В. И. Теренин, М. А. Буткевич, А. С. Иванов, Е. В. Кабанова

АЦИЛИРОВАНИЕ ПИРРОЛО[1,2-а]ПИРАЗИНОВ

Изучено ацилирование пирроло[1,2-a]пиразинов уксусным ангидридом и хлор- ангидридами различных карбоновых кислот. Показано, что пирроло[1,2-a]- пиразины селективно ацилируются по α -положению пиррольного кольца, когда оно свободно. Впервые в процессе ацетилирования получены продукты конденсации 1-метилзамещенных пирроло[1,2-a]пиразинов.

Ключевые слова: пирроло[1,2-*а*]пиразины, ацилирование, электрофильное замещение.

Продолжая исследование поведения системы пирроло[1,2-*a*]пиразина в условиях реакций электрофильного замещения, мы изучили ацилирование алкил-, арил- и гетарилзамещенных пирроло[1,2-*a*]пиразинов. Ранее было установлено, что ацетилирование 3,4-дигидропирроло[1,2-*a*]пиразинов уксусным ангидридом (в присутствии перхлората магния как кислоты Льюиса) протекает селективно по пиразиновому атому N₍₂₎ и с выходами 25–87% образуются N-ацилзамещенные производные [1].

В отличие от гидрированных систем, ацилирование ароматических пирроло[1,2-*a*]пиразинов идет по свободному α -положению пиррольного кольца. Так, при кипячении пирроло[1,2-*a*]пиразинов **1а**-с с уксусным ангидридом в присутствии хлорида олова(IV) или перхлората магния реакция протекает селективно и образуются продукты монозамещения **2**–4, однако выходы ацильных производных в данной реакции не превышают 14%.

1a, 2 R = Me; 1b, 3 R = Et; 1c, 4 R = Ph

В аналогичных условиях 1-пропилпирроло[1,2-*a*]пиразин (1d) реагирует с образованием смеси двух продуктов ацилирования с низким суммарным выходом (10%) – 6-ацетил-1-пропилпирроло[1,2-*a*]пиразина (5) и 6,8-диацетил-1-пропилпирроло[1,2-*a*]пиразина (6).

С целью увеличения выходов продуктов реакции в качестве ацилирующего агента был использован ацетилхлорид в присутствии хлорида алюминия. При ацетилировании 1-этил- (1b), 1-фенил- (1c), 1-изопропил-(1e), 1-бензил- (1f) и 1-(2-тиенил)пирроло[1,2-*a*]пиразина (1g) с выходами 33–74% были получены ожидаемые продукты ацетилирования по α-положению пиррольного цикла.

1b, 3 R= Et; 1c, 4 R = Ph; 1e, 7 R = *i*-Pr; 1f, 8 R = CH₂Ph; 1g, 9 R = 2-тиенил

На примере наиболее реакционноспособного 1-этилпирроло[1,2-*a*]пиразина (**1b**) было исследовано ацилирование хлорангидридами бензойной, коричной и 2-тиофенкарбоновой кислот. Найдено, что во всех случаях реакция протекает селективно с образованием исключительно 6-ацил-1-этилпирроло[1,2-*a*]пиразинов **10–12**, однако выходы продуктов ацилирования снижаются до 8–29%.

264

При ацилировании 1-метилпирроло[1,2-a]пиразина (1a) ацетилхлоридом, помимо продуктов замещения пиррольного кольца 2 и 13 по положениям α и β' , неожиданно был выделен с выходом 8% продукт конденсации двух молекул гетероцикла 14.

Спектр ЯМР ¹Н соединения **14** содержит удвоенный набор сигналов пиррольного и пиразинового колец, четыре синглета протонов метильных групп и два дублета при 3.60 и 4.32 м. д. с КССВ 13.20 Гц, принадлежащие двум протонам при мостиковом атоме углерода. Пик молекулярного иона m/z 390 в масс-спектре соответствует молекулярной массе соединения **14**. Спектр ЯМР ¹³С показал наличие сигнала атома углерода в положении 1' при 152.77 м. д. (J = 4.13, J = 10.98 Гц), представляющего собой дублет триплетов, на основании которого был сделан вывод, что молекулы соединяются через метильный заместитель в положении 1 молекулы гетероцикла. Строение полученного соединения было также подтверждено данными РСА.

