Л. М. Потиха, В. М. Кисиль, А. В. Туров, В. А. Ковтуненко

конденсированные изохинолины

29.* РЕАКЦИИ ОКИСЛЕНИЯ СОЛЕЙ 5-АРИЛ-7,12-ДИГИДРОИЗОХИНО[2,3-*a*]ХИНАЗОЛИНИЯ

Перхлораты 5-арил-7,12-дигидроизохино[2,3-*а*]хиназолиния легко окисляются кислородом воздуха и образуют продукты окислительного сочетания – перхлораты 5,5'-бис-(арил)-3,3'-дигалоген-[7,7']би[изохино[2,3-*a*]хиназолин]-13,13'-диилия. Нагревание перхлората 3-хлор-5-фенил-7,12-дигидроизохино[2,3-*a*]хиназолиния в нитробензоле приводит к перхлорату 3-хлор-5-фенилизохино[2,3-*a*]хиназолин-13-ия. Полученные ароматические производные 5-арилизохино[2,3-*a*]хиназолина в реакциях с нуклеофильными реагентами образуют продукты присоединения по атому C-12.

Ключевые слова: 5-арилизохино[2,3-*а*]хиназолин, изохинолины, конденсированные хиназолины, борогидридное восстановление, окисление, окислительное сочетание.

Первые представители гетероциклической системы изохино[2,3-*a*]хиназолина были получены сравнительно недавно [2, 3], и среди них, в том числе, и 5-арилзамещенные производные [2, 4]. Однако свойства последних, в отличие от 5-оксоизохино[2,3-*a*]хиназолинов, не изучались. Вместе с тем, уже имеющиеся данные о биологической активности производных изохинохиназолинов [5, 6] и конденсированных по грани *a* 4-арилхиназолинов [7–9] указывают на перспективность таких исследований.

Ранее [4] нами был предложен метод синтеза солей 5-арил-7,12-дигидроизохино[2,3-*a*]хиназолиния 1a-c, заключающийся во взаимодействии *o*-(бромметил)фенилацетонитрила с *o*-аминобензофенонами 2a-c и последующей циклизации первоначально образующихся гидробромидов 2-арил-3-имино-1,4-дигидроизохинолина 3a-c в присутствии хлорной кислоты. В настоящей работе, данное взаимодействие было подвергнуто более внимательному изучению с целью поиска оптимальной методики синтеза солей изохинохиназолиния 1, а также изучению спектральных и химических свойств его продуктов. Нами найдено, что результат реакции *o*-(бромметил)фенилацетонитрила с бензофенонами 2 в значительной степени зависит как от условий реакции, так и от природы заместителей в реагенте 2. Так, при нагревании в ацетонитриле в некоторых случаях (2b,c) образовывались смеси бромидов изохинолиниминов 3 с неизвестным продуктом. Добавление к реакционной смеси каталитических количеств уксусной кислоты практически полностью подавляло образование

^{*} Сообщение 28 см. [1].

1a–c – 5a–g Ar, Hal; **a** 4- $O_2NC_6H_4$, Br; **b** 4-Br C_6H_4 , Br; **c** Ph, Cl; **d** 4-Me C_6H_4 , Br

побочного продукта. При проведении реакции в 2-пропаноле, а в случае бензофенона 2d независимо от условий, неизвестные соединения являлись единственными продуктами. Аналогичный результат был получен и при длительном (6–30 ч) нагревании гидробромидов иминоизохинолинов За-с и солей 5-арилизохинохиназолиния 1а-с в ацетонитриле и других растворителях (бензонитрил, ДМСО). На основании этих данных, а также обнаруженной нами ранее [10-12] склонности конденсированных 1,4-дигидроизохинолинов к окислению мы предположили, что и в этом случае образуются продукты окисления, а окислителем является кислород воздуха. Логично было предположить, что такие превращения могут происходить также в присутствии других окислителей, например, в нитробензоле, поскольку именно в этих условиях ранее были получены ароматические производные изохино[2,3-а]хиназолин-5(6Н)-она [10] и 13-оксо-5Н,13Н-изохино[3,2-b]хиназолин-13(5Н)-она [12]. При нагревании в нитробензоле перхлоратов 5-арил-7,12-дигидроизохино[2,3-а]хиназолиния 1а-с также легко образуются продукты окисления и результат этой реакции зависит от природы заместителя в 5-арильной группе. Так, в случае 5-(4-нитрофенил)- и 5-(4-бромфенил)производных 1а, в образуются

Спектральные характеристики производных 5-арилизохино[2,3-*a*]хиназолина 4, 5а–d, 7а,b

