А. А. Чеснюк, С. Н. Михайличенко^а, В. Н. Заплишный^а, Л. Д. Конюшкин⁶, С. И. Фирганг⁶

ПРОИЗВОДНЫЕ сим-ТРИАЗИНА

8*. СИНТЕЗ И НЕКОТОРЫЕ ПРЕВРАЩЕНИЯ 4,6-ДИЗАМЕЩЕННЫХ 2-(1H-ПИРРОЛИЛ)-1,3,5-ТРИАЗИНОВ

С целью получения новых сочлененных полигетероциклических систем с потенциальной биоактивностью нами исследовано взаимодействие 2,5-диметокситетрагидрофурана с 4,6-дизамещенными 2-амино-1,3,5-триазинами. Оптимизированы условия реакции, получен ряд новых 4,6-дизамещенных 2-(1H-1-пирролил)*сим*-триазинов. Установлено, что выход продуктов определяется характером заместителей в положениях 4 и 6 триазинового цикла и условиями реакции.

Ключевые слова: 4,6-дизамещенные 2-амино-1,3,5-триазины, 2,5-диметокситетрагидрофуран, 4-замещенные 2-амино-(1,3,5-триазинил)-6-иминотрифенилфосфораны, 4-замещенные 2-(1H-1-пирролил)-6-(1,2,3-триазол-1-ил)-1,3,5-триазины.

В продолжение исследований по синтезу сопряженных гетероциклических систем представлялось целесообразным синтезировать новые соединения, содержащие одновременно 1,3,5-триазиновый, пир- рольный и 1,2,3-триазольный циклы. О синтезе производных *сим*-триазина, содержащих 1,2,3-триазольные фрагменты, мы сообщали ранее [2, 3]. Целью настоящей работы является направленный синтез новых производных 4,6-дизамещенных 2-(1H-1-пирролил)-1,3,5-триазинов с потенциальной биоактивностью, изучение их свойств и превращений.

Известно [4], что 2-(N-пирролил)-4,6-дихлор-1,3,5-триазины образуются с выходом около 37% в результате взаимодействия 2,4,6-трихлор-1,3,5-триазина с пирролом или пирролкалием (литием) в присутствии AlCl₃. Однако данный способ пригоден только при замещении первого хлора в цианурхлориде.

В [5] было показано, что первичную аминогруппу алкил- и ариламинов можно использовать в качестве азотного компонента для построения пиррольного цикла в реакции с 2,5-диметокситетрагидрофураном. Последний при этом используют в качестве скрытого 1,4-дикарбонильного соединения с высокими выходами получают соответствующие N-алкил- или N-арилзамещенные пирролы.

Авторы [6] на примере двух соединений показали, что производные пиразолинотриазинов, содержащие в своем составе первичную аминогруппу, также образуют пирролы с 2,5-диметокситетрагидрофураном с

^{*} Сообщение 7 см. [1].

выходами 72 и 83% при кипячении в течение 10 ч в смеси диоксан-440

уксусная кислота.

Исходные моно- и диаминопроизводные *сим*-триазина **1а–m** получали по известным методикам [7]. Физико-химические и спектральные характеристики некоторых из них приведены в табл. 1 и 2.

Исследования показали, что условия реакции оказывают заметное влияние на время проведения синтеза и выход целевых соединений. Установлено, что сокращение времени реакции и лучшие выходы 4,6-дизамещенных 2-(1H-пирролил)-1,3,5-триазинов **2а-m** достигаются при кипячении реагентов в толуольном растворе, в присутствии P_2O_5 и молярном соотношении амино-*сим*-триазин **1** : 2,5-диметокситетрагидрофуран : P_2O_5 , 1 : 1.20 : 1. Превращения осуществляли по схеме

