Посвящается выдающемуся ученому – академику А. А. Ахрему в связи с его 95-летием

Т. С. Хлебникова, В. Г. Исакова, Ф. А. Лахвич, П. В. Курман^а

РЕГИОСЕЛЕКТИВНЫЙ СИНТЕЗ ФТОРСОДЕРЖАЩИХ ИНДАЗОЛОНОВ НА ОСНОВЕ 2-АЦИЛЦИКЛОГЕКСАН-1,3-ДИОНОВ

Взаимодействием 2-ацилциклогексан-1,3-дионов и их енольных метиловых эфиров, полученных метилированием исходных β , β' -трикетонов диметилсульфатом в присутствиии прокаленного поташа, с гидрохлоридом 4-фторфенилгидразина и пентафторфенилгидразином с высоким выходом синтезированы новые региоизомерные индазолоны, содержащие атомы фтора в ароматическом кольце. Структура синтезированных соединений подтверждена данными ИК и ЯМР ¹H, ¹³C, ¹⁹F спектров.

Ключевые слова: 2-ацилциклогексан-1,3-дионы, фторсодержащие индазолоны, региоселективный синтез.

В настоящее время интенсивно развиваются методы синтеза разнообразных фторсодержащих полифункциональных гетероциклических структур как потенциальных лекарственных препаратов [1, 2]. Индазолы являются важным классом органических соединений, при этом многие из них обладают противовоспалительной, анальгетической, противовирусной и другой физиологической активностью [3, 4].

Целью настоящей работы является получение новых фторсодержащих индазолонов на основе разнообразных 2-ацилциклогексан-1,3-дионов.

Благодаря своей полифункциональности и в зависимости от структуры боковой ацильной цепи и циклической части молекулы 2-ацилциклоалкан-1,3-дионы находят широкое применение в синтезе стероидов, простагландинов, антибиотиков и других биологически активных веществ [5–8]. Химические превращения существующих в енольной форме 2-ацилциклогексан-1,3-дионов могут затрагивать такие реакционные центры, как экзо- и эндоциклические карбонильные группы, а также смежные с ними метиленовые группы [9].

С целью синтеза новых производных индазолонов, содержащих атом фтора в положении 4 бензольного кольца либо полностью фторированное бензольное кольцо, нами изучено взаимодействие 2-ацилциклогексан-1,3дионов **1а–е** и их метиловых эфиров с 4-фторфенилгидразином и пентафторфенилгидразином.

Взаимодействие 2-ацилциклогексан-1,3-дионов **1а**-е с небольшим избытком эквимолярной смеси гидрохлорида 4-фторфенилгидразина и гидроксида натрия в этиловом спирте в течение 8 ч при комнатной температуре приводило с высоким выходом к продуктам гетероцик-

лизации – индазолонам **3а**-е, причем промежуточные гидразоны **2а**-е не были выделены.

Однако при реакции трикетонов 1a,b с небольшим избытком пентафторфенилгидразина в этиловом спирте в течение 8 ч при комнатной температуре методом препаративной TCX были выделены как гидразоны 2f,g, так и индазолоны 3f,g с выходами 79, 61 и 21, 39% соответственно. Между тем в тех же условиях для соединений 1c-e были выделены только гетероциклические продукты 3h-j. Индазолоны 3f,g получены в качестве единственных продуктов реакции при кипячении соединений 1a,b в этаноле в течение 20 ч с небольшим избытком пентафторфенилгидразина.

1-6 а R = Me, b R = Et, c R = Ph, d R = 2-фурил, e R = cyclo-C₃H₅; 2, 3, 5, 6 f R = Me, g R = Et, h R = Ph, i R = 2-фурил, j R = cyclo-C₃H₅; 2-6 а-е X = 4-F; f-j X = F₅

Таким образом, конденсация 2-ацилциклогексан-1,3-дионов **1а-е** с фторсодержащими фенилгидразинами протекает по экзоциклической 394

карбонильной группе с последующей внутримолекулярной циклизацией промежуточных гидразонов 2a-j и образованием индазолонов 3a-j. Реакция проходила региоспецифично: всегда образовывался один региоизомер, как это было показано ранее для реакции 2-ацетилциклогексан-1,3-дионов с фенилгидразинами [10–13]. Следует отметить, что образование фторзамещенных индазолонов 3a-j требует значительно больше времени, чем в случае незамещенных производных.

С целью получения региоизомерных фторсодержащих индазолонов нами предпринят синтез соответствующих енольных метиловых эфиров 2-ацилциклогексан-1,3-дионов **4а**–е, поскольку известно, что реакция енолэфиров по циклической кетогруппе 2-ацилциклогексан-1,3-дионов с фенилгидразином протекает по схеме винилогового замещения [14].

Для синтеза метиловых эфиров 2-ацилциклогексан-1,3-дионов предложен ряд методов, среди которых алкилирование их серебряных солей иодистым метилом [15] или натриевых и тетрабутиламмониевых солей диметилсульфатом [16]. Однако применение этих методик в нашем случае оказалось неэффективным, поскольку по первому методу метиловые эфиры **4b**–**e** не были выделены совсем, по-видимому, из-за неустойчивости промежуточных серебряных солей, а по второму методу целевые метиловые эфиры **4a**–**e** были синтезированы с невысокими выходами. При этом оказалось, что енольные метиловые эфиры 2-ацилциклогексан-1,3-дионов **4a**–**e** представляют собой неустойчивые соединения и в процессе выделения и хранения легко гидролизуются до исходных трикетонов.