Co-	UK cherry	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)			
не- ние	ν, cm ⁻¹	ArH	1H, c, H-12	1H, c, H-7	
4	1615 (C=N), 1555, 1500, 1440, 1420, 1355, 1090, 760, 625	9.36 (1H, μ , ${}^{3}J$ = 9.0, H-1), 8.75 (1H, μ , ${}^{3}J$ = 8.4, H-11), 8.69 (1H, μ , ${}^{3}J$ = 9.0, ${}^{4}J$ = 1.2, H-2), 8.54 (1H, μ , ${}^{3}J$ = 8.0, H-8), 8.33 (1H, π , ${}^{3}J$ = 8.0, H-9), 8.19 (1H, μ , ${}^{4}J$ = 1.2, H-4), 8.17 (1H, π , ${}^{3}J$ = 8.0, H-10), 7.93 (2H, μ , H-2',6'), 7.75 (3H, μ , H-4',3',5')	11.41	9.28	
5a	1615 (C=N), 1595, 1550, 1400, 1350 (NO ₂), 1100, 660	9.45 (1H, $\exists J$, ${}^{3}J$ = 9.0, H-1), 8.99 (1H, $\exists J$, ${}^{3}J$ = 8.4, H-11), 8.70 (1H, $\exists L$, $\exists J$ = 9.0, ${}^{4}J$ = 2.0, H-2), 8.24 (2H, $\exists M$, H-4,10), 8.16 (3H, M , H-9,3',5'), 8.00 (1H, $\exists J$, ${}^{3}J$ = 8.0, H-8), 7.56 (2H, $\exists J$, ${}^{3}J$ = 8.8, H-2',6')	11.80	_	
5b	1600 (C=N), 1585, 1540, 1500, 1420, 1395, 1350, 1090, 620	9.37 (1H, \exists , ${}^{3}J = 9.0$, H-1), 8.96 (1H, \exists , ${}^{3}J = 8.4$, H-11), 8.76 (1H, \exists . \exists , ${}^{3}J = 9.0$, ${}^{4}J = 2.0$, H-2), 8.30 (1H, \exists , ${}^{4}J = 2.0$, H-4), 8.26 (1H, \exists , ${}^{3}J = 8.0$, H-10), 8.18 (1H, \exists , ${}^{3}J = 8.0$, H-9), 8.00 (1H, \exists , ${}^{3}J = 8.0$, H-8), 7.56 (2H, \exists , ${}^{3}J = 8.8$, H-3',5'), 7.18 (2H, \exists , ${}^{3}J = 8.8$, H-2',6')	11.73	_	
5c	1615 (C=N), 1595, 1550, 1500, 1395, 1350, 1090, 620	9.49 (1H, \exists , ${}^{3}J = 9.0$, H-1), 8.98 (1H, \exists , ${}^{3}J = 8.4$, H-11), 8.56 (1H, \exists . \exists , ${}^{3}J = 9.0$, ${}^{4}J = 2.0$, H-2), 8.26 (1H, τ , ${}^{3}J = 8.0$, H-10), 8.17 (1H, τ , ${}^{3}J = 8.0$, H-9), 8.14 (1H, \exists , ${}^{4}J = 2.0$, H-4), 8.06 (1H, \exists , ${}^{3}J =$ 8.0, H-8), 7.48 (1H, τ , ${}^{3}J = 7.6$, H-4'), 7.35 (2H, τ , ${}^{3}J = 7.6$, H-3',5'), 7.22 (2H, \exists , ${}^{3}J = 7.6$, H-2',6')	11.73	_	
5d*	1610 (C=N), 1595, 1545, 1500, 1425, 1390, 1345, 1090, 620	9.44 (1H, π , ${}^{3}J = 9.0$, H-1), 8.99 (1H, π , ${}^{3}J = 8.4$, H-11), 8.78 (1H, π . π , ${}^{3}J = 9.0$, ${}^{4}J = 2.0$, H-2), 8.31 (1H, π , ${}^{4}J = 2.0$, H-4), 8.25 (1H, π , ${}^{3}J = 8.0$, H-10), 8.16 (1H, π , ${}^{3}J = 8.0$, H-9), 8.04 (1H, π , ${}^{3}J = 8.0$, H-8), 7.14 (2H, π , ${}^{3}J = 8.8$, H-2',6'), 7.12 (2H, π , ${}^{3}J = 8.8$, H-3',5')	11.73	_	
7a	1665 (C=N), 1595, 1540, 1485, 770	7.69 (1H, д, ${}^{3}J$ = 7.8, H-2), 7.66 (2H, д, ${}^{3}J$ = 9.0, H-2',6'), 7.50 (4H, м, H-1, H-1,3'–5'), 7.04–6.96 (4H, м, H-1,8,10,11), 6.89 (1H, т, ${}^{3}J$ = H-9)	5.08, 2H	5.5	
7b	1660 (C=N), 1590, 1535, 1485, 770	7.71 (1H, д, ${}^{3}J$ = 7.8, H-2), 7.64 (2H, д, ${}^{3}J$ = 9.0, H-2',6'), 7.48 (3H, м, H-1,3',5'), 7.14 (1H, с, H-4), 7.09–6.96 (3H, м, H-8,10,11), 6.90 (1H, т, ${}^{3}J$ = H-9)	5.02, 2H	5.5	

