В. М. Кисиль, Л. М. Потиха, А. В. Туров, В. А. Ковтуненко

конденсированные изохинолины

28.* СИНТЕЗ И СВОЙСТВА 10а,15b-ДИАЗАДИБЕНЗО[*a,e*]ПЛЕЯДЕН-11-ОНОВ

Взаимодействие 7,12-дигидро-5Н-изохино[2,3-*a*]хиназолин-5-онов с *о*-ксилилендибромидом приводит к бромидам 11-оксо-4bH,5H,10H,11H,16H-10a-аза-15bазониадибензо[*a*,*e*]плеяденов, которые при окислении нитробензолом превращаются в соли 11-оксо-10H,11H,16H-10a-аза-15b-азониадибензо[*a*,*e*]плеяденов. Взаимодействие этих солей с бензиламином приводит к 6-{2-[(бензилимино)метил]фенил}-7,12-дигидроизохино[3,2-*b*][2]бензазепин-14(6H)-онам, которые при действии хлорной кислоты рециклизуются в перхлораты 11-оксо-5H,10H,11H-10aаза-15b-азониадибензо[*a*,*e*]плеядена. Изучены реакции полученных солей 10a,15b-ди-азадибензо[*a*,*e*]плеяденов с NaBH₄ и спектральными методами установлено строе-ние продуктов восстановления.

Ключевые слова: 10а,15b-диазадибензо[*a*,*e*]плеяден, изохино[2,3-*a*]хиназолин, хиназолино[3,2-*b*][2]бензазепин, борогидридное восстановление, окисление.

Ранее [2] мы сообщали, что взаимодействие 7,12-дигидро-5Н-изохино-[2,3-а]хиназолин-5-она (1а) с о-ксилилендибромидом приводит к производному новой гетероциклической системы 10a,15b-диазадибензо[a,e]плеядена. Эта система представляет собой уникальное сочетание трех конденсированных гетероциклов, изохинолина, хиназолина и бензазепина, каждый из которых, учитывая огромное количество данных по биологической активности их производных (см., например, недавно опубликованные работы [3-5]), может быть отнесен к привилегированным структурам в медицинско-химическом понимании этого термина [6]. Кроме того, имеются также многочисленные свидетельства о нахождении в природе и биологической активности поликонденсированных систем, содержащих в своей структуре элементы указанных гетероциклов (см., например, [7–10]). Эти данные обусловили наш интерес к синтезу новых производных диазадибензоплеяденовой системы на основе замещенных 7,12-дигидро-5Н-изохино[2,3-а]хиназолин-5-онов, а также к детальному изучению химических превращений в их ряду, что и составило предмет настоящей работы.

Нами найдено, что подобно **1a** [2] Аг-замещенные изохинохиназолины в реакции с *о*-ксилилендибромидом могут давать различные типы продуктов в зависимости от условий ее проведения. Так, в присутствии сильных оснований, алкилирование **1b**–**d** приводит с высокими выходами к спиро-[5H-изохино[2,3-*a*]хиназолин-7(12H)-2'-индан]-5-онам **2b**–**d**.

^{*} Сообщение 27 см. [1].

a $R^1 = R^2 = H$; **b** $R^1 = Cl$, $R^2 = H$; **c** $R^1 = H$, $R^2 = Me$; **d** $R^1 = H$, $R^2 = Br$

Проведение реакции сплавлением смеси эквивалентных количеств исходных соединений при температуре 110-120 °С приводит к бромидам 11-оксо-5,10,11,16-тетрагидро-4bH-10а-аза-15b-азониадибензо[*a*,*e*]плеяденов **3b-d** (табл. 1). При этом целевые продукты реакции **3** были получены с хорошими выходами, а образование побочных продуктов было минимальным. Некоторое отличие составило лишь время, необходимое для полной конверсии стартового материала: по данным TCX, для 1c $(R^2 = Me)$ полная конверсия достигалась за 3.5 ч, тогда как для 1b ($R^1 = Cl$) реакция протекала за 1 ч. При действии Еt₃N на соли 3b-d происходит С_(4b)-депротонирование с образованием 5,10-дигидро-11,16-тетрагидро-10а,15b-диазадибензо[*a*,*e*]плеяден-11-онов **4b**-**d**. Обратимость этого превращения подтверждена ранее [2] на примере Аг-незамещенного диазадибензоплеядена 4а. Спектральные характеристики (данные спектров ИК, ЯМР ¹Н растворов солей **3b-d** в CF_3CO_2D , оснований **4b-d** в $CDCl_3$ (см. табл. 2) и спиросоединений 2b-d в CDCl₃) в целом хорошо согласуются с таковыми для Аг-незамещенных 2а, 3а и 4а [2].

Ранее [11] нами было показано, что перхлорат 6-метил-5-оксо-5,6,7,12тетрагидроизохино[2,3-*a*]хиназолин-13-ия (**5**) легко окисляется нитробензолом в перхлорат 6-метил-5(6H)-оксоизохино[2,3-*a*]хиназолин-13-ия (**6**), который при действии первичных аминов претерпевает обратимое расщепление связи $C_{(12)}$ – $N_{(13)}$. В частности, его реакция с бензиламином приводит к 3-метил-2-{2-[(бензилимино)метил]бензил}-4(3H)-хиназолинону (7).