Пространственная модель молекулы соединения 14 с нумерацией атомов

Таблица 1

Таблица 2

Характеристика	
Брутто-формула	C ₂₂ H ₂₂ N ₄ O ₃
Молекулярная масса	390.44
Цвет кристаллов	Бесцветный
Размер, мм	$0.26\times0.16\times0.14$
Кристаллическая сингония	Моноклинная
Параметры кристаллической решетки	
<i>a</i> , Å	9.744(2)
<i>b</i> , Å	21.301(4)
<i>c</i> , Å	9.601(2)
β, град.	95.86(3)
Объем элементарной ячейки, V, Å ³	1982.3(7)
Пространственная группа	P2(1)/c
Число молекул в элементарной ячейке, Z	4
Плотность, d , г/см ³	1.308
Коэффициент поглощения, µ, мм ⁻¹	0.089
Окончательные <i>R</i> факторы [<i>I</i> >2 σ (<i>I</i>)]	R1 = 0.0297, wR2 = 0.0703
<i>R</i> факторы (все данные)	R1 = 0.1270, wR2 = 0.0800

Кристаллографические данные для соединения 14

Длины связей (*l*) в структуре соединения 14

		1	
Связь	l, Å	Связь	l, Å
O ₍₁₎ –C ₍₉₎	1.205(2)	$C_{(1)} - C_{(11)}$	1.563(2)
$O_{(2)} - C_{(8)}$	1.228(2)	$C_{(2)} - C_{(3)}$	1.316(2)
$O_{(2)} - C_{(8)}$	1.228(2)	$C_{(4)} - C_{(5)}$	1.373(2)
N ₍₁₎ -C ₍₉₎	1.387(2)	$C_{(5)} - C_{(6)}$	1.420(2)
N ₍₁₎ -C ₍₂₎	1.400(2)	$C_{(5)} - C_{(8)}$	1.449(2)
$N_{(1)}-C_{(1)}$	1.5033(19)	$C_{(6)} - C_{(7)}$	1.354(2)
$N_{(2)} - C_{(4)}$	1.358(2)	$C_{(8)} - C_{(20)}$	1.489(3)
$N_{(2)} - C_{(7)}$	1.3785(18)	$C_{(9)} - C_{(21)}$	1.502(3)
$N_{(2)} - C_{(3)}$	1.395(2)	$C_{(11)} - C_{(12)}$	1.499(2)
$N_{(3)} - C_{(17)}$	1.380(2)	$C_{(12)} - C_{(13)}$	1.408(2)
$N_{(3)} - C_{(16)}$	1.386(2)	$C_{(13)} - C_{(14)}$	1.391(2)
$N_{(3)} - C_{(16)}$	1.386(2)	$C_{(14)} - C_{(15)}$	1.375(2)
$N_{(4)} - C_{(12)}$	1.317(2)	$C_{(15)} - C_{(16)}$	1.397(2)
$N_{(4)} - C_{(18)}$	1.369(2)	$C_{(16)} - C_{(19)}$	1.435(2)
$C_{(1)} - C_{(7)}$	1.507(2)	$C_{(17)} - C_{(18)}$	1.338(2)
$C_{(1)} - C_{(10)}$	1.526(2)	$C_{(19)} - C_{(22)}$	1.495(3)

Угол	ω, град.	Угол	ω, град.					
$C_{(9)} - N_{(1)} - C_{(2)}$	119.37(14)	$N_{(2)} - C_{(7)} - C_{(1)}$	21.30(13)					
$C_{(9)} - N_{(1)} - C_{(1)}$	119.44(13)	$O_{(2)} - C_{(8)} - C_{(5)}$	120.84(15)					
$C_{(2)} - N_{(1)} - C_{(1)}$	118.64(13)	$O_{(2)} - C_{(8)} - C_{(20)}$	120.76(16)					
$C_{(4)} - N_{(2)} - C_{(7)}$	109.51(12)	$C_{(5)} - C_{(8)} - C_{(20)}$	118.40(16)					
$C_{(4)} - N_{(2)} - C_{(3)}$	129.19(13)	$O_{(1)} - C_{(9)} - N_{(1)}$	121.62(17)					
$C_{(7)} - N_{(2)} - C_{(3)}$	120.97(13)	$O_{(1)} - C_{(9)} - C_{(21)}$	120.58(17)					
$C_{(17)} - N_{(3)} - C_{(16)}$	131.25(14)	$N_{(1)}-C_{(9)}-C_{(21)}$	117.79(17)					
$C_{(17)} - N_{(3)} - C_{(13)}$	119.60(14)	$C_{(12)} - C_{(11)} - C_{(1)}$	114.48(12)					
$C_{(16)} - N_{(3)} - C_{(13)}$	109.15(13)	$N_{(4)}-C_{(12)}-C_{(13)}$	122.65(15)					
$C_{(12)} - N_{(4)} - C_{(18)}$	116.81(15)	$N_{(4)}-C_{(12)}-C_{(11)}$	116.84(15)					
$N_{(1)}-C_{(1)}-C_{(7)}$	108.80(12)	$C_{(13)} - C_{(12)} - C_{(11)}$	120.47(14)					
$N_{(1)}-C_{(1)}-C_{(10)}$	112.50(13)	$C_{(14)} - C_{(13)} - N_{(3)}$	107.37(14)					
$C_{(7)} - C_{(1)} - C_{(10)}$	106.35(13)	$C_{(14)} - C_{(13)} - C_{(12)}$	134.76(15)					
$N_{(1)}-C_{(1)}-C_{(11)}$	109.09(12)	$N_{(3)}-C_{(13)}-C_{(12)}$	117.86(14)					
$C_{(7)} - C_{(1)} - C_{(11)}$	110.61(13)	$C_{(15)} - C_{(14)} - C_{(13)}$	107.69(14)					
$C_{(10)} - C_{(1)} - C_{(11)}$	109.46(12)	$C_{(14)} - C_{(15)} - C_{(16)}$	109.60(15)					
$C_{(3)} - C_{(2)} - N_{(1)}$	124.24(15)	$N_{(3)}-C_{(16)}-C_{(15)}$	106.19(14)					
$C_{(2)} - C_{(3)} - N_{(2)}$	119.14(14)	$N_{(3)}-C_{(16)}-C_{(19)}$	122.96(15)					
$N_{(2)}-C_{(4)}-C_{(5)}$	108.47(13)	$C_{(15)} - C_{(16)} - C_{(19)}$	130.82(16)					
$C_{(4)} - C_{(5)} - C_{(6)}$	106.14(14)	$C_{(18)} - C_{(17)} - N_{(3)}$	117.84(15)					
$C_{(4)} - C_{(5)} - C_{(8)}$	127.59(15)	$C_{(17)} - C_{(18)} - N_{(4)}$	125.23(15)					
$C_{(6)} - C_{(5)} - C_{(8)}$	126.26(15)	$O_{(3)}-C_{(19)}-C_{(16)}$	122.99(17)					
$C_{(7)} - C_{(6)} - C_{(5)}$	108.66(13)	$O_{(3)}-C_{(19)}-C_{(22)}$	119.42(17)					
$C_{(6)} - C_{(7)} - N_{(2)}$	107.21(13)	$C_{(16)} - C_{(19)} - C_{(22)}$	117.58(16)					
$C_{(6)} - C_{(7)} - C_{(1)}$	131.22(13)							