* В спектре ЯМР ¹Н наблюдается сигнал при 2.28 м. д. (3H, с, CH₃).

продукты, идентичные полученным ранее при нагревании исходных солей 430

в бензонитриле или ацетонитриле, а в случае 5-(4-толил)производного 1с получено соединение, близкое по своим спектральным характеристикам к продуктам окисления солей 1a,b, но отличающееся наличием дополнительного сигнала протона в ароматической области.

В ИК спектрах всех продуктов окисления отсутствовали полосы валентных колебаний карбонильных и гидроксигрупп в характерных областях, а в их спектрах ЯМР ¹Н наблюдались только сигналы в области резонанса ароматических протонов. На основании данных ИК и ЯМР спектров и элементного анализа синтезированным соединениям приписано строение ароматических солей – перхлората 3-хлор-5-фенилизо-хино[2,3-*a*]хиназолин-13-ия (4) для продукта окисления соли 1с в нитробензоле и продуктов окислительного сочетания – перхлоратов 5,5'-бис-(арил)-3,3'-дигалоген-[7,7']би[изохино[2,3-*a*][хиназолин]-13,13'-диилия 5а–d в остальных случаях. Для установления структуры продуктов окисления нами был осуществлен детальный сравнительный анализ спектральных характеристик этих соединений и модельного соединения – перхлората 6-метил-5-оксо-5,6-дигидроизохино[2,3-*a*]хиназолин-13-ия (6), строение которого установлено ранее [13].

С этой целью были измерены их спектры ЯМР ¹Н и ¹³С (табл. 1), а также применены методы гомоядерной (COSY) и гетероядерной (HMBC и HMQC) двумерной корреляционной спектроскопии. Кроме этого, для выяснения пространственной близости отдельных протонов измерялись спектры NOESY 1D и NOESY. Данные по гетероядерной корреляции для арилпроизводных 4, 5c,d и более простого соединения 6 приведены в табл. 2. Имеющиеся данные позволяют произвести полные отнесения сигналов в протоннных и углеродных спектрах и сделать выводы о структуре изучаемого соединения. На рисунке показаны сделанные отнесения сигналов и стрелками показаны структурнозначимые корреляции НМВС. Так, для соединения 6 протон с химическим сдвигом 8.63 м. д. имеет корреляции с двумя четвертичными атомами углерода, поглощающими при 140.6 и 141.4 м. д., которые отвечают узловым атомам С-7а и С-ба. Последний атом имеет также корреляции с сигналами протонов 6-метильной группы и H-12, отстоящими на 3 химические связи. Отнесение сигнала карбонильного атома углерода осуществляется на основании корреляций с одной стороны с сигналом метильной группой при N-6, а с другой стороны – с сигналом протона Н-4. Интересно, что для карбонильного атома C-5 имеется сильная корреляция с сигналом атома H-1, который отстоит от него на 4 химические связи. Наличие данной корреляции мы объясняем W-взаимодействием. Корреляция через 4 связи имеется также между сигналом протонов метильной группы и сигналом атома С-7.

Для соединений 4 и 5а–d мы провели аналогичные исследования. Здесь для различных спектров соединений найден целый ряд аналогий с соответствующими спектрами соединения 6. Так, в наиболее слабом поле имеется синглет с химическим сдвигом 11.4–11.8 м. д. Кроме того, в необычно слабом поле имеются еще несколько сигналов ароматических

Структурно-значимые корреляции НМВС для соединений 6 (A) и 4, 5b,d (B)