Соеди- нение	Брутто- формула	<u>Найдено, %</u> Вычислено, %				Т. пл., °С*	Вы- ход,
		С	Н	Hal	Ν		%
2b	C ₂₄ H ₁₇ ClN ₂ O	<u>74.85</u> 74.90	$\frac{4.40}{4.45}$	<u>9.22</u> 9.21	<u>7.29</u> 7.28	297–299	74
2c	$C_{25}H_{20}N_2O$	<u>82.30</u> 82.39	<u>5.47</u> 5.53		<u>7.70</u> 7.69	292–294	61
2d	$C_{24}H_{17}BrN_2O$	<u>67.09</u> 67.14	<u>3.90</u> 3.99	<u>18.61</u> 18.61	<u>6.54</u> 6.53	276–278	69
3b	C ₂₄ H ₁₈ BrClN ₂ O	<u>61.81</u> 61.89	<u>3.86</u> 3.90	<u>17.17</u> 17.16 <u>7.62**</u> 7.61	<u>6.01</u> 6.01	255–258	73
3c	$C_{25}H_{21}BrN_2O$	<u>67.37</u> 67.42	$\frac{4.70}{4.75}$	<u>17.95</u> 17.94	<u>6.30</u> 6.29	241–243	64
3d	$C_{24}H_{18}Br_2N_2O$	<u>56.46</u> 56.50	<u>3.47</u> 3.56	<u>31.31</u> 31.32	<u>5.51</u> 5.49	253–255	70
4b	$C_{24}H_{17}CIN_2O$	<u>74.87</u> 74.90	<u>4.39</u> 4.45	<u>9.22</u> 9.21	<u>7.29</u> 7.28	184–186	75
4c	$C_{25}H_{20}N_2O$	<u>82.39</u> 82.39	<u>5.53</u> 5.53	-	<u>7.69</u> 7.69	128–130	69
4d	$C_{24}H_{17}BrN_2O$	<u>67.05</u> 67.14	<u>3.89</u> 3.99	<u>18.60</u> 18.61	<u>6.55</u> 6.53	131–133	71
8a	$C_{24}H_{17}ClN_2O_5$	<u>64.14</u> 64.22	<u>3.78</u> 3.82	<u>7.91</u> 7.90	<u>6.25</u> 6.24	306–309	69
8b	$C_{24}H_{16}Cl_2N_2O_5$	<u>59.60</u> 59.64	<u>3.28</u> 3.34	<u>14.69</u> 14.67	<u>5.82</u> 5.80	>320 (разл.)	67
8c	C ₂₅ H ₁₉ ClN ₂ O ₅	<u>64.80</u> 64.87	<u>4.06</u> 4.14	<u>7.68</u> 7.66	<u>6.04</u> 6.05	228–230	65
9a	$C_{24}H_{18}N_2O$	<u>82.16</u> 82.26	<u>5.09</u> 5.18	_	<u>8.00</u> 7.99	218–220	73
9b	C ₂₄ H ₁₇ ClN ₂ O	<u>74.84</u> 74.90	<u>4.37</u> 4.45	<u>9.22</u> 9.21	<u>7.30</u> 7.28	222–224	70
9c	$C_{25}H_{20}N_2O$	<u>82.28</u> 82.39	<u>5.46</u> 5.53	_	<u>7.71</u> 7.69	213-215	65
10a	C ₃₁ H ₂₅ N ₃ O	<u>81.68</u> 81.73	<u>5.49</u> 5.53	_	<u>9.22</u> 9.22	246–249	40
10b	10b $C_{31}H_{24}ClN_{3}O$		<u>4.84</u> 4.94	<u>7.25</u> 7.24	<u>8.59</u> 8.58	154–156	31
12	C ₂₄ H ₁₇ ClN ₂ O ₅	<u>64.16</u> 64.22	<u>3.77</u> 3.82	<u>7.91</u> 7.90	<u>6.25</u> 6.24	276–278	87
13 C ₂₄ H ₂₀ N ₂ O		<u>81.69</u> 81.79	<u>5.64</u> 5.72	_	<u>7.94</u> 7.95	165–167	66** *

Физико-химические свойства полученных соединений

* Растворитель для перекристаллизации: ДМФА (соединения 2b-d, 4b-d, 9a-c), *i*-PrOH (соединения 10a,b), АсОН (соединения 3b-d, 8a-c, 12), *i*-PrOH–ДМФА, 1:2 (соединение 13). ** Данные анализа на Cl. *** Выход по методике А.