Нами показано, что наиболее оптимальным вариантом является проведение реакции алкилирования 2-ацилциклогексан-1,3-дионов **1а**–е диметилсульфатом в присутствии прокаленного поташа. При этом полученные енолэфиры из-за их нестабильности во избежание потерь использовались в реакции с фторсодержащими фенилгидразинами без выделения. Реакция осуществлялась взаимодействием енольных метиловых эфиров **4а–е** с гидрохлоридом 4-фторфенилгидразина или с пентафторфенилгидразином при перемешивании при комнатной температуре в этаноле в течение 5 ч. Как и ожидалось, взаимодействие эфиров **4а–е** с фенилгидразинами протекало по механизму винилогового замещения с образованием гидразонов **5а–j**, последующая внутримолекулярная циклизация которых приводила к индазолонам **6а–j**, региоизомерным индазолонам **3а–j**.

Структура синтезированных соединений **2f**,**g**, **3a**–**j** и **6a**–**j** подтверждена данными элементного анализа, ИК, масс- и ЯМР ¹H, ¹³C, ¹⁹F спектров (табл. 1, 2). Спектрально индазолоны **3f**,**g** и гидразоны **2f**,**g** легко различимы. В спектрах ЯМР ¹H последних присутствуют два дополнительных сигнала протонов групп NH при δ 6.33 и 6.60 (N–H, синглет) и при 14.63 и 14.67 м. д. (синглет протонов N–H, связанных сильной внутримолекулярной связью с C=O) соответственно. В ИК спектрах гидразонов **2f**,**g**

Таблица 1

Соеди-	ИК спектр, v, см ⁻¹	Спектр ЯМР, б, м. д. (Ј, Гц)				
нение		1H	¹³ C	¹⁹ F		
1	2	3	4	5		
3a	1665, 1525, 1490	1.11 (6H, c, 2CH ₃); 2.39 (2H, c, CH ₂); 2.54 (3H, c, CH ₃); 2.75 (2H, c, CH ₂); 7.19 (2H, м, H _{Ar}); 7.46 (2H, м, H _{Ar})	13.34, 28.40, 35.82, 37.04, 52.39, 116.32 (д, <i>J</i> = 23); 116.85, 125.65 (д, <i>J</i> = 9); 134.79, 149.01 (С–N); 149.85 (С=N); 161.91 (д, <i>J</i> = 249); 193.34 (С=О)	-113.24 (1F, м)		
3b	1670, 1520, 1500	1.11 (6H, c, 2CH ₃); 1.30 (3H, т, <i>J</i> = 7.5, CH ₃); 2.40 (2H, c, CH ₂); 2.75 (2H, c, CH ₂); 2.95 (2H, кв, <i>J</i> = 7.5, CH ₂); 7.19 (2H, м, H _{Ar}); 7.47 (2H, м, H _{Ar})	12.86, 21.28, 28.40, 35.76, 37.09, 52.48, 116.30 (α , $J = 23$); 116.40, 125.71 (α , $J = 9$); 134.86, 149.14 (C–N); 155.39 (C=N); 161.89 (α , $J = 249$); 193.06 (C=O)	-113.34 (1F, м)		
3c	1670, 1520, 1480	1.13 (6H, c, 2CH ₃); 2.48 (2H, c, CH ₂); 2.79 (2H, c, CH ₂); 7.22 (2H, м, H _{Ar}); 7.41 (3H, м, H _{Ar}); 7.53 (2H, м, H _{Ar}); 8.14 (2H, м, H _{Ar})	28.24, 35.33, 37.31, 53.14, 115.81, 116.38 (д, <i>J</i> = 23); 126.19 (д, <i>J</i> = 9); 128.09, 128.85, 129.01, 131.66, 134.71, 150.19 (С–N); 151.68 (С=N); 162.16 (д, <i>J</i> = 249); 192.16 (С=О)	-112.60 (1F, м)		
3d	1680, 1520, 1485	1.13 (6H, c, 2CH ₃); 2.48 (2H, c, CH ₂); 2.77 (2H, c, CH ₂); 6.54 (1H, м, H _{фуран}); 7.21 (2H, м, H _{Ar}); 7.53 (3H, м, 2H _{Ar} + 1H _{фуран}); 7.88 (1H, м, H _{фуран})	28.25, 35.32, 37.07, 52.85, 111.57, 114.00, 114.90, 116.40 (д, <i>J</i> = 23); 126.49 (д, <i>J</i> = 9); 134.51, 142.45 (С–N); 143.14, 146.55, 149.78 (С=N); 162.32 (д, <i>J</i> = 250); 191.61 (С=О)	-112.27 (1F, м)		
3e	1670, 1525, 1500	1.00 (2H, м, H _{циклопропан}); 1.05 (2H, м, H _{циклопропан}); 1.11 (6H, c, 2CH ₃); 2.41 (2H, c, CH ₂); 2.63 (1H, м, H _{циклопропан}); 2.71 (2H, c, CH ₂); 7.16 (2H, м, H _{Ar}); 7.42 (2H, м, H _{Ar})	8.32, 9.15, 28.42, 35.63, 37.16, 52.59, 116.28 (д, <i>J</i> = 23); 117.01, 125.75 (д, <i>J</i> = 9); 134.94, 148.89 (C–N); 155.84 (C=N); 161.93 (д, <i>J</i> = 249); 193.29 (C=O)	-113.37 (1F, м)		
3f	1690, 1545, 1490	1.13 (6H, с, 2CH ₃); 2.42 (2H, с, CH ₂); 2.54 (5H, м, CH ₃ +CH ₂)	13.43, 28.27, 35.35, 35.87, 52.39, 113.72 (м); 117.00, 138.02 (д. м, <i>J</i> = 258); 142.26 (д. м, <i>J</i> = 259); 143.72 (д. м, <i>J</i> = 255); 151.73 (С–N); 152.86 (С=N); 192.89 (С=О)	-145.16 (2F, м); -150.77 (1F, т, <i>J</i> = 22); -160.17 (2F, м)		
3g	1690, 1545, 1490	1.12 (6H, c, 2CH ₃); 1.30 (3H, т, <i>J</i> = 7.5, CH ₃); 2.42 (2H, c, CH ₂); 2.53 (2H, c, CH ₂); 2.96 (2H, кв, <i>J</i> = 7.5, CH ₂)	12.33, 21.36, 28.25, 35.37, 35.78, 52.46, 113.86 (м); 116.36, 138.00 (д. м, <i>J</i> = 255); 142.21 (д. м, <i>J</i> = 259); 143.79 (д. м, <i>J</i> = 256); 152.93 (С–N); 157.07 (С=N); 192.64 (С=О)	-144.98 (2F, м); -150.84 (1F, т, <i>J</i> = 22); -160.18 (2F, м)		