протонов. Единственным существенным отличием спектра ЯМР ¹Н соединения 4 от спектров солей 5а-d является наличие однопротонного синглета Н-7 в области 9.28 м. д. и незначительный сдвиг сигналов протонов 5-фенильного заместителя в слабое поле. Отнесение протонных сигналов произведено с помощью двумерного COSY. Спиновые мультиплеты соответствуют предложенной формуле соединения, а положения кросс-пиков позволяют полностью отнести протонные спектры. Слабопольное расположение в спектре ряда сигналов свидетельствует о наличии в гетероциклическом фрагменте делокализованного положительного заряда. Поскольку молекула имеет ангулярное строение, то вклад в дезэкранирование близко расположенных в пространстве протонов вносит также несвязанное взаимодействие. Наличие такого взаимодействия доказано с помощью изучения корреляций ЯЭО. С помощью метода NOESY-1D при насыщении сигнала протона H-12 при 11.7 м. д. для обоих соединений 5с, d найдено, что изменение интенсивности сигнала H-1 составляет ~30%. Сигнал протона Н-11 при этом меняет интенсивность на 10–11%. Близкие значения ЯЭО найдены также и для протона H-12 при насыщении протона H-1. Интересной особенностью экспериментов 432

ЯЭО для данных соединений является то, что наблюдаемые эффекты отрицательны, а не положительны, как это обычно бывает. Экперименты по стационарному ЯЭО дают совершенно аналогичные результаты. Единственным возможным объяснением этого эффекта является слишком малое время корреляции молекул. Это характерно для молекул с большой молекулярной массой. Таким образом, данный эксперимент является косвенным подтверждением димерного строения молекул солей 5а-d. В этом случае молекулярная масса молекул близка к 1000 и для нее возможны отрицательные значения ЯЭО. Строение углеродного скелета молекул соединений 4 и 5c,d было установлено с помощью измерения спектров ЯМР ¹³С. Количество сигналов в углеродных спектрах соответствует имеющемуся в молекулах количеству неэквивалентных атомов углерода. Редактирование спектров в соответствии со спиновыми мультиплетами произведено по методике DEPT. Здесь, как и ожидалось (табл. 2), обнаружен сигнал метильной группы (для 5d) и 10 сигналов СН (для 5c.d. 2 из них удвоенной интенсивности), или 11 сигналов СН в случае соединения 4. Отнесение углеродных сигналов метинных групп сделано с помощью гетероядерной корреляции HMQC. Найденные углерод-протонные корреляции приведены в табл. 2, а наиболее структурнозначимые отражены на рисунке. Наиболее интересным результатом этого эксперимента является корреляция сигнала атома углерода с химическим сдвигом в области 141.5-142.4 с протонным сигналом при 11.4-11.8 м. д. Помимо надежного отнесения соответствующего углеродного сигнала, получено подтверждение того, что при 11.4-11.8 м. д. в спектре ЯМР ¹Н поглощает именно сигнал дезэкранированного протона H-12. Несколько неожиданной оказалась корреляция слабопольного сигнала Н-1 при 9.33–9.37 с сильнопольным углеродным сигналом при 122 м. д. Это свидетельствует о том, что основной вклад в дезэкра-нирование сигнала Н-1 вносит несвязанное взаимодействие, а не элек-тронные факторы.

Дальнейшее подтверждение структуры молекул удалось осуществить с помощью протон-углеродных корреляций, полученных методом градиентного HMBC. С помощью найденных таким образом корреляций удалось полностью отнести сигналы в спектрах ЯМР ¹³С. Неожиданным оказался химический сдвиг атома С-5. Имеющийся в спектре сигнал при 162.7-163.8 м. д. логичнее всего было бы отнести к атому С-ба, расположенному между двумя гетероциклическими атомами азота, однако этот сигнал имеет корреляции с протонами H-4 и H-2'. Таким образом, атом С-5 отделяет от данных протонов не более трех химических связей, что возможно только в случае, если сигнал при 162.7-163.8 м. д. соответствует атому С-5. Данные корреляции весьма интенсивны и найдены для всех изученных соединений. Они сохраняются также при измерении спектров в трифторуксусной кислоте. Сигнал атома С-7, по которому происходит димеризация молекул 5с,d, идентифицируется на основании корреляций с протоном Н-8. Аналогичная корреляция наблюдается и в случае соли 4.