Валентные углы (ω) в структуре соединения 14

Похожая картина наблюдается и при ацетилировании ацетилхлоридом 1,6-диметилпирроло[1,2-*a*]пиразина (**1h**): образуется смесь двух соединений – 8-ацетил-1,6-диметилпирроло[1,2-*a*]пиразина (**15**) (выход 26%) и пирролопиразина **16** (выход 6%). Снижение суммарного выхода реакции можно объяснить тем, что положение β' пиррольного кольца менее реакционноспособно в реакциях ацилирования, а α -положение уже занято метильным заместителем.

267

Таблица З

Образование конденсированных соединений наблюдается только в том случае, когда в положении 1 пирроло[1,2-a]пиразина находится метильный заместитель и когда в качестве ацилирующего агента используется ацетилхлорид. При ацилировании в аналогичных условиях соединения **1а** пропионилхлоридом образуется исключительно продукт замещения α -положения пиррольного кольца **17** с выходом 43%.

Ацетилирование 6-метил-1-этилпирроло[1,2-*a*]пиразина (1i) ацетилхлоридом, в отличие от 1,6-диметилпирроло[1,2-*a*]пиразина (1h), приводит только к 8-ацетилпроизводному 18.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С регистрировали на приборе Bruker Avance-400 (400 и 100 МГц соответственно) в CDCl₃ (соединения **2–13**, **17** и **18**), ацетоне-d₆, ДМСО-d₆ и CD₃OD, внутренний стандарт ТМС. Масс-спектры записывали на приборе Kratos MS-30 с энергией ионизации 70 эВ (T = 210 °C). Контроль за ходом реакции осуществляли методом ТСХ на пластинах Silufol UV-254 в системе бензол–этилацетат, 1:1.

Ацетилирование уксусным ангидридом. А. К раствору 2 ммоль пирроло[1,2-а]пиразина в 20 мл уксусного ангидрида при перемешивании добавляют 2 ммоль перхлората магния при 20 °С или 2 ммоль хлорида олова(IV) при 0 °С. Реакционную массу кипятят 12 ч, охлаждают до комнатной температуры, выливают в холодную воду. Водный раствор нейтрализуют карбонатом натрия, экстрагируют бензолом, сушат молекулярными ситами 3 Å, растворитель упаривают. Остаток хроматографируют на колонке с силикагелем Silpearl в системе бензол–этилацетат, 3:1.

Ацилирование хлорангидридами кислот. Б. К раствору 2 ммоль пирроло[1,2-*a*]пиразина в 20 мл хлористого метилена при 20 °С и при перемешивании по каплям добавляют 20 ммоль хлорангидрида соответствующей кислоты, затем в течение 30 мин прибавляют 20 ммоль хлорида алюминия. Реакционную смесь перемешивают 24 ч при 20 °С, затем выливают на 268 измельченный лед. Водный раствор нейтрализуют карбонатом натрия, отфильтровывают выпавший осадок и промывают его хлористым метиленом. Маточный раствор экстрагируют хло- ристым метиленом, сушат молекулярными ситами 3 Å, растворитель упаривают, остаток перекристаллизовывают из гексана.