8–10 a $R^1 = R^2 = H$; **b** $R^1 = Cl$, $R^2 = H$; **8**, **9 c** $R^1 = H$, $R^2 = Me$

Логично было предположить, что аналогичные отношения будут наблюдаться также в ряду диазадибензоплеяденов **3а–d** ввиду их явного структурного подобия. Однако оказалось, что бензазепиновое ядро вносит существенные коррективы в реакционную способность изохинохиназолинового фрагмента. Так, окисление солей **3а–с**, осуществленное нагреванием их растворов в нитробензоле с последующей обработкой хлорной кислотой, приводит не к ожидаемой ароматизации изохинолинового цикла, а к дегидрированию связи $C_{(4b)}$ – $C_{(5)}$ с образованием перхлоратов 11-оксо-10,10a,11,16-тетрагидро-10а-аза-15b-азониадибензо[*a,e*]плеяденов **8а–с**. Как показал анализ пространственных моделей, молекулы солей **8** не плоские – азепиновый цикл находится в конформации *искаженной ванны*. Это приводит к асимметрии молекулы и, как следствие, к магнитной неэквивалентности протонов метиленовых групп $C_{(10)}H_2$ и $C_{(16)}H_2$, которые в спектрах ЯМР ¹Н наблюдаются в виде АВ-спиновых систем с ²J = 14 и ²J = 16 Гц соответственно (табл. 2).

Отнесение сигналов протонов метиленовых групп сделано на основании результатов экспериментов по ЯЭО (табл. 2 и рис. 1). Сигнал метинного протона при атоме $C_{(5)}$ находится в области поглощения ароматических протонов, что затрудняет его наблюдение.

Таблица 2

Co-	ИК	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)							
еди- не- ние	спектр, ν, см ⁻¹ (C=O, C=N)	Раство- ритель	HAr	2H,H-10	2H, H-16	2H, H-5	Другие сигналы		
1	2	3	4	5	6	7	8		
3b	1710, 1610	CF ₃ CO ₂ D	8.53 (1H, μ , ${}^{o}J$ = 8.0, H-12), 7.91 (1H, μ , ${}^{o}J$ = 8.0, H-13), 8.31 (1H, c, H-15), 7.61 (4H, M, H-1–H-4), 7.45 (1H, μ , ${}^{o}J$ = 8.0, H-9), 7.38 (1H, π , ${}^{o}J$ = 8.0, H-7), 7.31 (1H, π , ${}^{o}J$ = 8.0, H-8), 7.15 (1H, μ , ${}^{o}J$ = 8.0, H-6)	6.34 (д, ² <i>J</i> = 17.0, Н _В -10**)	6.05 $({\rm g}, {}^{2}J = 16.0, {\rm H}_{\rm B}$ -16**)	3.88 (α , α , $3J = 4.5$), 3.56 (α , α , 3J = 12.5), $^{2}J = 18.0$	6.02–5.65 (3Н, м, H _B -10, H _B -16, H-4b)		
3c	1708, 1620	CF ₃ CO ₂ D	8.43 (1H, c, H-12), 8.19 (1H, $_{,}a, {}^{o}J = 8.6$, H-15), 8.08 (1H, $_{,}a, {}^{o}J = 8.6$, H-14), 7.61 (4H, $_{,}m$, H-1–H-4), 7.47 (1H, $_{,}a, {}^{o}J = 8.0$, H-9), 7.38 (1H, $_{,}a, {}^{o}J = 8.0$, H-7), 7.31 (1H, $_{,}a, {}^{o}J = 8.0$, H-8), 7.15 (1H, $_{,}a, {}^{o}J = 8.0$, H-6)	6.41 ($_{\rm (I,})^2 J =$ 17.0,) H _B - 10**)	6.10 $(\mathfrak{A}, {}^{2}J = 16.0, H_{B}-16^{**})$	3.90 (μ . μ , ${}^{3}J$ = 4.5), 3.55 (μ . μ , ${}^{3}J$ = 12.5), ${}^{2}J$ = 18.0	6.01–5.63 (3H, м, H _B -10, H _B -16, H-4b), 2.66 (3H, с, CH ₃)		
3d	1715, 1620	CF ₃ CO ₂ D	8.73 (1H, д, ^{<i>m</i>} <i>J</i> = 2.0, H-12), 8.34 (1H, д. д, ^{<i>m</i>} <i>J</i> = 2.0, ^{<i>o</i>} <i>J</i> = 8.0, H-14), 8.13 (1H, д, ^{<i>o</i>} <i>J</i> = 8.0, H-15), 7.61 (8H, м, H-1–H-4, H-6–H-9)	6.38 (д, ² <i>J</i> = 17.0, Н _В -10**)	6.08 $(д, {}^{2}J = 16.0, H_{B}-16^{**})$	3.90 (μ . μ , ${}^{3}J$ = 4.5), 3.56 (μ . μ , ${}^{3}J$ = 12.5), ${}^{2}J$ = 18.0	6.00–5.65 (3Н, м, H _B -10, H _B -16, H-4b)		
4b	1650	CDCl ₃	7.88 (1H, \exists , ${}^{o}J$ = 8.0, H-12), 7.52 (1H, M, H-9), 7.38 (2H, M, H-7,8), 7.31–7.17 (5H, M, H-1–H-4,6), 7.00 (1H, \exists , ${}^{m}J$ = 2.0, H-15), 6.87 (1H, \exists . \exists , ${}^{m}J$ =2.0, ${}^{o}J$ = 8.0, H-13)	5.28 (c)	4.65 (c)	4.15 (c)	_		
4c	1652	CDCl ₃	7.80 (1H, c, H-12), 7.54 (1H, м, H-9), 7.35 (2H, м, H-7,8), 7.30–7.11 (5H, м, H-1–H-4,6), 6.95 (2H, д, ^o J = 8.0, H-14,15)	5.30 (c)	4.66 (c)	4.16 (c)	2.27 (3H, c, CH ₃)		
4d	1660	CDCl ₃	8.03 (1H, д, ^{<i>m</i>} J = 2.0, H-12), 7.70–7.17 (8H, м, H-1–H-4, H-6–H-9), 6.88 (2H, м, H-14,15)	5.29 (c)	4.65 (c)	4.15 (c)	_		