Таблица 2

Номер атома	Спектр ЯМР ¹³ С, б, м. д.	Спектр ЯМР ¹ Н, δ, м. д.; корреляции НМОС	Химические сдвиги протонов, с которыми есть корреляции HMBC & м. л.
1	2.	3	4
	_	Соелинение 4	
1	122.0	9 33	_
2	136.5	8 69	8 19 9 33
3	136.3	_	8 19
4	132.3	8 19	8 69
4a	121.6	-	9 33
5	163.8	_	7 93 8 19
6a	140.2	_	11 41
7	126.5	9.28	8 55 8 17
7a	139.5	-	11 41 8 75 8 56 8 33
8	128.3	8.56	_
9	137.6	8.33	8.75
10	129.4	8.17	_
11	130.8	8.75	11.41. 8.33
11a	126.2	_	9.28, 8,17
12	141.5	11.41	_
13a	135.8	_	11.41, 8.69, 8.19
1'	135.6	_	7.75
2'	130.5	7.93	7.75
3'	129.8	7.75	7.93
4'	132.1	7.75	7.93
		Соединение 6	•
1	119.1	8.92	7.99
2	136.5	8.26	8.47, 7.99
3	132.1	7.99	8.92
4	129.5	8.47	8.26, 7.99
4a	120.9	-	8.92, 7.99
5	157.3	-	8.92, 8.47, 3.85
6a	141.4	-	10.98, 3.85
7	111.2	8.63	10.98, 8.27, 3.85
7a	140.6	-	8.63, 8.50, 8.27
8	127.0	8.27	8.63, 7.92
9	138.6	8.19	8.50, 7.92
10	130.3	7.92	_
11	130.6	8.50	10.98, 8.19
11	123.8	-	10.98, 8.63, 8.50, 8.27, 7.92
11a	125.0		
11a 12	141.1	10.98	-
11a 12 13a	141.1 137.0	10.98	– 10.98, 8.92, 8.47, 8.26

Окончание таблицы 2

1	2	3	4
434			

		Соелинение 5b	
1	121.8	9.37	_
2	139.6	8.76	8.30
3	125.5	_	9.37, 8.76, 8.30
4	132.4	8.30	8.76
4a	121.7	_	9.37
5	162.7	_	9.37, 8.30, 7.18
6a	139.7	_	11.73
7	128.8	_	8.00
7a	139.6	_	11.73, 8.96, 8.18
8	126.9	8.00	_
9	138.5	8.18	8.96
10	132.5	8.26	8.18, 8.00
11	131.8	8.96	11.73
11a	126.2	_	8.26, 8.00
12	142.2	11.73	8.96
13a	136.6	-	11.73, 9.37, 8.76, 8.30
1'	134.4	_	7.56
2'	132.3	7.18	7.56
3'	132.6	7.56	7.18
4'	126.0	_	7.56, 7.18
		Соединение 5d	
1	122	9.44	_
2	139.2	8.78	8.31
3	125.2	-	9.44, 8.78, 8.31
4	132.4	8.31	8.78
4a	121.8	-	9.44
5	163.4	-	9.44, 8.31, 7.14
6a	139.7	-	11.74
7	128.5	-	8.04, 11.74
7a	139.6	-	8.99, 8.16, 8.04
8	126.9	8.04	_
9	138.2	8.16	8.99
10	132.1	8.25	_
11	131.6	8.99	11.74, 8.16, 8.04
11a	126	-	11.74, 8.99, 8.04
12	142.4	11.73	8.99
13a	136.6	-	11.74, 9.44, 8.78, 8.31
1'	132.4	-	7.12
2'	130.2	7.14	7.12, 2.28
3'	130	7.12	_
4'	142.4	-	7.14, 2.28
CH_3	21.4	2.28	7.14

Дополнительным подтверждением того, что соединения **5a**-**d** являются продуктами окислительного сочетания 5-арилизохинохиназолиниевых солей **4**, служит также полное подобие УФ спектров этих солей, свидетельствующее об их изоэлектронности. Кроме того, полученный результат указывает на отсутствие взаимодействия между сопряженными

435

системами двух фрагментов молекулы в соединениях 5, что вполне объяснимо, покольку пространственные затруднения препятствуют их копланарному расположению.

a Ar = Ph, Hal = Cl; **b** Ar = 4-BrC_6H_4 , Hal = Br

Нам не удалось зарегистрировать масс-спектры солей 5-арилизохинохиназолиния 4 и 5а-d, что связано, с одной стороны, с ограничениями многих методов по молекулярной массе исследуемых соединений, которая в случае димеров 5а-d близка к 1000. И, с другой стороны – их лабильностью в присутствии нуклеофилов, в том числе и следов воды, содержавшейся в использованных растворителях. Тем не менее, такой результат вполне закономерен. Ранее [10] было найдено, что перхлорат 6-метил-5-оксо-5,6-дигидроизохино[2,3-а]хиназолин-13-ия 6, имеющий близкое к солям 4 и 5a-d строение, легко взаимодействует с нуклеофильными реагентами. Реакции протекают по положению 12 гетеросистемы и приводят к продуктам нуклеофильного присоединения и дальнейшего расщепления изохинолинового цикла по связи С(12)-N(13). На примере соединения 4 было показано, что в случае перхлоратов 5-арилизохинохиназолиния превращения происходят по той же схеме. Так, при взаимодействии соли 4 с борогидридом натрия в спирте образуется 3-хлор-5-фенил-12Н-изохино[2,3-а]хиназолин (7а), который также был получен при взаимодействии перхлората 3-хлор-5-фенил-7,12-дигидроизохино[2,3-а]хиназолиния 1с с пиридином. Следует отметить, что выход соединения 7а невысок как при восстановлении соли 4, так и депротонировании соли 1с. Также с невысоким выходом удалось получить