В случае 1-метилпирроло[1,2-*a*]пиразина (1а) оставшееся после упаривания растворителя масло перекристаллизовывают из гексана, выделяя 6-ацетил-1-метилпирроло[1,2-*a*]пиразин (2) и 8-ацетил-1-метилпирроло[1,2-*a*]пиразин (13). При добавлении ацетона к остатку после перекристаллизации происходит осаждение соединения 14.

В случае 1,6-диметилпирроло[1,2-*a*]пиразина (**1h**) после упаривания растворителя остаток хроматографируют на колонке с силикагелем Silpearl в системе бензол–этилацетат, 1:1.

6-Ацетил-1-метилпирроло[1,2-*а***]пираз**ин (**2**). Выход по методу A – 7%, по методу Б – 49%, т. пл. 96–97 °С (с разл.). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 2.61 (3H, с, COCH₃); 2.76 (3H, с, 1-CH₃); 6.79 (1H, д, *J*_{8,7} = 4.51, H-8); 7.50 (1H, д, *J*_{7,8} = 4.51, H-7); 7.80 (1H, д, *J*_{3,4} = 4.79, H-3); 9.43 (1H, д, *J*_{4,3} = 4.79, H-4). Масс-спектр, *m/z* (*I*_{отн}, %): 174 [M]⁺ (85.09), 159 (100), 131 (37.44), 117 (2.30), 104 (28.93), 90 (10.01), 77 (64.06). Найдено, %: С 68.82; H 5.75; N 15.88. С₁₀H₁₀N₂O. Вычислено, %: С 68.97; H 5.75; N 16.09.

6-Ацетил-1-этилпирроло[1,2-*а***]пиразин (3)**. Выход по методу А – 14%, по методу Б – 74%, т. пл. 92–95 °С. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.43 (3H, т, *J* = 7.58, CH₂CH₃); 2.61 (3H, с, COCH₃); 3.08 (2H, к, *J* = 7.58, CH₂CH₃); 6.82 (1H, д, *J*_{8,7} = 4.60, H-8); 7.50 (1H, д, *J*_{7,8} = 4.60, H-7); 7.84 (1H, д, *J*_{3,4} = 4.89, H-3); 9.44 (1H, д, *J*_{4,3} = 4.89, H-4). Спектр ЯМР ¹³С, δ, м. д.: 12.02 (CH₂CH₃); 26.38 (CH₂CH₃); 28.93 (COCH₃); 103.39, 118.42, 122.16, 124.22, 130.37, 157.65, 188.45 (COCH₃). Масс-спектр, *m*/*z* (*I*_{отн}, %): 188 [M]⁺ (100), 173 (34.78), 145 (17.32), 131 (3.08), 118 (14.50), 104 (6.89), 90 (9.57), 69 (5.41). Найдено, %: С 70.63; Н 5.90; N 14.31. C₁₁H₁₂N₂O. Вычислено, %: С 70.21; H 5.38; N 14.89.

6-Ацетил-1-фенилпирроло[**1**,**2**-*a*]пиразин (**4**). Выход по методу А – 5%, по методу Б – 45%, т. пл. 81–82 °С. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.62 (3H, с, COC<u>H</u>₃); 6.97 (1H, д. д, $J_{8,7} = 4.79$, $J_{8,4} = 0.74$, H-8); 7.52–7.54 (4H, м, H-3, *m*-, *p*-C₆H₅); 7.90–7.93 (1H, м, H-*o*-C₆H₅); 8.01 (1H, д, $J_{7,8} = 4.79$, H-7); 9.57 (1H, д. д, $J_{4,3} = 4.91$, $J_{4,8} = 0.74$, H-4). Масс-спектр, m/z ($I_{0тH}$, %): 236 [M]⁺ (100), 221 (75.26), 193 (30.90), 168 (34.27), 152 (3.65), 140 (15.99), 115 (8.93), 103 (7.61), 89 (4.53), 76 (7.26). Найдено, %: С 76.35; H 4.91; N 12.03. C₁₅H₁₂N₂O. Вычислено, %: С 76.27; H 5.08; N 11.86.

6-Ацетил-1-пропилпирроло[1,2-*a***]пиразин (5)**. Выход по методу А – 7% (по данным ЯМР ¹Н). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.01 (3H, т, *J* = 7.43, CH₂CH₂CH₃); 1.88 (2H, секст, *J* = 7.43, CH₂CH₂CH₃); 2.59 (3H, с, COCH₃); 3.01 (2H, т, *J* = 7.43, CH₂CH₂CH₃); 6.80 (1H, д, *J*₈₇=4.66, H-8); 7.48 (1H, д, *J*₇₈=4.66, H-7); 7.82 (1H, д, *J*₃₄=4.88, H-3); 9.41 (1H, д, *J*₄₃=4.88, H-4).