Спектральные характеристики производных 10а,15b-диазадибензо[а,e]плеяден-11-онов*

284

8a	1715, 1612	CF ₃ CO ₂ D	8.63 (1Н, д, ^{<i>o</i>} <i>J</i> = 8.0, Н-12), 8.24 (3Н, м, Н-13,14,15), 8.00–7.62 (9Н, м, Н-1–Н-9)	6.42, 4.73 (два д, ² J = 14.0)	6.19, 5.41 (два д, ² J = 16.0)	_***	_
		ДМСО-d ₆	8.42 (2H, д, ^{<i>o</i>} <i>J</i> = 8.0, H-12,15), 8.37 (1H, с, H-5), 8.23 (1H, т, ^{<i>o</i>} <i>J</i> = 8.0, H-14), 7.90 (3H, м, H-4,6,13), 7.78 (1H, д, ^{<i>o</i>} <i>J</i> = 8.0, H-1), 7.68 (5H, м, H-2–H-3, H-7–H-9)	6.08, 4.62 (два д, ² J = 14.0)	6.37, 5.20 (два д, ² J = 16.0)	_	_
			8.42 (30%, H-15), 7.78 (23%, H-1)	-	5.20 (41%, H _B)	-	-
			7.68 (30%, H-9)	4.62 (40%, H _B)	_		
8b	1720, 1605	CF ₃ CO ₂ D	8.55 (1H, д, ^{<i>o</i>} <i>J</i> = 8.0, H-12), 8.25 (2H, м, H-13,15), 7.90–7.62 (9H, м, H-1–H-9)	6.39, 4.70 (два д, ² J = 14.0)	6.07, 5.38 (два д, ² J = 16.0)	_***	_
8c	1710, 1615	CF ₃ CO ₂ D	8.42 (1H, с, H-12), 8.23–7.60 (11H, м, H-1 – H-9, H-14,15)	6.41, 4.73 (два д, ² J = 14.0)	6.15, 5.38 (два д, ² J = 16.0)	_***	2.65 (3H, c, CH ₃)
12	1680, 1615	ДМСО- d ₆	8.83 (1H, д, ^{<i>o</i>} <i>J</i> = 8.0, H-15), 8.74 (1H, д, ^{<i>o</i>} <i>J</i> = 8.0, H-4), 8.62 (1H, д, ^{<i>o</i>} <i>J</i> = 8.0, H-1), 8.46–7.88 (5H, м, H-3,9, H-12–H-14), 7.69–7.32 (4H, м, H-2, H-6–H-8)	5.62 (c)	10.95 (1H, c)	5.14 (c)	_
			8.83 (24%, H-15), 8.62 (18%, H-1);	-	-	_	_
			7.88 (30%, H-9)	_	_	5.14 (4%)	-
9a	1650	ДМСО-d ₆	8.74 (20%, H-4), 7.55 (16%, H-6) 7.96 (1H, д, ° <i>J</i> = 8.0, H-12), 7.58 (1H, д, ° <i>J</i> = 8.0, H-6), 7.52 (1H, м, H-4), 7.42 (3H, м, H-1,2,5), 7.32–7.21 (5H, м, H-3, H-7–H-9, H-14), 6.92 (1H, д, ° <i>J</i> = 8.0, H-15),	5.62 (4%) 5.10, 4.59 (два д, ² J = 15.5)	– 5.04, 4.55 (два д, ²J = 17.0)	_ _***	- 6.22 (1Н, д, ³ J = 2.0, Н-15с)
			6. /4 (1H, T, $J = 8.0, H-13$)	_	5.04 (32%, H _A)	_	_
			7.42 (22%, H-5)	4.59 (30%, H _B)	_		