3-бром-5-(4-бромфенил)-12H-изохино[2,3-*a*]хиназолин (7b) из соли 1b. Очевидно, это связано с повышенной склонностью соединений 7a,b к окислению, что обусловливает трудности их выделения и очистки. Данные спектров ЯМР ¹H свежеприготовленных растворов соединений 7a,b в ДМСО-d₆ подтверждают их строение как продуктов депротонирования по положению 7 системы 7,12-дигидроизохино[2,3-*a*]хиназолина или присоединения гидрид-аниона по атому C-12 к соли 1c: сигнал метиленовой группы $C_{(12)}H_2$ наблюдается в области 5.1 и 5.02 м. д. (2H, c), а сигнал метинового протона $C_{(7)}H$ – при 5.5 м. д.

Взаимодействие перхлората 3-хлор-5-фенилизохино[2,3-*a*]хиназолин-13-ия **4** с аминами подчиняется закономерностям, установленным для соли 5-оксоизохинохиназолиния **6** [10]. Так, при взаимодействии с первичными аминами образуются 2-(2-иминометил)бензилзамещенные 6-хлор-4-фенилхиназолины **8a,b**, о чем свидетельствуют спектральные данные полученных продуктов. Особенностью их спектров ЯМР ¹Н является наличие сигнала протона иминогруппы в области 9.04 и 8.90 м. д., а ароматические протоны наблюдаются в виде неперекрывающихся групп сигналов различных спиновых систем, что позволяет их точно отнести. Также легко протекает взаимодействие соли **4** с вторичными аминами. Однако выделить и охарактеризовать соответствующие аддукты строения **7** не удалось в силу их высокой склонности к окислению.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Температуры плавления синтезированных соединений определены на нагревательном приборе типа Boetius и не подвергались коррекции. ИК спектры соединений (таблетки KBr) зарегистрированы на приборе Руе-Unicam SP3-300. Спектры ЯМР ¹Н и ¹³С записаны на приборе Varian Mercury 400 (400 и 100 МГц соответ-ственно) в ДМСО-d₆, внутренний стандарт ТМС, УФ спектры – на спектрофо-тометре Specord M400. Контроль за ходом реакций и чистотой полученных соединений осуществлялся с помощью ТСХ на пластинках Silufol UV-254.

Перхлорат 3-хлор-5-фенилизохино[2,3-*а***]хиназолин-13-ия (4)**. Раствор 2.21 г (5 ммоль) соли 3-хлор-5-фенилизохинохиназолиния **1с** в 10 мл нитробензола кипятят 30 мин. После охлаждения добавляют 30 мл ацетона. Образовавшийся желтый осадок отфильтровывают и промывают ацетоном. Выход 0.88 г (40%). Т. пл. >300 °C (MeCO₂H). УФ спектр (MeOH), λ_{max} , нм (ε -10⁻³): 209 (22.1), 224 (26.8), 316 (29.4), 358 (11.0), 515 (4.4). Найдено, %: С 59.82; H 2.99; Cl 16.10; N 6.37. C₂₂H₁₄Cl₂N₂O₄. Вычислено, %: С 59.88; H 3.20; Cl 16.07; N 6.35.

Перхлораты 5,5'-бис(арил)-3,3'-дигалоген-[7,7']би[изохино[2,3-*a*]хиназолин]-13,13'-диилия 5а-с. Раствор 10 ммоль соли 5-арилизохинохиназолиния 1а-с в 20 мл бензонитрила кипятили 30 мин. Растворитель отгоняют в вакууме. К оставшемуся маслу добавляют 20 мл 2-пропанола. Образовавшийся желтый осадок отфильтровывают и промывают 2-пропанолом. После перекристаллизации из уксусной кислоты получают желтое кристаллическое вещество – перхлораты димеров 5а-с.

Соединение 5а. Выход 2.13 г (40%). Т. пл. >300 °С (МеСО₂Н). Найдено, %: С 49.75; Н 2.13; Вг 15.10; СІ 6.70; N 7.97. С₄₄Н₂₄Вг₂Сl₂N₆O₁₂. Вычислено, %: С 49.88; Н 2.28; Вг 15.08; СІ 6.69; N 7.93.

Соединение 5b. Выход 4.24 г (75%). Т. пл. >300 °С (MeCO₂H). Найдено, %: С 46.71; H 2.01; Br 28.36; Cl 6.30; N 5.00. С₄₄H₂₄Br₄Cl₂N₄O₈. Вычислено, %: С 46.88; H 2.15; Br 28.35; Cl 6.29; N 4.97.