6,8-Диацетил-1-пропилпирроло[1,2-*а*]пиразин (6). Выход по методу А – 3% (по данным ЯМР ¹Н). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 0.99 (3H, т, *J* = 7.50, CH₂CH₂CH₂CH₃); 1.73 (2H, секст, *J* = 7.50, CH₂CH₂CH₃); 2.65 (3H, с, 6-COCH₃); 2.69 (3H, с, 8-COCH₃); 3.39 (2H, т, *J* = 7.50, CH₂CH₂CH₃); 7.90 (1H, с, H-7); 8.06 (1H, д, *J*_{3,4} = 4.46, H-3); 9.62 (1H, д, *J*_{4,3} = 4.46, H-4).

6-Ацетил-1-изопропилпирроло[**1**,**2**-*a*]пиразин (7). Выход по методу Б – 51%, т. пл. 61–62 °С. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.40 (6Н, д, *J* = 6.87, CH(C<u>H</u>₃)₂); 2.59 (3H, с, COCH₃); 3.94 (1H, септ, *J* = 6.87, C<u>H</u>(CH₃)₂); 6.82 (1H, д, $J_{8,7}$ = 4.37, H-8); 7.48 (1H, д, $J_{7,8}$ = 4.37, H-7); 7.86 (1H, д, $J_{3,4}$ = 4.75, H-3); 9.42 (1H, д, $J_{4,3}$ = 4.75, H-4). Масс-спектр, *m*/*z* ($I_{\text{отн}}$, %): 202 [M]⁺ (100), 187 (61.05), 174 (86.62), 159 (21.08), 144 (45.93), 131 (17.70), 117 (29.54), 104 (14.97), 89 (21.58), 77 (16.47), 64 (26.97).

Найдено, %: С 71.22; Н 7.31; N 13.98. С₁₂Н₁₄N₂O. Вычислено, %: С 71.29; Н 6.93;

N 13.86.

6-Ацетил-1-бензилпирроло[1,2-*а***]пиразин (8)**. Выход по методу Б – 33%, т. пл. 98–99 °С. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.59 (3H, с, СОСН₃); 4.40 (2H, с, CH₂Ph); 6.77 (1H, д, *J*_{8,7} = 4.80, H-8); 7.21–7.39 (5H, м, H-C₆H₅); 7.46 (1H, д, *J*_{7,8} = 4.80, H-7); 7.87 (1H, д, *J*_{3,4} = 4.50, H-3); 9.47 (1H, д, *J*_{4,3} = 4.50, H-4). Масс-спектр, *m/z* (*I*_{0тн}, %): 250 [M]⁺ (53.75), 249 (100), 235 (4.00), 219 (2.50), 206 (88.39), 178 (13.11), 151 (13.01), 133 (3.20), 118 (3.30), 104 (6.81), 91 (11.81), 78 (15.32). Найдено, %: С 77.22; Н 5.69; N 10.98. С₁₆H₁₄N₂O. Вычислено, %: С 76.80; Н 5.60; N 11.20.

6-Ацетил-1-(2-тиенил)пирроло[1,2-*а***]пиразин (9)**. Выход по методу Б – 51%, т. пл. 112–114 °С. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 2.63 (3H, с, СОСН₃); 7.19 (1H, д. д, $J_{8,7}$ = 4.72, $J_{8,4}$ = 0.72, H-8); 7.23 (1H, д. д, $J_{\beta',\alpha'}$ = 5.05, $J_{\beta',\beta}$ = 3.76, H-β'-Th); 7.56 (1H, д. д, $J_{\alpha',\beta'}$ = 5.05, $J_{\alpha',\beta}$ = 1.05, H- α' -Th); 7.57 (1H, д, $J_{7,8}$ = 4.72, H-7); 7.88 (1H, д. д, $J_{\beta,\beta'}$ = 3.76, $J_{\beta,\alpha'}$ = 1.05, H- β -Th); 7.93 (1H, д, $J_{3,4}$ = 4.77, H-3); 9.54 (1H, д. д, $J_{4,3}$ = 4.77, $J_{4,8}$ = 0.72, H-4). Масс-спектр, *m/z* (I_{0TH} , %): 242 [M]⁺ (91.66), 227 (100), 199 (68.75), 172 (24.31), 155 (31.94), 145 (18.06), 128 (21.53), 101 (14.58), 77 (11.81). Найдено, %: С 64.86; H 4.29; N 11.12. С₁₃H₁₀N₂OS. Вычислено, %: С 64.46; H 4.13; N 11.57.