Окончание таблицы 2

1	2	3	4	5	6	7	8
9b	1650	ДМСО-d ₆	7.98 (1H, д, ${}^{o}J$ = 8.0, H-12), 7.58 (1H, д, ${}^{o}J$ = 8.0, H-6), 7.53 (1H, м, H-4), 7.44 (2H, м, H-2,5), 7.40 (1H, м, H-1), 7.34–7.24 (5H, м, H-3, H-7–H-9, H-14), 7.05 (1H, д, ${}^{o}J$ = 2.0, H-15), 6.77 (1H, д. д, ${}^{M}J$ = 2.0, ${}^{o}J$ = 8.0, H-13)	5.08, 4.57 (два д, ² J = 15.5)	5.11, 4.55 (два д, ² J = 17.0)	_***	6.25 (1Н, д, ³ J = 2.0, H-15с)
9c	1648	ДМСО-d ₆	7.95 (1H, д, ^{<i>o</i>} <i>J</i> = 2.5, H-12), 7.51 (1H, м, H-6), 7.40 (4H, м, H-1,2,4,5), 7.27 (4H, м, H-7–H-9, H-3), 7.09 (1H, д, ^{<i>o</i>} <i>J</i> = 8.0, H-14), 6.81 (1H, д, ^{<i>o</i>} <i>J</i> = 8.0, H-15)	5.10, 4.58 (два д, ² J = 15.5)	4.98, 4.52 (два д, ² J = 17.0)	_***	$6.16 (1H, д, ^{3}J = 2.0, H-15c), 2.11 (3H, c, CH_{3})$
13	1650	C ₆ D ₆	8.46 (1H, д. д. ^m <i>J</i> = 1.2, ^o <i>J</i> = 8.0, H-12), 7.45 (1H, т. д, ^m <i>J</i> = 1.2, ^o <i>J</i> = 8.0, H-14), 7.36 (1H, д, ^o <i>J</i> = 8.0, H-9), 7.32–6.65 (8H, м, HAr), 6.44 (1H, д, ^o <i>J</i> = 8.5, H-15)	5.81, 3.76 (два д, ² <i>J</i> = 16.5)	4.27, 3.62 (два д, ² J = 15.1)	3.82 (д. д. ³ J = 10.0), 2.48 (д, ² J =17.1)	4.54 (1H, π , ³ J = 3.9, H-15c), 3.28 (1H, π . π , ³ J = 3.9, ³ J = 10.0, H-4b)
			6.85 (16%, H-6)	_	_	3.82 (26%, H _A)	
			_	_	_	-	4.54 (10%, H-15c)
			6.44 (12%, H-15)	-	3.62 (27%, H _B)	_	_
			-	3.76 (8%, H _B)	3.62 (4%, H _B)	_	3.28 (9%, H-4b)
			-	3.76 (28%, H _B)	_	_	_

* Результаты экспериментов по ЯЭО: {6.37}; {6.08} (8a); {10.95}; {5.62}; {5.14} (12); {6.92}; {6.22} (9a) получены в ДМСО-d₆; {2.48}; {3.28}; {4.27}; {4.54}; {5.81} (**13**) получены в С₆D₆. ** Наложение сигналов, см. колонку 8.

*** Наложение сигналов, см. колонку 4.

Рис. 1. Наблюдаемые ЯЭО для соединений 8а, 9а, 10а, 12, 13

Неожиданным оказалось поведение солей **8** в присутствии нуклеофилов. Характерное для 2-ениминов [12] 1,4-присоединение в данном случае не реализуется. Так, восстановление солей **8а**-с избытком NaBH₄ приводит к 10,11,15с,16-тетрагидро-10а,15b-диазадибензо[*a,e*]плеяден-11-онам **9а**-с, о чем свидетельствует однопротонный сигнал в области 6.19–6.29 м. д., наблюдающийся наряду с двумя AB-спиновыми системами протонов метиленовых групп бензиламинного типа при атомах $C_{(10)}$ и $C_{(16)}$ с $\Delta\delta \sim 0.5$ м. д. Сигнал протона H-5 в результате анизотропного влияния двух соседних бензольных ядер находится в области резонанса ароматических протонов, и его положение в спектре соединения **9b** (7.50 м. д.) установлено на основании 2D-спектров ЯМР ¹Н и экспериментов по ЯЭО (табл. 2, рис. 1).

Взаимодействие солей **8а,b** с бензиламином приводит к образованию соединений, в спектрах $\rm SMP$ ¹H которых в области поглощения алифатических протонов наблюдаются $\rm A_2$ -, AB- и ABX-спиновые системы семи алифатических протонов, а также слабопольный синглет в области 8.48 м. д. Наблюдаемая картина согласуется (с учетом спектрального поведения имина 7 [11]) со структурой полученных продуктов как 6-{2-[(бензилимино)метил]фенил}-7,12-дигидроизохино[3,2-*b*][2]бензазепин-14(6H)-онов **10а,b**. Это дополнительно подтверждается результатами экспериментов по ЯЭО для **10а** (см. экспериментальную часть и рис. 1) и изучения УФ спектров. Так, высокая степень подобия электронного спектра соединения **10а** со спектром 6,11-дигидро-13H-изохино[3,2-*b*]хиназолин-6-она [13] подтверждает наличие фрагмента 2,3-циклоалкилированного 4(3H)-хиназолона.