ИК спектры и спектры ЯМР ¹Н, ¹³С, ¹⁹F синтезированных соединений За–j, ба–j

396

3h	1690, 1540, 1520	1.16 (6H, с, 2CH ₃); 2.51 (2H, с, CH ₂); 2.60 (2H, с, CH ₂); 7.43 (3H, м, H _{Ar}); 8.10 (2H, м, H _{Ar})	28.12, 35.36, 35.70, 53.20, 113.75 (м); 116.03, 128.19, 128.93, 129.46, 130.96, 138.06 (д. м, <i>J</i> = 257); 142.52 (д. м, <i>J</i> = 260); 143.87 (д. м, <i>J</i> = 256); 153.56 (С–N); 153.79 (С=N): 191.61 (С=О)	-144.77 (2F, м -150.24 (1F, т, <i>J</i> = 22); -159.91 (2F, м
3i	1680, 1540, 1470	1.16 (6H, c, 2CH ₃); 2.52 (2H, c, CH ₂); 2.59 (2H, c, CH ₂); 6.54 (1H, м, H _{фуран}); 7.52 (1H, м, H _{фуран}); 7.91 (1H, м, H _{фуран})	28.12, 35.34, 35.46, 52.83, 111.69, 113.54 (м); 114.89, 115.05, 138.01 (д. м, <i>J</i> = 255); 142.48 (д. м, <i>J</i> = 255); 143.59, 143.93 (д. м, <i>J</i> = 257); 144.14 (С–N); 145.82, 153.41 (С=N); 191.11 (С=О)	-144.50 (2F, м -149.79 (1F, т, <i>J</i> = 22); -159.85 (2F, м
3ј	1670, 1530, 1500	1.02 (4H, м, Н _{циклопропан}); 1.13 (6H, с, 2CH ₃); 2.43 (2H, с, CH ₂); 2.50 (2H, с, CH ₂); 2.61 (1H, м, Н _{циклопропан})	8.29, 9.48, 28.26, 35.37, 35.64, 52.57, 113.85 (м); 117.08, 138.05 (д. м, <i>J</i> = 253); 142.23 (д. м, <i>J</i> = 259); 143.79 (д. м, <i>J</i> = 256); 152.63 (С–N); 157.67 (С=N); 192.84 (С=О)	-145.01 (2F, м -151.08 (1F, т, <i>J</i> =21); -160.33 (2F, м
6a	1670, 1575, 1530	1.13 (6H, c, 2CH ₃); 2.39 (2H, c, CH ₂); 2.57 (3H, c, CH ₃); 2.73 (2H, c, CH ₂); 7.20 (2H, м, H _{Ar}); 7.42 (2H, м, H _{Ar})	12.07, 28.51, 35.10, 36.93, 53.36, 115.98, 116.28 (д, J = 23); 127.13 (д, $J = 9$); 134.61, 141.77 (С–N); 156.14 (С=N); 162.29 (д, $J = 249$); 195.07 (С=О)	-112.45 (1F, м
6b	1680, 1560, 1520	1.13 (6H, с, 2CH ₃); 1.18 (3H, т, <i>J</i> = 7.5, CH ₃); 2.40 (2H, с, CH ₂); 2.72 (2H, с, CH ₂); 2.92 (2H, кв, <i>J</i> = 7.5, CH ₂); 7.19 (2H, м, H _{Ar}); 7.41 (2H, м, H _{Ar})	13.17, 18.97, 28.52, 35.10, 36.96, 53.40, 115.12, 116.32 (α , $J = 23$); 127.59 (α , $J = 9$); 134.78, 147.93 (C–N); 156.28 (C=N); 162.50 (α , $J = 249$); 194.57 (C=O)	-112.07 (1F, м
6c	1680, 1560, 1530	1.17 (6H, c, 2CH ₃); 2.43 (2H, c, CH ₂); 2.83 (2H, c, CH ₂); 7.00 (2H, м, H _{Ar}); 7.21 (2H, м, H _{Ar}); 7.35 (5H, м, H _{Ar})	28.49, 34.90, 37.19, 53.77, 115.78, 115.97 (д, <i>J</i> = 23); 127.26 (д, <i>J</i> = 9); 128.00, 128.20, 129.51, 130.35, 135.29, 143.36 (С–N); 156.60 (С=N); 161.85 (д, <i>J</i> = 249); 193.49 (С=О)	-113.10 (1F, м
6d	1680, 1540, 1475	1.16 (6H, с, 2CH ₃); 2.47 (2H, с, CH ₂); 2.79 (2H, с, CH ₂); 6.50 (1H, м, H _{фуран}); 7.11 (2H, м, H _{Ar}); 7.28 (1H, м, H _{фуран}); 7.34 (2H, м, H _{Ar}); 7.63 (1H, м, H _{фуран})	28.39, 34.70, 37.09, 53.77, 111.79, 115.74 (д, <i>J</i> = 23); 116.22, 127.45 (д, <i>J</i> = 9); 136.71, 142.00, 143.74, 145.22 (C–N); 156.66 (C=N); 162.27 (д, <i>J</i> = 248); 193.07 (C=O)	-112.78 (1F, м