1,2 a $R^1 = NPh_2$, $R^2 = NMe_2$; **b** $R^1 = NPh_2$, $R^2 = NEt_2$; **c** $R^1 = NPh_2$, $R^2 = CN$; **d** $R^1 = NPh_2$, $R^2 = 1$ -морфолино; **e** $R^1 = NPh_2$, $R^2 = 1$ -пиперидино; **f** $R^1 = Ph$, $R^2 = NH_2$; **g** $R^1 = Ph$, $R^2 = 1$ -пирролил; **h** $R^1 = OMe$, $R^2 = 1$ -морфолино; **i** $R^1 = NPh_2$, $R^2 = N_3$; **j** $R^1 = NEt_2$, $R^2 = N_3$; **k** $R^1 = NPr_2$, $R^2 = N_3$; **l** $R^1 = N(Me)CH_2Ph$, $R^2 = N_3$; **m** $R^1 = NMePh$, $R^2 = N_3$; **k** $R^1 = NEt_2$; **4** a $R^1 = NPh_2$, $R^3 = Ac$; **b** $R^1 = NEt_2$, $R^3 = Ac$; **c** $R^1 = NPr_2$, $R^3 = Ac$; **d** $R^1 = N(Me)CH_2Ph$, $R^3 = Ac$; **e** $R^1 = NPr_2$, $R^3 = COOEt$; **f** $R^1 = NPr_2$, $R^3 = COOEt$; **g** $R^1 = N(Me)CH_2Ph$, $R^3 = COOEt$; **h** $R^1 = NMePh$, $R^3 = COOEt$

При эквимолярном соотношении реагентов время реакции увеличивается с 1–2 до 2.5–4 ч. При этом выход целевых продуктов снижается на 7–10%. Применение абсолютного толуола в качестве растворителя обеспечивает хорошую растворимость исходных веществ и достаточно высокую температуру реакционной смеси, приводя к высоким

Таблица 1

Спектральные характеристики синтезированных соединений

Соеди-					
H	ИК спектр, v, см ⁻¹	Спектр ЯМР ¹ Н, б, м. д., КССВ (<i>J</i> , Гц)			
ение					
1	2	3	4		
1 a	3330, 3395 (NH ₂); 1550, 1580 (C=C, C=N)	2.73 (3H, уш. с, NCH ₃); 3.00 (3H, уш. с, NCH ₃); 5.85 (2H, уш. с, NH ₂); 7.10 (2H, т, <i>J</i> = 8.0, <i>p</i> -C ₆ H ₅); 7.21 (4H, д, <i>J</i> = 8.0, <i>o</i> -C ₆ H ₅); 7.27 (4H, т, <i>J</i> = 8.0, <i>m</i> -C ₆ H ₅)			