Образование иминов 10а, в можно представить через первоначальное депротонирование по атому С(16) под действием основания (бензиламина), что приводит к промежуточному продукту с бетаиновой структурой 11. Дальнейшее протонирование приводит к катиону 11-оксо-5,10,10а,11тетрагидро-10а-аза-15b-азониадибензо[*a*,*e*]плеядена (12) – структурному аналогу катиона 6. И, подобно последнему, присоединение первичного амина по атому С(16) сопровождается расщеплением связи N(15a)-С(16). Подобно имину 7 при обработке хлорной кислотой имин 10а превращается в перхлорат 11-оксо-10,11-дигидро-10а-аза-15b-азониадибензо-[a,e]плеядена (12), на образование которого мы рассчитывали при окислении соли За. Эта реакция обратима – при взаимодействии соли 12 с бензиламином был вновь получен имин 10a. В спектре ЯМР 1 Н соединения 12 наблюдаются сигналы, характерные для ароматической системы изохино-[2,3-а]хиназолина, отнесение которых подтверждено экспериментами по ЯЭО (табл. 2, рис. 1). А полное подобие УФ спектров солей 6 и 12, свидетельствующее об их изоэлектронности, окончательно подтверждает структуру соли 12. Нами также найдены доказательства предложенной схемы превращений 8→11→12→10: был проведен сравнительный анализ УФ спектров (в MeOH) соединений 8a, 12 и смеси 8a + Et₃N (рис. 2), причем оказалось, что кривая поглощения для смеси весьма близка по своей форме к кривым для соединений 6 и 12.

Рис. 2. УФ спектры соединений **6** (*1*), **8a** (*2*), **12** (*3*) и смеси соединения **8a** с Et₃N (*4*) в метаноле

Перхлорат **12** легко взаимодействует с NaBH₄ в метаноле, что приводит к 4b,5,10,10a,11,15b,15c,16-октагидро-10a,15b-диазадибензо[*a*,*e*]плеяден-11-ону (**13**).

Это же соединение было получено при восстановлении бромида **За** 10-кратным избытком NaBH₄ в спиртовоуксуснокислом растворе. Исполь-289 зование уксусной кислоты в последнем случае оказалось необходимым, поскольку свободное основание дибензоплеядена **4a**, легко образующееся в щелочной среде (при отсутствии уксусной кислоты), в указанных условиях оказалось инертным к дейсвию NaBH₄.

Реакция является стереоселективной, о чем свидетельствует единичный набор сигналов в спектре ЯМР сырого подукта реакции. Из двух теоретически возможных диастереомерных продуктов (с цис- или транс-расположением атомов водорода в фрагменте C_(4b)-C_(15c)) в данной реакции образуется только один – эритро-изомер. Это подтверждают данные спектра ЯМР ¹Н (бензол-d₆) соединения 13. Однопротонный дублет при 4.54 м. д. с J = 3.9 Гц, характерной для вицинального цис-взаимодействия протонов, отнесен нами к резонансу протона Н-15с. Окончательный вывод о цис-строении продукта восстановления был сделан по результатам серии экспериментов по ЯЭО (табл. 2, рис. 1), позволивших также однозначно установить пространственное строение соединения 13. С помощью модифицированного уравнения Карплуса, по значениям КССВ нами определены значения двугранных углов H-C_(15c)-C_(4b)-H, H-C_(15c)-C₍₅₎-H_B и H–C_(15c)–C₍₅₎–H_A, составившие 48, 87 и 153° соответственно. Как показал анализ молекулярной модели, найденным значениям ф отвечают конформация искривленное полукресло тетрагидроизохинолинового цикла (атом N_(15b) находится под плоскостью изохинохиназолинового фрагмента, а атом С(15с) - над ней) и конформация искривленная ванна для азепинового цикла (атомы $C_{(4b)}$ и $C_{(15c)}$ находятся над плоскостью, а атом $N_{(10a)}$ – под плоскостью остальных атомов бицикла).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры таблеток соединений в КВг зарегистрированы на приборе SP3-300 Руе Unicam. Спектры ЯМР ¹Н – на приборе Varian Mercury 400 (400 МГц), спектры ЯМР ¹³С и COSY НН для **9b** – на приборе Bruker-250 (63 и 250 МГц соответственно), внутренний стандарт ТМС, УФ спектры – на спектрофотометре Specord M400, в метаноле. Масс-спектры зарегистрированы на приборе Nermag R 10: методом FAB в растворе ДМСО (**9a**) и методом XИ (NH₃) в растворе MeCN (**9b**). Температуры плавления определены на нагревательном приборе типа Boetius.

Спиро[R-5H-изохино[2,3-*a*]хиназолин-7(12H)-2'-индан]-5-оны 2b-d получают по методике, приведенной в работе [3], из 0.5 ммоль соответствующего изохинохиназолина 1b-d, 0.1 г (1.1 ммоль) *i*-PrONa и 0.13 г (0.5 ммоль) *о*-ксилилендибромида.

Соединение 2b. ИК спектр, v, см⁻¹: 1635 уш. (С=О). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 8.33 (1H, д, °*J* = 8.0, H-4); 7.69 (1H, д, "*J* = 2.0, H-1); 7.46 (1H, д. д, "*J* = 2.0, °*J* = 8.0, H-3); 7.38–7.20 (8H, м, HAr); 5.31 (2H, с, H-12); 4.28 (2H, д, ²*J* = 16.0, H_A-1',3'); 3.33 (2H, д, ²*J* = 16.0, H_B-1',3').