Окончание таблицы 1

1	2	3	4	5
6e	1685, 1530, 1445	0.95 (2H, м, H _{циклопропан}); 1.11 (6H, с, 2CH ₃); 1.19 (2H, м, H _{циклопропан}); 1.85 (1H, м, H _{циклопропан}); 2.37 (2H, с, CH ₂); 2.71 (2H, с, CH ₂); 7.19 (2H, м, H _{Ar}); 7.52 (2H, м, H _{Ar})	8.22, 8.29, 28.36, 34.75, 37.18, 53.85, 115.15, 116.08 (д, <i>J</i> = 23); 127.71 (д, <i>J</i> = 9); 135.36, 147.65 (С–N); 156.46 (С=N); 162.32 (д, <i>J</i> = 249); 193.56 (С=О)	—112.44 (1F, м)
6f	1690, 1580, 1540	1.14 (6H, c, 2CH ₃); 2.42 (2H, c, CH ₂); 2.48 (3H, c, CH ₃); 2.75 (2H, c, CH ₂)	10.84, 28.45, 35.09, 36.89, 53.30, 113.79 (м); 116.01, 137.97 (д. м, <i>J</i> = 253); 142.40 (д. м, <i>J</i> = 259); 143.79 (д. м, <i>J</i> = 256); 144.96 (С–N); 157.82 (С–N); 194.68 (С=О)	-144.70 (1F, м); -150.37 (1F, т, <i>J</i> = 22); -160.24 (2F, м),
6g	1680, 1570, 1540	1.15 (6H, c, 2CH ₃); 1.15 (3H, т, <i>J</i> = 7.5, CH ₃); 2.42 (2H, c, CH ₂); 2.75 (2H, c, CH ₂); 2.81 (2H, кв, <i>J</i> = 7.5, CH ₂)	12.54, 18.91, 28.44, 35.06, 53.35, 113.95 (м); 115.25, 137.90 (д. м, <i>J</i> = 253); 142.48 (д. м, <i>J</i> = 259); 144.11 (д. м, <i>J</i> = 256); 150.77 (С–N); 158.04 (С=N); 194.24 (С=О)	-144.68 (2F, м); -150.02 (1F, т, <i>J</i> = 21); -160.20 (2F, м)
6h	1690, 1560, 1540	1.18 (6H, c, 2CH ₃); 2.47 (2H, c, CH ₂); 2.84 (2H, c, CH ₂); 7.38 (5H, м, H _{Ar})	28.44, 34.90, 37.13, 53.67, 115.00 (м); 115.66, 126.78, 128.50, 129.17, 130.38, 137.68 (д. м, <i>J</i> = 253); 142.25 (д. м, <i>J</i> = 259); 143.86 (д. м, <i>J</i> = 256); 147.29 (С–N); 158.26 (С=N); 193.19 (С=О)	-144.49 (2F, м); -150.56 (1F, т, <i>J</i> = 22); -160.55 (2F, м)
6i	1690, 1550, 1475	1.17 (6H, c, 2CH ₃); 2.51 (2H, c, CH ₂); 2.80 (2H, c, CH ₂); 6.55 (1H, м, H _{фуран}); 7.30 (1H, м, H _{фуран}); 8.13 (1H, м, H _{фуран})	28.31, 34.54, 37.02, 53.74, 112.34, 114.07, 116.87 (м); 117.55, 136.43, 137.64 (д. м, <i>J</i> = 257); 142.19, 142.23 (д. м, <i>J</i> = 258); 144.22 (д. м, <i>J</i> = 259); 144.50, 145.24 (C–N); 158.24 (C=N); 192.67 (C=O)	-144.50 (2F, м); -149.79 (1F, т, <i>J</i> = 22); -159.85 (2F, м)
6j	1690, 1545, 1440	0.96 (2H, м, Н _{циклопропан}); 1.12 (6H, с, 2CH ₃); 1.23 (2H, м, Н _{циклопропан}); 1.64 (1H, м, Н _{циклопропан}); 2.39 (2H, с, CH ₂); 2.72 (2H, с, CH ₂)	7.34, 28.31, 34.68, 37.14, 53.80, 114.84 (м); 115.07, 137.90 (д. м, <i>J</i> = 254); 142.32 (д. м, <i>J</i> = 259); 143.89 (д. м, <i>J</i> = 256); 150.64 (С–N); 158.20 (С=N); 193.34 (С=О)	-144.32 (2F, м); -150.64 (1F, т, <i>J</i> = 21); -160.53 (2F, м)