1 b	3330, 3395 (NH ₂); 1540, 1560 (C=C, C=N)	0.92 (3H, уш. с, CH ₂ в NEt ₂); 1.10 (3H, уш. с, CH ₃ в NEt ₂); 3.20 (2H, уш. с, CH ₂ в NEt ₂); 3.50 (2H, уш. с, CH ₂ в NEt ₂); 5.73 (2H, уш. с, NH ₂); 7.09 (2H, т, <i>J</i> = 8.0, <i>p</i> -C ₆ H ₅); 7.22 (4H, д, <i>J</i> = 8.0, <i>o</i> -C ₆ H ₅); 7.27 (4H, т, <i>J</i> = 8.0, <i>m</i> -C ₆ H ₅)			
1 c	3290, 3400 (NH ₂); 1500, 1540 (C=C, C=N); 2220 (C=N)	7.23 (2H, т, <i>J</i> = 8.0, <i>p</i> -C ₆ H ₅); 7.26 (4H, д, <i>J</i> = 8.0, <i>o</i> -C ₆ H ₅); 7.37 (4H, т, <i>J</i> = 8.0, <i>m</i> -C ₆ H ₅); 7.41 и 7.32 (2H, уш. с, NH ₂)			
1d	3320, 3390 (NH ₂); 1530, 1600 (C=C, C=N); 1060, 1095 (C–O–C)	3.55 (8H, уш. с, 2NCH ₂ , 2OCH ₂); 5.90 (2H, уш. с, NH ₂); 7.11 (2H, т, <i>J</i> = 8.0, <i>p</i> -C ₆ H ₅); 7.21 (4H, д, <i>J</i> = 8.0, <i>o</i> -C ₆ H ₅); 7.28 (4H, т, <i>J</i> = 8.0, <i>m</i> -C ₆ H ₅)			
1 e	3370 (ym. c, NH ₂); 1555, 1610 (C=C, C=N)	1.40–1.65 (6H, м, 3CH ₂); 3.52 (4H, уш. с, 2NCH ₂); 5.77 (2H, уш. с, NH ₂); 7.10 (2H, т, <i>J</i> = 8.0, <i>p</i> -C ₆ H ₅); 7.21 (4H, д, <i>J</i> = 8.0, <i>o</i> -C ₆ H ₅); 7.27 (4H, т, <i>J</i> = 8.0, <i>m</i> -C ₆ H ₅)			
1g	3390 (уш. с, NH ₂); 1500, 1520, 1590 (C=C, C=N)	6.25 (2H, T, $J = 2.3$, 2CH); 7.88 (2H, T, $J = 2.3$, 2NCH); 7.39 (2H, c, NH ₂); 7.48 (2H, T, $J = 8.0$, m -C ₆ H ₅); 7.53 (1H, T, $J = 8.0$, p -C ₆ H ₅); 8.43 (2H, π , $J = 8.0$, o -C ₆ H ₅)			
1i	3290, 3400 (NH₂); 2100 (N ₃); 1500, 1540 (C=C, C= N)	6.20 (2H, уш. с, NH ₂); 7.10–7.35 (10H, м, 2C ₆ H ₅)			
1j	3400 (ym. c, NH₂) 2100 (N ₃); 1560, 1610 (C=C, C=N)	1.03 (6H, т, <i>J</i> = 7.7, 2CH ₃ в NEt ₂); 3.47 (4H, кв, <i>J</i> = 7.7, 2CH ₂ в NEt ₂); 5.75 (2H, уш. с, NH ₂)			