Соединение 2с. ИК спектр, v, см⁻¹: 1635 уш. (С=О). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 8.19 (1H, c, H-4); 7.61 (2H, м, H-1,2); 7.40–7.20 (8H, м, HAr); 5.34 (2H, c, H-12); 4.29 (2H, д, ²*J* = 16.0, H_A-1',3'); 3.31 (2H, д, ²*J* = 16.0, H_B-1',3').

Соединение 2d. ИК спектр, v, см⁻¹: 1632 уш. (C=O). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 8.51 (1H, д, ^{*m*}*J* = 2.0, H-4); 7.88 (1H, д. д, ^{*m*}*J* = 2.0, ^{*o*}*J* = 8.0, H-2); 7.57 (1H, д, ^{*o*}*J* = 8.0, H-1); 7.40–7.20 (8H, м, HAr); 5.33 (2H, с, H-12); 4.28 (2H, д, ²*J* = 16.0, H_A-1',3'); 3.32 (2H, д, ²*J* = 16.0, H_B-1',3'). Бромиды 11-оксо-5,10,11,16-тетрагидро-4bH-10а-аза-15b-азониадибензо[*a*,*e*]плеяденов 3b-d получают по методике, приведенной в работе [3], из 0.5 ммоль соответствующего изохинохиназолина 1b-d и 0.13 г (0.5 ммоль) *о*-ксилилендибромида. Время нагревания: для 1b – 1 ч, для 1c – 3.5 ч, для 1d – 1.5 ч.

5,10,11,16-Тетрагидро-10а,15b-диазадибензо[*a,e*]плеяден-11-оны 4b-d получают по методике, приведенной в работе [3], с использованием Et₃N.

Перхлораты 11-оксо-10,10а,11,16-тетрагидро-10а-аза-15b-азониадибензо-[*a,e*]плеяденов 8а-с. Растворяют 5 ммоль соли 3а-с при нагревании в 3 мл нитробензола, добавляют 1 мл раствора хлорной кислоты и кипятят в течение 10 мин. После охлаждения добавляют 20 мл 2-пропанола, выпавший через 5 ч осадок желтого цвета отфильтровывают, промывают 2-пропанолом и перекристаллизовывают из AcOH.

10,11,15с,16-Тетрагидро-10а,15b-диазадибензо[*a,e*]плеяден-11-оны 9а-с. К суспензии 5 ммоль перхлората соответствующего дибензоплеядена 8а-с в 10 мл метанола прибавляют небольшими порциями 0.95 г (25 ммоль) NaBH₄. По окон-чании бурной реакции смесь кипятят 15 мин. Растворитель упаривают, остаток обрабатывают 15 мл 10% раствора NaOH. Твердое бесцветное вещество от-фильтровывают, промывают водой, спиртом и перекристаллизовывают из ДМФА.

Соединение 9а. Масс-спектр (FAB, MeCN), *m/z* (*I*_{отн}, %): 351 [M+1]⁺ (60), 232 [M-118]⁺ (100), 202 [M-148]⁺ (15).

Соединение 9b. Спектр ЯМР ¹³С (CDCl₃), δ, м.д.: 160.57 (С-11), 147.73 (С-15а), 138.67 (С-11а), 138.07 (С-9а), 133.65 (С-4а), 133.56 (С-5а), 133.25 (С-16а), 115.53 (С-4b), 133.19–112.95 (С-1–С-9, С-12–С-15), 74.85 (С-15с), 50.15 (С-10), 47.65 (С-16). Масс-спектр (ХИ, ДМСО), *m/z* (*I*_{отн}, %): 385 [M+(NH₃)₂H]⁺ (100), 235 [M–149]⁺ (24).

6-{2-[(Бензилимино)метил]фенил}-7,12-дигидрохиназолино[3,2-b][2]бензазепин-14(6Н)-оны 10а,b. Растворяют 5 ммоль перхлоратов дибензоплеяденов 8а,b, соответственно, при нагревании в 3 мл бензиламина. К охлажденному раствору прибавляют 3 мл воды и кипятят 5 мин. После охлаждения отделяют масло декантированием. Прибавляя небольшими порциями 4 мл этанола, затирают масло до образования бесцветного осадка. Осадок отфильтровывают, промывают спиртом.

Соединение 10а. ИК спектр, v, см⁻¹: 1665 (C=O), 1640 (C=N). УФ спектр (MeOH), λ_{max} , нм (ε•10⁻³): 253 (19.0), 280 (9.0, перегиб), 310 (6.0), 322 (5.0). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 8.48 (1H, с, CH=N); 8.13 (1H, д, °*J* = 8.0, H-1); 7.85–6.80 (16H, м, ArH); 6.28 (1H, д. д, ³*J* = 4.4, ³*J* = 11.2, H-6); 5.68 (1H, д, ²*J* = 15.0, H_A-12); 5.07 (1H, д, ²*J* = 15.0, H_B-12); 4.70 (1H, д, ²*J* = 13.5, CH_AH_BPh); 4.49 (1H, д, ²*J* = 13.5, CH_AH_BPh); 3.70–3.59 (2H, м, H-7). ЯЭО (CDCl₃), δ , м. д.: {4.49} → 8.48 (η = 17%, CH=N); {5.07} → 5.68 (η = 29%, H_A-12), 6.28 (η = 28%, H-6); {6.28} → 5.07 (η = 27%, H_B-12), 3.65 (η = 15%, H_A-7).