Соединение 5с. Выход 2.6 г (60%). Т. пл. >300 °С (МеСО₂Н). Найдено, %: С 59.92; Н 2.75; СІ 16.12; N 6.40. С₄₄Н₂₆СІ₄N₄O₈. Вычислено, %: С 60.02; Н 2.98; СІ 16.11; N 6.36.

Перхлорат 3,3'-дибром-5,5'-бис(4-метилфенил)-[7,7']би[изохино[2,3-*a*]хиназолин]-13,13'-диилия (5d). К раствору 1.45 г (5 ммоль) (2-амино-5-бромфенил)(4-метилфенил)метанона 2d в 20 мл ацетонитрила добавляют 1.26 г (6 ммоль) *о*-бромметилацетонитрила. Смесь кипятят 18 ч. Выпавший из охлажденной смеси осадок отфильтровывают. Твердое вещество растворяют в уксусной кислоте, к теплому раствору добавляют 3 мл 70% раствора хлорной кислоты и нагревают в течение 3 мин. Выпавший после охлаждения осадок отфильтровывают, промывают уксусной кислотой и ацетоном. Выход 3.39 г (68%). Т. пл. >300 °C (MeCO₂H). УФ спектр (MeOH), λ_{max} , нм (ε ·10⁻³): 208 (49.9), 232 (62.3), 318 (59.2), 540 (10.9). Найдено, %: С 55.27; H 2.91; Br 16.05; Cl 7.20; N 5.65. С₄₆H₃₀Br₂Cl₂N₄O₈. Вычислено, %: С 55.39; H 3.03; Br 16.02; Cl 7.11; N 5.62.

3-Хлор-5-фенил-12Н-изохино[2,3-*а***]хиназолин (7а)**. А. К суспензии 2.2 г (5 ммоль) соли 3-хлор-5-фенилизохинохиназолиния **4** в 20 мл метанола добавляют порциями 10 ммоль NaBH₄ и нагревают в течение 1 ч. После охлаждения из рас-твора выпадает темно-синий осадок соединения **7а**. Его отфильтровывают, тщательно промывают 15% раствором соды, водой и перекристаллизовывают из 2-пропанола. Выход 0.43 г (25%). Т. пл. 136–138 °C (*i*-PrOH). Найдено, %: С 76.88; H 4.35; Cl 10.37; N 8.25. C₂₂H₁₅ClN₂. Вычислено, %: С 77.08; H 4.41; Cl 10.34; N 8.17.

Б. Растворяют 2.21 г (5 ммоль) перхлората 3-хлор-5фенилизохинохиназолиния **1с** при нагревании в 10 мл пиридина. К раствору добавляют 50 мл воды, осадок отфильтровывают, промывают водой, спиртом. Выход 0.34 г (20%).

3-Бром-(4-бромфенил)-12Н-изохино[2,3-*а***]хиназолин (7b)** получают по методу Б, описанному для соединения **7a**, используя 2.83 г (5 ммоль) перхлората 3-бром-5-(4-бромфенил)изохинохиназолиния **1b**. Выход 0.51 г (22%). Т. пл. 168–170 °С (*i*-PrOH). Найдено, %: С 56.36; Н 2.83; Br 34.31; N 6.15. С₂₂H₁₄Br₂N₂. Вычислено, %: С 56.68; Н 3.03; Br 34.28; N 6.01.

N-({2-[(6-Хлор-4-фенил-2-хиназолинил)метил]фенил}метилиден)(фенил)метанамин (8а). Растворяют при нагревании 0.44 г (1 ммоль) перхлората 3-хлор-5-фенилизохинохиназолиния **4** в 4 мл бензиламина. Нагревают еще в течение 3 мин и оставляют на ночь. К раствору добавляют 50 мл воды, осадок отфильтровывают, промывают водой, спиртом. Выход 0.28 г (63%). Т. пл. 122–124 °C (*i*-PrOH). ИК спектр, v, см⁻¹: 1630 (C=N), 1550, 1490, 1390, 700. УФ спектр (MeOH), λ_{max} , нм (ε •10⁻³): 206 (132.3), 232 (133.3), 320 (23.5), 520 (1.6). Спектр ЯМР ¹H, δ , м. д. (J, Гц): 9.04 (1H, с, –N=CH–); 7.96 (1H, д, ⁴J = 2.4, H-5'); 7.93 (2H, м, H-6,8'); 7.87 (1H, д. д, ³J = 8.8, ⁴J = 2.4, H-7'); 7.65 (2H, м, H-2",6"); 7.55 (3H, м, H-3"–5"); 7.41 (1H, д, ³J = 8.0, H-3); 7.36 (1H, т, ³J = 8.0, H-4); 7.28 (1H, т, ³J = 8.0, H-5); 7.15 (5H, с, –NCH₂–C₆<u>H</u>₅; 4.72 (2H, с, –NC<u>H</u>₂–Ph); 4.71 (2H, с, CH₂). Найдено, %: С 77.66; H 4.83; Cl 7.93; N 9.40. C₂₉H₂₂ClN₃. Вычислено, %: С 77.76; H 4.95; Cl 7.91; N 9.38.