Со- еди-	Брутто-	<u>Найдено, %</u> Вычислено, %		Т. пл.,	Масс спектр,	Вы- ход,	
не- ние	формула	С	Н	Ν	°C	m/z, [M] ⁺	%
3a	C ₁₆ H ₁₇ FN ₂ O	<u>70.73</u> 70.57	<u>6.31</u> 6.29	<u>10.35</u> 10.29	110–112	272	85
3b	$C_{17}H_{19}FN_2O$	<u>71.48</u> 71.31	<u>6.75</u> 6.69	<u>9.87</u> 9.78	108–110	286	76
3c	$C_{21}H_{19}FN_2O$	<u>75.25</u> 75.43	<u>5.68</u> 5.73	<u>8.31</u> 8.38	181–184	334	86
3d	$C_{19}H_{17}FN_2O_2$	<u>70.23</u> 70.36	<u>5.19</u> 5.28	<u>8.51</u> 8.64	160–163	324	76
3e	$C_{18}H_{19}FN_2O$	<u>72.57</u> 72.46	<u>6.51</u> 6.42	<u>9.45</u> 9.39	159–162	298	87
3f	$C_{16}H_{13}F_5N_2O$	<u>55.69</u> 55.82	<u>3.73</u> 3.81	<u>8.06</u> 8.14	77–80	344	85
3g	$C_{17}H_{15}F_5N_2O$	<u>56.81</u> 56.99	<u>4.12</u> 4.22	<u>7.75</u> 7.82	59–61	358	83
3h	$C_{21}H_{15}F_5N_2O$	<u>62.16</u> 62.07	<u>3.78</u> 3.72	<u>6.96</u> 6.89	175–177	406	80
3i	$C_{19}H_{13}F_5N_2O_2$	<u>57.43</u> 57.58	<u>3.26</u> 3.31	<u>6.98</u> 7.07	168–171	396	88
3j	$C_{18}H_{15}F_5N_2O$	<u>58.54</u> 58.38	$\frac{4.01}{4.08}$	<u>7.49</u> 7.56	172–175	370	87
6a	$C_{16}H_{17}FN_2O$	<u>70.43</u> 70.57	<u>6.22</u> 6.29	<u>10.22</u> 10.29	83–86	272	68
6b	$C_{17}H_{19}FN_2O$	<u>71.29</u> 71.31	<u>6.61</u> 6.69	<u>9.67</u> 9.68	91–94	286	67
6c	$C_{21}H_{19}FN_2O$	<u>75.21</u> 75.43	<u>5.65</u> 5.73	<u>8.28</u> 8.38	172–175	334	73
6d	$C_{19}H_{17}FN_2O_2$	<u>70.47</u> 70.36	<u>5.35</u> 5.28	<u>8.71</u> 8.64	121–124	324	72
6e	$C_{18}H_{19}FN_2O$	<u>72.63</u> 72.46	<u>6.54</u> 6.42	<u>9.47</u> 9.39	67–70	298	69
6f	$C_{16}H_{13}F_5N_2O$	<u>55.98</u> 55.82	<u>3.87</u> 3.81	<u>8.28</u> 8.14	115–118	344	70
6g	$C_{17}H_{15}F_5N_2O$	<u>57.14</u> 56.99	<u>4.31</u> 4.22	<u>7.89</u> 7.82	56–59	358	71
6h	$C_{21}H_{15}F_5N_2O$	<u>62.20</u> 62.07	<u>3.81</u> 3.72	<u>6.95</u> 6.89	127–130	406	75
6i	$C_{19}H_{13}F_5N_2O_2$	<u>57.41</u> 57.58	<u>3.20</u> 3.31	<u>6.96</u> 7.07	101–104	396	74
6j	$C_{18}H_{15}F_5N_2O$	<u>58.25</u> 58.38	<u>3.95</u> 4.08	<u>7.47</u> 7.56	98–101	370	72

Характеристики синтезированных соединений За–ј, 6а–ј

399

наблюдается малоинтенсивная полоса поглощения сопряженного карбонила (1640 и 1660 см⁻¹ соответственно), интенсивные полосы поглощения связи C=C (1640 и 1650 см⁻¹ соответственно) и C–N при 1530 см⁻¹ [17]. В масс-спектрах соединений **2f**,**g** пики молекулярных ионов отсутствуют, но присутствуют характерные пики, возникающие при отщеплении воды $(m/z 344 [M-H_2O]^+$ и 358 [M-H₂O]⁺ для соединений **2f**,**g** соответственно).