6-Бензоил-1-этилпирроло[1,2-*а***]пиразин (10)**. Выход по методу Б – 8%, т. пл. 137–140 °С. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.45 (3H, т, *J* = 7.55, CH₂CH₃); 3.13 (2H, к, *J* = 7.55, CH₂CH₃); 6.84 (1H, д, *J*_{8,7} = 4.60, H-8); 7.37 (1H, д, *J*_{7,8} = 4.60, H-7); 7.52 (2H, м, H-*m*-C₆H₅); 7.59 (2H, м, H-*p*-C₆H₅); 7.84 (1H, д. д, *J*_{o,m} = 8.41, *J*_{o,p} = 1.36, H-o-C₆H₅); 7.92 (1H, д, *J*_{3,4} = 4.69, H-3); 9.51 (1H, д, *J*_{4,3} = 4.69, H-4). Масс-спектр, *m/z* (*I*_{0тн}, %): 250 [M]⁺ (84.58), 249 (100), 222 (8.51), 173 (19.42), 145 (21.02), 117 (26.13), 105 (29.13), 85 (9.81), 77 (38.94). Найдено, %: С 77.02; H 5.55; N 11.34. C₁₆H₁₄N₂O. Вычислено, %: С 76.80; H 5.55; N 11.34.

(2*E*)-1-(1-Этилпирроло[1,2-*а*]пиразин-6-ил)-3-фенил-2-пропен-1-он (11). Выход по методу Б – 29%, т. пл. 131–133 °С. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.43 (3H, т, *J* = 7.55, CH₂CH₃); 3.10 (2H, к, *J* = 7.55, CH₂CH₃); 6.87 (1H, д, *J*_{8,7} = 4.70, H-8); 7.41–7.43 (3H, м, H-*m*,*p*-C₆H₅); 7.50 (1H, д, *J* = 15.46, CH=CHC₆H₅); 7.65–7.67 (3H, м, H-*o*-C₆H₅ и H-7); 7.86 (1H, д, *J* = 15.46, CH=CHC₆H₅); 7.89 (1H, д, *J*_{3,4} = 4.70, H-3); 9.61 (1H, д, *J*_{4,3} = 4.70, H-4). Масс-спектр, *m/z* (*I*_{0TH}, %): 276 [M]⁺ (100), 248 (24.52), 173 (4.80), 146 (27.33), 131 (16.72), 117 (11.91), 102 (21.62), 77 (24.62). Най-дено, %: С 78.09; Н 5.69; N 10.27. C₁₈H₁₆N₂O. Вычислено, %: С 78.26; Н 5.80; N 10.14.

(1-Этилпирроло[1,2-*а*]пиразин-6-ил)(2-тиенил)кетон (12). Выход по методу Б – 8%, т. пл. 230–232 °С (с разл.). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.66 (3H, т, *J* = = 7.67, CH₂C<u>H</u>₃); 3.56 (2H, к, *J* = 7.67, C<u>H</u>₂CH₃); 7.30 (1H, м, H-β'-Th); 7.51 (1H, д, *J*_{8,7} = 4.21, H-8); 7.81 (1H, д, *J*_{3,4} = 4.38, H-3); 7.86 (1H, д, *J*_{7,8} = 4.21, H-7); 7.92 (1H, д, *J*_{β,β'} = 3.13, H-β-Th); 7.94 (1H, д, *J*_{α',β'} = 4.69, H-α'-Th); 9.57 (1H, д, *J*_{4,3} = 4.38, H-4). Масс-спектр, *m*/*z* (*I*_{отн}, %): 256 [M]⁺ (100), 228 (19.52), 199 (5.71), 173 (17.92), 145 (54.55), 128 (11.31), 118 (13.11), 111 (72.17), 90 (10.71), 77 (8.51), 65 (12.02). Най- дено, %: С 65.10; H 4.82; N 10.77. C₁₄H₁₂N₂OS. Вычислено, %: С 65.63; H 4.69; N 10.94.

8-Ацетил-1-метилпирроло[1,2-*а***]пиразин (13)**. Выход по методу Б – 7% (по данным ЯМР ¹Н). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.63 (3H, с, COCH₃); 3.04 (3H, с, 1-CH₃); 7.25 (1H, д, *J*_{6,7} = 2.83, H-6); 7.36 (1H, д, *J*_{7,6} = 2.83, H-7); 7.69 (1H, д, *J*_{3,4} = = 4.52, H-3); 7.77 (1H, д, *J*_{4,3} = 4.52, H-4).

