. Александров, М. И. Вахрин, Г. И. Леготкина, А. с. СССР 852865; Б. И., № 29, 114 (1981).
- 2. Н. Н. Полыгалова, А. Г. Михайловский, М. И. Вахрин, *XГС*, 1382 (2006). [*Chem. Heterocycl. Comp.*, **42**, 1200 (2006)].
- 3. А. Г. Михайловский, В. С. Шкляев, Б. Б. Александров, *XГС*, 808 (1990). [*Chem. Heterocycl. Comp.*, **26**, 674 (1990)].
- 4. А. Г. Михайловский, XTC, 685 (1996). [Chem. Heterocycl. Comp., 32, 590 (1996)].
- 5. С. Ф. Мейсон, в кн. *Физические методы в химии гетероциклических соединений*, под ред. А. Р. Катрицкого, Химия, Ленинград, 1966, с. 319.
- 6. О. В. Свердлова, Электронные спектры в органической химии, Химия, Ленинград, 1985, с. 94.
- 7. Э. Клар, Полициклические углеводороды, Химия, Москва, 1971.
- 8. А. Гиллем, Е. Штерн, Электронные спектры поглощения органических соединений, Изд-во иностр. лит., Москва, 1957, с. 159.
- 9. Э. Преч, Ф. Бюльман, К. Аффольтер, Определение строения органических соединений, Мир, Москва, 2006, с. 396.
- 10. T. M. Issa, R. M. Issa, M. R. Mahmud, Y. M. Iemerik, Z. Phys. Chem. (DDR), 289 (1973).
- 11. H. Mustroph, J. Epperlein, Z. Phys. Chem. (DDR), 261 (1980).
- 12. А. Гордон, Г. Форд, Спутник химика, Мир, Москва, 1976, с. 167.
- В. С. Шкляев, Б. Б. Александров, А. Г. Михайловский, М. И. Вахрин, *XTC*, 963 (1987). [*Chem. Heterocycl. Comp.*, 23, 790 (1987)].

Пермская государственная фармацевтическая академия, Поступило 18.05.2007 Пермь 614990, Россия e-mail: perm@pfa.ru, e-mail: migeo@perm.raid.ru

251