Региоизомерные индазолоны За-ј и ба-ј различаются по своим физикохимическим свойствам. ИК спектры соединений За-і характери-зуются наличием интенсивных полос поглощения в областях 1670-1690 (сопряженный карбонил), 1520-1545 (С=С) и 1480-1500 см⁻¹ (С=N), а в ИК спектрах региоизмерных индазолонов 6а-ј имеются интенсивные полосы поглощения при 1680-1690 (сопряженный карбонил), в области 1545-1590 (С=С) и в области 1540 см⁻¹ (С=N). Эти области поглощения в ИК спектрах соединений За-ј и 6а-ј хорошо согласуются с данными ИК спектров, приведенными в литературе для региоизомерных индазолонов, полученных исходя из 2-ацетилциклогексан-1,3-дионов [10-13] эфира 2-ацетилциклогексан-1,3-диона [14]. В спектрах ЯМР ¹³С индазолонов **3а**ј и 6а-ј помимо сигналов углерода метильных, метиленовых и метиновых групп присутствуют сигналы углерода в области б 191–196 (С=О), сигналы углерода групп С-N и С=N в области б 143-158 м. д. Наличие фтора подтверждается сигналом атома фтора в спектрах ЯМР ¹⁹F при δ от -112 до -113 м. д. для соединений За-е и ба-е и трех сигналов атомов фтора в областях δ –145, –150 и –160 м. д. для соединений **3f**–j и **6f**–j. В масс-спектрах всех соединений **3а-** и **6а-** наблюдаются пики молекулярных ионов.

Таким образом, благодаря региоселективности реакции 2-ацилциклогексан-1,3-дионов **1а**-е и их енольных метиловых эфиров **4а**-е с фенилгидразинами, содержащими атомы фтора в различных положениях бензольного кольца, нами с препаративными выходами получены новые региоизомерные фторсодержащие индазолоны.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹H, ¹³C, ¹⁹F зарегистрированы на спектрометре Bruker AVANCE 500 (500, 125 и 470 МГц соответственно) в CDCl₃, внутренний стандарт ТМС (для спектров ЯМР ¹H и ¹³C) и трихлорфторметан (для спектра ЯМР ¹⁹F). ИК спектры записаны на приборе UR-20 в таблетках КВг. Масс спектры (ЭУ, 70 эВ) получены на газовом хроматографе Hewlett-Packard 5890 с масс-селективным детектором HP 5972. Температуры плавления определены на нагревательном блоке типа Boetius. Контроль за ходом реакции осуществлялся методом TCX на пластинках Silufol UV-254 (эфир–гексан, 3:1). Синтезированные соединения **2f**,g, **3a–j** и **6a–j** выделены методом препаративной TCX на силикагеле HF₂₅₄ (Fluka) (эфир–гексан, 1:1).

2-Ацилциклогексан-1,3-дионы 1а–е получали путем О–С-изомеризации соответствующих енолацилатов димедона под действием ацетонциангидрина по методикам [18, 19]. Енолацилаты димедона получали О-ацилировнием димедона хлорангидридом карбоновой кислоты по методике [20] и использовали для последующей О–С-изомеризации без выделения. Ацилдимедоны **1а–с** 400

синтезировали с выходами 86, 90, 84%, соответственно, их константы идентичны описанным в работе [20].

2-(Фуран-2-карбонил)-5,5-диметилциклогексан-1,3-дион (1d). Выход 88%. Т. пл. 41–44 °С (эфир–гексан). ИК спектр, v, см⁻¹: 1680, 1570, 1470. Спектр ЯМР ¹H, δ, м. д.: 1.13 (6H, с, 2CH₃); 2.44 (2H, с, CH₂); 2.61 (2H, с, CH₂); 6.57 (1H, м, H_{фуран}); 7.67 (1H, м, H_{фуран}); 7.78 (1H, м, H_{фуран}); 17.42 (1H, уш. с, OH). Массспектр, *m/z*: 234 [M]⁺. Найдено, %: С 66.98; Н 6.11. С₁₃Н₁₄О₄. Вычислено, %: С 66.66; Н 6.02.

2-Циклопропанкарбонил-5,5-диметилциклогексан-1,3-дион (1е). Выход 95%. Т. пл. 57-60 °С (эфир-гексан). ИК спектр, v, см⁻¹: 1660, 1550, 1450. Спектр ЯМР ¹Н, δ, м. д.: 1.09 (6H, с, 2CH₃); 1.12 (2H, м, CH_{2циклопропан}); 1.30 (2H, м, CH_{2циклопропан}); 2.40 (2H, с, CH₂); 2.53 (2H, с, CH₂); 3.59 (1H, м, H_{циклопропан}); 18.51 (1H, уш. с, OH). Масс-спектр, *m/z*: 208 [M]⁺. Найдено, %: С 69.11; Н 7.67. С₁₂Н₁₆О₃. Вычислено, %: С 69.21; Н 7.74.

3,6,6-Триметил-1-(4-фторфенил)-6,7-дигидро-1Н-индазол-4(5Н)-он (3а), 6,6-диметил-1-(4-фторфенил)-3-этил-6,7-дигидро-1Н-индазол-4(5Н)-он (3b), 6,6-диметил-3-фенил-1-(4-фторфенил)-6,7-дигидро-1Н-индазол-4(5Н)-он (3c), 6,6-диметил-1-(4-фторфенил)-3-(фуран-2-ил)-6,7-дигидро-1Н-индазол-4(5Н)он (3d), 6,6-диметил-1-(4-фторфенил)-3-циклопропил-6,7-дигидро-1Н-индазол-4(5Н)-он (3e) (табл. 1). К раствору 1 ммоль соответствующего трикетона 1а-е в 5 мл этанола при перемешивании прибавляют 1.1 ммоль гидрохлорида 4-фторфенилгидразина и 1.1 ммоль гидроксида натрия. Реакционную смесь перемешивают 8 ч при комнатной температуре. После удаления растворителя на роторном испарителе остаток растворяют в 50 мл хлороформа, промывают разбавленной HCl (3 × 15 мл), водой (2 × 15 мл) и сушат над безводным сульфатом магния. После удаления хлороформа на роторном испарителе продукт реакции выделяют методом препаративной TCX в виде оранжево-красных кристаллов.