Соединение 10b. ИК спектр, v, см⁻¹: 1660 (С=О), 1630 (С=N). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 8.61 (1H, с, CH=N); 8.01 (1H, д, ${}^{o}J$ = 8.0, H-1); 7.78–6.93 (15H, м, HAr); 6.10 (1H, д. д, ${}^{3}J$ = 4.4, ${}^{3}J$ = 11.2, H-6); 5.70 (1H, д, ${}^{2}J$ = 15.0, H_A-12); 5.24 (1H, д, ${}^{2}J$ = 15.0, H_B-12); 4.83 (1H, д, ${}^{2}J$ = 13.5, CH_AH_BPh); 4.49 (1H, д, ${}^{2}J$ = 13.5, CH_AH_BPh); 3.70–3.55 (2H, м, H-7).

Перхлорат 11-оксо-5,10,10а,11-тетрагидро-10а-аза-15b-азониадибензо[*a*,*e*]плеядена (12). К раствору 0.91 г (2 ммоль) хиназолино[2]бензазепина 10а в 4 мл 2-пропанола прибавляют 1 мл хлорной кислоты. Выпавший через 1 ч желтый осадок отфильтровывают, промывают ацетоном и перекристаллизовывают из АсОН. УФ спектр (MeOH), λ_{max} , нм ($\varepsilon \cdot 10^{-3}$): 295 (15.5), 330 (13.0).

4b,5,10,10a,11,15b,15c,16-Октагидро-10a,15b-диазадибензо[a,e]плеяден-11-

он (13). А. К суспензии 0.87 г (2.5 ммоль) соли 12 в 5 мл метанола прибавляют небольшими порциями 0.11 г (3 ммоль) NaBH₄. По окончании бурной реакции смесь кипятят 30 мин. Растворитель упаривают, остаток обрабатывают 5 мл 10% раствора NaOH. Твердое бесцветное вещество отфильтровывают, промывают водой, спиртом и перекристаллизовывают из ДМФА.

Б. К суспензии 1.55 г (5 ммоль) соли плеядена **За** в смеси 2 мл уксусной кислоты и 25 мл метанола прибавляют небольшими порциями 0.95 г (25 ммоль) NaBH₄. По окончании бурной реакции смесь кипятят 15 мин. После охлаждения к раствору прибавляют еще 0.95 г (25 ммоль) NaBH₄ и по каплям раствор 1 мл уксусной кислоты в 5 мл метанола, смесь кипятят 1 ч. Растворитель упаривают при пониженном давлении, остаток обрабатывают 20 мл 10% раствора NaOH, твердое вещество отфильтровывают, промывают водой, спиртом.

СПИСОК ЛИТЕРАТУРЫ

- 1. Л. М. Потиха, Р. М. Гуцул, А. В. Туров, В. А. Ковтуненко, *XГС*, 272 (2008).
- 2. В. М. Кисиль, Л. М. Потиха, В. А. Ковтуненко, *XГС*, 643 (2000). [*Chem. Heterocycl. Comp.*, **36**, 560 (2000)].
- D. J. Milanowski, K. R. Gustafson, J. A. Kelley, J. B. McMahon, J. Nat. Prod., 67, 70 (2004).
- 4. M. A. Rashid, K. R. Gustafson, M. R. Boyd, J. Nat. Prod., 64, 1249 (2001).
- H. V. Wikstorm, M. M. Mensonides-Harsema, T. I. F. H. Cremers, E. K. Moltzen, J. Arnt, J. Med. Chem., 45, 3280 (2002).
- 6. D. A. Horton, G. T. Bourne, M. L. Smythe, Chem. Rev., 103, 893 (2003).
- 7. S. C. Sharma, U. Zutshi, K. L. Dhar, Indian J. Chem., 38B, 814 (1999).
- M. P. Jain, V. V. Gupta, K. K. Anand, C. K. Atal, C. V. S. Subramanyam, D. P. Jindal, *Indian Drugs*, 25, 467 (1988).
- 9. M. Jayaraman, B. M. Fox, M. Hollingshead, G. Kohlhagen, Y. Pommier, M. Cushman, J. Med. Chem., 45, 242 (2002).
- F. Varano, D. Catarzi, V. Colotta, G. Filacchioni, A. Galli, C. Costagli, V. Carla, J. Med. Chem., 45, 1035 (2002).
- 11. В. М. Кисиль, Л. М. Потиха, В. А. Ковтуненко, А. В. Туров, *XГС*, 522 (1995). [*Chem. Heterocycl. Comp.*, **31**, 457 (1995)].
- 12. А. Хайош, *Комплексные гидриды в органической химии*, Химия, Ленинградское отделение, 1971.
- 13. В. М. Кисель, Л. М. Потиха, В. А. Ковтуненко, *XГС*, 131 (2001). [*Chem. Heterocycl. Comp.*, **37**, 125 (2001)].

Киевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: potikha_l@mail.ru Поступило 27.03.2007