N-({2-[(6-Хлор-4-фенил-2-хиназолинил)метил]фенил}метилиден)-2-пропанамин (8b) получают по методике, описанной для соединения **8a**, используя **4** мл *изо*-пропиламина. Выход 0.2 г (51%). Т. пл. 130–132 °С (*i*-PrOH). ИК спектр, v, см⁻¹: 1625 (C=N), 1550, 1490, 695. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 8.89 (1H, с, –N=CH–); 7.98 (1H, д, ⁴*J* = 2.4, H-5'); 7.95 (1H, д, ³*J* = 8.8, H-8'); 7.88 (1H, д. д, ³*J* = 8.8, ⁴*J* = 2.4, H-7'); 7.86 (1H, д. д, ³*J* = 8.0, ⁴*J* = 1.6, H-6); 7.68 (2H, м, H-2",6"); 7.59 (3H, м, H-3"–5"); 7.38 (1H, д, ${}^{3}J$ = 8.0, H-3); 7.32 (1H, т. д, ${}^{3}J$ = 8.0, ${}^{4}J$ = 1.6, H-4); 7.25 (1H, т. ${}^{3}J$ = 8.0, H-5); 4.66 (2H, c, CH₂); 3.47 (1H, м, –C<u>H</u>(CH₃)₂); 1.07 (6H, д, ${}^{3}J$ = 6.4, –CH(C<u>H</u>₃)₂). Найдено, %: С 74.89; H 5.32; Cl 8.88; N 10.59. С₂₅H₂₂ClN₃. Вычислено, %: С 75.08; H 5.54; Cl 8.87; N 10.51.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. М. Кисиль, Л. М. Потиха, А. В. Туров, В. А. Ковтуненко, XГС, 280 (2008).
- 2. B. C. Uff, B. L. Joshi, F. D. Popp, J. Chem. Soc., Perkin Trans. 1, 2295 (1986).
- 3. В. М. Кисиль, В. А. Ковтуненко, А. В. Туров, А. К. Тылтин, Ф. С. Бабичев, ДАН, **306**, 628 (1989).
- В. М. Кисиль, Л. М. Потиха, В. А. Ковтуненко, С. Н. Томачинский, Ф. С. Бабичев, *XГС*, 664 (1995). [*Chem. Heterocycl. Comp.*, **31**, 586 (1995)].
- 5. Ф. С. Бабичев, В. К. Патратий, В. А. Ковтуненко, Н. Г. Проданчук, В. Г. Синченко, В. М. Кисель, *Хим.-фарм. журн.*, **24**, № 5, 32 (1990).
- 6. W. Wendelin, H. Keimelmayr, M. Huber, Sci. Pharm., 56, 195 (1988).
- 7. F. Ishikawa, A. Kosasayama, K. Abiko, Jpn. Pat. 7844593; Chem. Abstr., 65, 18601 (1966).
- 8. S. C. Bell, US Pat. 3506663; Chem. Abstr., 73, 25511 (1970).
- 9. S. C. Bell, P. H. L. Wci, J. Heterocycl. Chem., 5, 185 (1968).
- 10. В. М. Кисиль, Л. М. Потиха, В. А. Ковтуненако, А. В. Туров, *XГС*, 522 (1995). [*Chem. Heterocycl. Comp.*, **31**, 457 (1995)].
- 11. Л. М. Потиха, В. А. Ковтуненко, А. В. Тарасевич, Ж. Ж. Вольф, Ш. Андре, *XГС*, 430 (2007). [*Chem. Heterocycl. Comp.*, **43**, 347 (2007)].
- 12. Л. М. Потиха, В. А. Ковтуненко, А. В. Тарасевич, *XГС*, 1833 (2007). [*Chem. Heterocycl. Comp.*, **43**, 1551 (2007)].
- 13. В. М. Кисель, Л. М. Потиха, В. А. Ковтуненко, А. К. Тылтин, В. С. Никитченко, Ф. С. Бабичев, *Укр. хим. журн.*, **58**, 790 (1992).

Киевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: potikha_l@meil.ru Поступило 09.04.2007