3,6,6-Триметил-1-пентафторфенил-6,7-дигидро-1Н-индазол-4(5Н)-он (3f), 6,6-диметил-1-пентафторфенил-3-этил-6,7-дигидро-1Н-индазол-4(5Н)-он (3g), 6,6-диметил-1-пентафторфенил-3-фенил-6,7-дигидро-1Н-индазол-4(5H)-он (3h), 6,6-диметил-1-пентафторфенил-3-(фуран-2-ил)-6,7-дигидро-1Н-индазол-4(5Н)он (3i), 6,6-диметил-1-пентафторфенил-3-циклопропил-6,7-дигидро-1Н-индазол-4(5Н)-он (3j). Раствор 1 ммоль соответствующего трикетона 1а-е и 1.1 ммоль пентафторфенилгидразина в 5 мл этанола перемешивают 8 ч при комнатной температуре. Растворитель удаляют на роторном испарителе, остаток растворяют в 50 мл хлороформа, промывают разбавленной HCl (3 × 15 мл), водой (2 × 15 мл) и сушат над безводным сульфатом магния. После удаления хлороформа на роторном испарителе методом препаративной ТСХ выделяют в случае соединений 1с-е только индазолоны 3g-j, а в случае соединения 1а - 79% гидразона 2f и 21% индазолона 3f, в случае соединения 1b - 61% гидразона 2g и 39% индазолона 3g. Взаимодействие трикетонов 1a,b с пентафторфенилгидразином при кипячении 20 ч дает целевые индазолоны 3f,g в качестве единственных продуктов. Соединения **3а-** і выделены в виде оранжево-красных кристаллов.

5,5-Диметил-2-[1-(2-пентафторфенилгидразоно)этил]циклогексан-1,3-дион (**2f**). Светло-желтые кристаллы. Выход 79%, т. пл. 136–139 °С. ИК спектр, v, см⁻¹: 1640, 1590, 1530. Спектр ЯМР ¹Н, δ, м. д.: 1.05 (6H, с, 2CH₃); 2.38 (2H, с, CH₂); 2.42 (2H, с, CH₂); 2.76 (3H, с, CH₃); 6.33 (1H, уш. с, NH); 14.63 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ, м. д. (*J*, Гц): 16.41, 28.21, 30.37, 50.71, 53.28, 107.68, 120.71 (м); 137.28 (д. м, *J* = 250); 138.24 (д. м, *J* = 250); 139.36 (д. м, *J* = 246); 172.84 (C=N); 196.48 (C=O); 196.80 (C=O). Спектр ЯМР ¹⁹F, δ, м. д. (*J*, Гц): –156.04 (2F, м); –162.03 (2F, м); –162.85 (1F, т, *J* = 22). Масс-спектр, *m/z*: 344 [М–H₂O]⁺. Найдено, %: С 53.16; H 4.23; N 7.85. С₁₆H₁₅F₅N₂O₂. Вычислено, %: С 53.04; H 4.17; N 7.73.

5,5-Диметил-2-[1-(2-пентафторфенилгидразоно)пропил]циклогексан-1,3-

дион (2g). Светло-желтые кристаллы. Выход 61%, т. пл. 147–149 °С. ИК спектр, v, см⁻¹: 1660, 1580, 1530. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.05 (6H, с, 2CH₃); 1.24 (3H, т, *J* = 7.4, CH₃); 2.40 (4H, с, CH₂); 3.30 (2H, кв, *J* = 7.4, CH₂); 6.60 (1H, уш. с, NH); 14.67 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ , м. д. (*J*, Гц): 11.91, 21.95, 28.18, 30.27, 51.19, 53.46, 106.65, 120.84 (м); 137.20 (д. м, *J* = 251); 138.23 (д. м, *J* = 251); 139.36 (д. м, *J* = 247); 177.94 (C=N); 196.37 (C=O); 197.78 (C=O). Спектр ЯМР ¹⁹F, δ , м. д. (*J*, Гц): –155.93 (2F, м); –162.10 (2F, м); –163.06 (1F, т, *J* = 22). Массспектр, *m/z*: 358 [M–H₂O]⁺. Найдено, %: С 54.38; H 4.60; N 7.51. C₁₇H₁₇F₅N₂O₂. Вычислено, %: С 54.26; H 4.55; N 7.44.