2,7-Диацетил-1-[(6-ацетилпирроло[1,2-*а***]пиразин-1-ил)метил]-1-метил-1,2дигидропирроло[1,2-***а***]пиразин (14). Выход по методу Б – 8%, т. пл. 215–216 °С (с разл., из этанола). Спектр ЯМР ¹Н (ацетон-d₆), \delta, м. д. (***J***, Гц): 2.29 (3H, с, 1-CH₃); 2.36 (3H, с, NCOCH₃); 2.63 (3H, с, 6'-COCH₃); 2.93 (3H, с, 7-COCH₃); 3.60 (1H, д,** *J***_{9,10} = 13.20, H-9(10)); 4.32 (1H, д,** *J***_{9,10} = 13.20, H-9(10)); 6.13 (1H, д. д,** *J***_{4,3} = 6.58,** *J***_{4,8} = 0.82, H-4); 6.33 (1H, д,** *J***_{3,4} = 6.58, H-3); 6.64 (1H, д. д,** *J***_{8,7} = 4.69,** *J***_{8',4'} = 0.78, H-8'); 6.70 (1H, д. д,** *J***_{8,6} = 1.76,** *J***_{8,4} = 0.82, H-8); 7.26 (1H, д,** *J***_{6,8} = 1.76, H-6); 7.68 (1H, д,** *J***_{7,8'} = 4.69, H-7'); 7.83 (1H, д,** *J***_{3',4'} = 4.89, H-3'); 9.47 (1H, д. д,** *J***_{4',3'} = 4.89,** *J***_{4',8'} = 0.78,** H-4'). Спектр ЯМР ¹³С (ДМСО-d₆), δ, м. д. (*J*, Гц): 25.12 (СН₃); 27.29 (СН₃); 27.54 (СН₃); 27.88 (СН₃); 44.22 (СН₂); 60.99 (С₁); 104.05, 105.71, 106.80, 116.96, 118.09, 122.16, 123.39, 123.74, 125.95, 130.74, 132.06, 132.11, 152.77 (1С, д. т. *J*_{CH} = 4.13, *J*_{CH} = 10.98, С_(1')); 170.73 (NCOCH₃); 188.83 (COCH₃-7); 192.29 (COCH₃-6'). Массспектр, *m*/*z* (*I*_{0тн}, %): 390 [M]⁺ (32.61), 375 (4.35), 347 (10.87), 333 (8.69), 305 (4.31), 289 (8.72), 263 (2.71), 175 (100), 146 (4.29), 132 (11.00), 104 (6.52). Найдено, %: С 67.77; H 5.75; N 14.48. C₂₂H₂₂N₄O₃. Вычислено, %: С 67.69; H 5.64; N 14.36.

8-Ацетил-1,6-диметилпирроло[1,2-а]пиразин (15). Выход по методу Б – 47 %, т. пл. 104–105 °С. Спектр ЯМР ¹Н (CDCl₃), δ, м. д. (*J*, Гц): 2.49 (3H, с, 6-CH₃); 2.61 (3H, с, COCH₃); 2.98 (3H, с, 1-CH₃); 7.04 (1H, с, H-7); 7.56 (1H, д, *J*_{3,4} = 4.60, H-3); 7.75 (1H, д, *J*_{4,3} = 4.60, H-4). Спектр ЯМР ¹Н (ацетон-d₆), δ, м. д. (*J*, Гц): 2.53 (3H, с, 6-CH₃); 2.56 (3H, с, COCH₃); 2.86 (3H, с, 1-CH₃); 7.22 (1H, с, H-7); 7.71 (1H, д, *J*_{3,4} = 4.70, H-3); 7.90 (1H, д, *J*_{4,3} = 4.70, H-4). Масс-спектр, *m/z* (*I*_{отн}, %): 188 [M]⁺ (75.87), 173 (100), 143 (5.91), 117 (4.50), 104 (17.12), 91 (6.11), 77 (15.92). Найдено, %: С 70.06; Н 6.26; N 14.84. С₁₁H₁₂N₂O. Вычислено, %: С 70.21; Н 6.38; N 14.89.

2-Ацетил-1-[(8-ацетил-6-метилпирроло[1,2-а]пиразин-1-ил)метил]-1,6-диметил-1,2-дигидропирроло[1,2-а]пиразин (16). Выход по методу Б – 6%. Спектр ЯМР ¹H (CDCl₃), δ, м. д. (*J*, Гц): 2.11 (3H, с, 1-CH₃); 2.29 (3H, с, NCOCH₃); 2.35 (3H, с, 6'-CH₃); 2.36 (3H, с, 6-CH₃); 2.41 (3H, с, 8'-COCH₃); 3.25 (1H, д, $J_{9,10} = 12.91$, H-9(10)); 3.90 (1H, д, $J_{10,9} = 12.91$, H-10(9)); 5.76 (1H, д, $J_{4,3} = 5.76$, H-4); 5.80 (1H, д, $J_{3,4} = 5.76$, H-3); 6.35 (1H, с, H-7'); 6.40 (1H, д, $J_{8,7} = 3.91$, H-8); 6.50 (1H, д, $J_{7,8} = 3.91$, H-7); 7.30 (1H, д, $J_{3',4'} = 4.89$, H-3'); 7.43 (1H, д, $J_{4',3'} = 4.89$, H-4'). Спектр ЯМР ¹³С (CD₃OD), δ, м. д. (*J*, Гц): 9.04 (CH₃); 9.65 (CH₃); 23.44 (CH₃); 25.68 (CH₃); 27.17 (CH₃); 44.65 (CH₂); 61.34 (C₍₁₎); 102.96, 103.07, 108.35, 113.95, 114.02, 115.98, 120.91, 123.55, 124.89, 128.24, 129.17, 131.06, 151.57 (1C, д. т, $J_{cH} = 5.86, J_{cH} = 9.51$, C-1'); 171.57 (N<u>C</u>OCH₃); 196.12 (<u>C</u>OCH₃-8'). Macc-спектр, *m/z* ($I_{0 \text{TH}}$, %): 376 [M]⁺

(3.20), 245 (1.70), 231 (47.05), 189 (100), 173 (18.32), 159 (3.10), 145 (53.45), 131 (2.50), 104 (5.91), 91 (11.11). Найдено, %: С 71.69; Н 6.43; N 15.03. С₂₂H₂₄N₄O₂. Вычислено, %: С 71.21; Н 6.38; N 14.89.

1-Метил-6-пропионилпирроло[**1**,**2**-*а*]пиразин (17). Выход по методу Б – 43%, т. пл. 119–120 °С (с разл.). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.29 (3H, т, *J* = 7.43, COCH₂CH₃); 2.77 (3H, с, CH₃-1); 2.99 (2H, к, *J* = 7.43, COCH₂CH₃); 6.80 (1H, д. д, *J*_{8,7} = 4.63, *J*_{8,4} = 0.69, H-8); 7.52 (1H, д, *J*_{7,8} = 4.63, H-7); 7.80 (1H, д, *J*_{3,4} = 4.89, H-3); 9.46 (1H, д, *J*_{4,3} = 4.89, H-4). Спектр ЯМР ¹³С, δ , м. д. (*J*, Гц): 8.88 (COCH₂CH₃); 21.78 (1-CH₃); 32.87 (COCH₂CH₃); 103.78, 118.56, 121.38, 123.97, 130.16, 131.45, 153.14, 192.15 (<u>COCH₂CH₃</u>). Масс-спектр, *m/z* (*I*_{отн}, %): 188 [M]⁺ (58.56), 173 (25.73), 159 (100), 145 (14.01), 131 (35.04), 117 (9.21), 104 (36.24), 91 (10.51), 77 (36.54), 63 (20.22). Найдено, %: С 69.94; H 6.47; N 14.76. С₁₁H₁₂N₂O. Вычислено, %: С 70.21; H 6.38; N 14.89.

8-Ацетил-6-метил-1-этилпирроло[1,2-*а*]пиразин (18). Выход по методу Б – 47%, т. пл. 104–105 °С. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.31 (3H, т, *J* = 7.43, CH₂CH₃); 2.48 (3H, с, 6-CH₃); 2.62 (3H, с, COCH₃); 3.44 (2H, к, *J* = 7.43, CH₂CH₃); 7.06 (1H, с, H-7); 7.56 (1H, д, $J_{3,4}$ = 4.70, H-3); 7.81 (1H, д, $J_{4,3}$ = 4.70, H-4). Спектр ЯМР ¹³С, δ, м. д. (*J*, Гц): 11.28 (CH₂CH₃); 13.26 (6-CH₃); 29.81 (CH₂CH₃); 30.93 (COCH₃); 113.22, 117.53, 117.94, 122.36, 129.24, 160.06, 193.34 (COCH₃). Массспектр, *m/z* ($I_{0тн}$, %): 202 [M]⁺ (100), 186 (14.41), 174 (24.43), 160 (28.53), 145 (8.71), 132 (6.41), 116 (3.80), 102 (5.01), 86 (4.80). Найдено, %: C 71.11; H 7.27; N 14.05. C₁₂H₁₄N₂O. Вычислено, %: C 71.29; H 6.93; N 13.86.

Рентгеноструктурное исследованение. Монокристалл соединения 14 выращен из CH₂Cl₂. Дифракционная картина получена при 293 К на приборе Enraf Nonius *CAD4* (Мо $K\alpha$ -излучение, интервал θ для сбора данных от 1.91 до 25.47°). Структура расшифрована прямым методом и уточнена полноматричным МНК в анизотропном приближении. Расчеты выполнены с помощью

программы

SHELX97 [2]. Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных (депонент № CCDC 644154). Межатомные расстояния и валентные углы представлены в табл. 2, 3.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. И. Теренин, Е. В. Кабанова, Н. А. Целищева, М. А. Ковалкина, А. П. Плешкова, *XI*C, 431 (2004). [*Chem. Heterocycl. Comp.*, **40**, 351 (2004)].
- 2. G. M. Sheldrick, SHELX97. PC Version. A System of Computer Programs for the Crystal Structure Solution and Refinement. Rev. 2 (1998).

Московский государственный университет им. М. В. Ломоносова, Москва 119992, Россия e-mail: vter@org.chem.msu.ru Поступило 16.04.2007