3,6,6-Триметил-2-(4-фторфенил)-6,7-дигидро-2Н-индазол-4(5Н)-он (6а), 6,6ди- метил-2-(4-фторфенил)-3-этил-6,7-дигидро-2Н-индазол-4(5Н)-он (6b), 6,6ди-метил-3-фенил-2-(4-фторфенил)-6,7-дигидро-2Н-индазол-4(5Н)-он (6с), 6,6диме-тил-2-(4-фторфенил)-3-(фуран-2-ил)-6,7-дигидро-2Н-индазол-4(5Н)-он (6d), 6,6-диметил-2-(4-фторфенил)-3-циклопропил-6,7-дигидро-2Н-индазол-(6е), 3,6,6-триметил-2-пентафторфенил-6,7-дигидро-2Н-индазол-4(5Н)-он 4(5H)-он (6f), 6,6-диметил-2-пентафторфенил-3-этил-6,7-дигидро-2H-индазол-4(5Н)-он (6g), 6,6-диметил-2-пентафторфенил-3-фенил-6,7-дигидро-2Ниндазол-4(5Н)-он (6h), 6.6-диметил-2-пентафторфенил-3-(фуран-2-ил)-6,7дигидро-2Н-инда-зол-4(5Н)-он (6i), 6,6-диметил-2-пентафторфенил-3циклопропил-6,7-дигид-ро-2Н-индазол-4(5Н)-он (6j). К раствору 1 ммоль соответствующего трикетона 1а-е в 20 мл абсолютного толуола добавляют 6 ммоль прокаленного К₂CO₃ и 1 ммоль диметилсульфата. Реакционную смесь кипятят 10 ч, осадок отфильтро-вывают, промывают толуолом. После удаления толуола на роторном испарителе к раствору остатка в 5 мл этанола прибавляют 1 ммоль гидрохлорида 4-фтор-фенилгидразина и 1 ммоль гидроксида натрия. Реакционную смесь перемешивают 5 ч при комнатной температуре. После удаления этанола на роторном испарителе остаток растворяют в 50 мл хлороформа, промывают разбавленной HCl (3 × 15 мл), водой (2 × 15 мл) и сушат над безводным сульфатом магния. После удаления хлороформа на роторном испарителе методом препаративной ТСХ выделяют индазолон ба-е. Для получения индазолонов 6f-j вместо 1 ммоль гидрохлорида 4-фторфенилгидразина и 1 ммоль гидроксида натрия используют 1 ммоль пентафторфенилгидразина. Соединения 6а-і выделены в виде оранжево-красных кристаллов.

СПИСОК ЛИТЕРАТУРЫ

- 1. P. Kirsh, Modern Fluoroorganic Chemistry, Willey-VCH, Weinhem, 2004.
- 2. L. K. Kenneth, J. Fluorine Chem., 127, 1013 (2006).
- H. Cerecetto, A. Gerge, M. Gonzáles, V. J. Arán, C. O. de Ocárizi, *Mini-Reviews in Medicinal Chemistry*, 5, 869 (2005).
- 4. S. A. M. El-Hawash, El-S. A.M. Badawey, I. M. El-Ashmawey, *Eur. J. Med. Chem.*, **41**, 155 (2006).
- D. T. W. Chu, S. N. Huckin, E. Bernstein, D. L. Garmaise, *Can. J. Chem.*, 59, 763 (1981).
- 6. R. Kirchlechner, Chem. Ber., 115, 2461 (1982).
- 7. F. A. Lakhvich, T. S. Khlebnicova, A. A. Akhrem, Synthesis, 784 (1985).
- 8. Т. С. Хлебникова, Ф. А. Лахвич, *ЖОрХ*, **36**, 1642 (2000).
- 9. D. B. Rubinov, I. L. Rubinova, A. A. Akhrem, Chem. Rev., 99, 1047 (1999).
- 10. И. А. Стракова, Э. М. Гудриниеце, Изв. АН ЛатвССР. Сер. хим., 128 (1963).
- 11. И. А. Стракова, Я. Я. Линаберг, Э. М. Гудриниеце, Изв. АН ЛатвССР. Сер. хим., 188 (1968).
- 12. А. Я. Страков, Н. Н. Тонких, М. В. Петрова, И. А. Стракова, ХГС, 516 (1997).

[Chem. Heterocycl. Comp., 33, 441 (1997)].

- 13. И. А. Стракова, А. Я. Страков, М. В. Петрова, *XГС*, 494 (2002). [*Chem. Heterocycl. Comp.*, **38**, 429 (2002)].
- 14. А. А. Ахрем, А. М. Моисеенков, М. Б. Андабурская, *Изв. АН СССР. Сер. хим.*, 2846 (1969).
- 15. А. А. Ахрем, А. М. Моисеенков, Ф. А. Лахвич, В. А. Криворучко, *Изв. АН СССР. Сер. хим.*, 2013 (1969).
- 16. Ф. А. Лахвич, Л. Г. Лис, Д. Б. Рубинов, Е. В. Борисов, *ЖОрХ*, 24, 755 (1988).
- 17. И. А. Стракова, А. Я. Страков, М. Т. Страутзеле, Э. М. Гудриниеце, Изв. АН ЛатвсССР. Сер. хим., 597 (1968).
- 18. J. E. Oliver, K. R. Wilzer, R. M. Waters, Synthesis, 1117 (1990).
- 19. V. G. Zaitsev, G. I. Polozov, F. A. Lakhvich, Tetrahedron, 50, 6377 (1994).
- 20. A. A. Akhrem, F. A. Lakhvich, S. I. Budai, T. S. Khlebnicova, I. I. Petrusevich, *Synthesis*, 925 (1978).

Государственное научное учреждение Институт биоорганической химии НАН Республики Беларусь, Минск 220141 e-mail: khlebnicova@ iboch.bas-net.by

^аРНТЦ "ЭКОМИР" НАН Республики Беларусь, Минск 220012 Поступило 18.01.2007