442

1k	3350 (уш. с, NH₂) 2110 (N ₃); 1550, 1610 (С=С, С=N)	0.55–0.90 (6H, м, 2CH ₃ в NPr ₂); 1.7–1.95 (4H, м, 2CH ₂ в NPr ₂); 3.30–3.60 (4H, м, 2CH ₂ N в NPr ₂); 5.85 (2H, уш. с, NH ₂)	
1	1 3300, 3390 (NH₂); 2110 (N ₃); 1530, 1600 (C=C, C=N)	3.10 (3H, с, NCH ₃); 4.75–4.90 (2H, м, NCH ₂ C ₆ H ₅); 5.90 (2H, уш. с, NH ₂); 7.20–7.35 (5H, м, C ₆ H ₅)	
n	1 3330, 3395 (NH ₂); 2110 (N ₃); 1520, 1560, (C=C, C=N)	3.60 (3H, с, NCH ₃); 7.23–7.35 (5H, м, C ₆ H ₅); 5.95 (2H, уш. с, NH ₂)	
ı	2 1530, 1580, 1600 (C=C, C=N)	2.86 (3H, c, NCH ₃); 3.38 (3H, c, NCH ₃); 6.07 (2H, T, $J = 2.3$, 2CH); 7.19 (2H, T, $J = 7.8$, p -C ₆ H ₅); 7.29 (4H, π , $J = 7.8$, o -C ₆ H ₅); 7.31 (4H, T, $J = 7.8$, m -C ₆ H ₅); 7.37 (2H, ym. T, $J = 2.3$, 2CHN)	3 56 (45)
b	2 1590, 1550, 1620 (C=C, C=N)	1.0 (3H, т, <i>J</i> = 7.4, CH ₃ в NEt ₂); 1.2 (3H, т, <i>J</i> =7.4, CH ₃ в NEt ₂); 3.30 (2H, кв, <i>J</i> = 7.4, CH ₂ в NEt ₂); 3.60 (2H, кв, <i>J</i> = 7.4, CH ₂ в NEt ₂); 6.07 (2H, т, <i>J</i> = 2.3, 2CH); 7.17 (2H, т, <i>J</i> = 7.8, <i>p</i> -C ₆ H ₅); 7.29 (4H, д, <i>J</i> = 7.8, <i>o</i> -C ₆ H ₅); 7.31 (4H, т, <i>J</i> = 7.8, <i>m</i> -C ₆ H ₅); 7.37 (2H, т, <i>J</i> = 2.3, 2CHN)	3 84 (25)
c	2220 (CN), 1540, 1565, 1595 (C=C, C=N)	6.35 (2H, т, $J = 2.3$, 2CH); 7.34 (2H, уш. с, 2CHN); 7.37 (2H, т, $J = 7.8$, p -C ₆ H ₅); 7.44 (4H, д, $J = 7.8$, o -C ₆ H ₅); 7.49 (4H, т, $J = 7.8$, m -C ₆ H ₅)	338 (60)
d	1020, 1140 (C–O–C); 1510, 1590, 1610 (C=C, C=N)	3.4–3.9 (8H, M, Σ 2NCH ₂ , 2OCH ₂); 6.1 (2H, T, J = 2.3, 2CH); 7.21 (2H, T, J = 7.8, p -C ₆ H ₅); 7.3 (4H, π , J = 7.8, o -C ₆ H ₅); 7.38 (4H, T, J = 7.8, m -C ₆ H ₅); 7.38 (2H, T, J = 2.3, 2CHN)	398 (75)
e	1510, 1555, 1625 (C=C, C=N)	1.47 (2H, м, CH ₂); 1.6 (2H, м, CH ₂); 1.67 (2H, м, CH ₂); 3.49 (2H, м, NCH ₂); 3.82 (2H, м, NCH ₂); 6.08 (2H, т, <i>J</i> = 2.3, 2CH); 7.19 (2H, т, <i>J</i> = 7.8, <i>p</i> -C ₆ H ₅); 7.26 (4H, д, <i>J</i> = 7.8, <i>o</i> -C ₆ H ₅); 7.31 (4H, т, <i>J</i> = 7.8, <i>m</i> -C ₆ H ₅); 7.35 (2H, т, <i>J</i> = 2.3, 2CHN)	396 (60)
2f	3310, 3390 (NH ₂), 1530, 1570, 1620 (C=C, C=N)	6.25 (2H, τ , $J = 2.3$, 2CH); 7.3 (2H, ym. c, NH ₂); 7.48 (2H, τ , $J = 7.8$, m -C ₆ H ₅); 7.57 (1H, τ , $J = 7.8$, p -C ₆ H ₅); 8.42 (2H, π , $J = 7.8$, o -C ₆ H ₅); 7.78 (2H, τ , $J = 2.3$, 2CHN)	237 (70)
2g	1520, 1555, 1605 (C=C, C=N)	6.38 (4H, T, $J = 2.3$, 4CH); 7.57 (2H, T, $J = 7.8$, m -C ₆ H ₅); 7.65 (1H, T, $J = 7.8$, p -C ₆ H ₅); 7.92 (4H, T, $J = 2.3$, 4CHN); 8.07 (2H, π , $J = 7.8$, o -C ₆ H ₅)	287 (100)

Окончание таблицы 1

	1 2	3	4		
h	2 1570, 1515, 1600 (C=C, C=N); 1045, 1150 (C-O-C)	3.67 (4H, м, 2NCH ₂); 3.8–3.9 (4H, м, 2OCH ₂); 3.96 (3H, с, OCH ₃); 6.18 (2H, т, <i>J</i> = 2.3, 2CH); 7.60 (2H, т, <i>J</i> = 2.3, 2CHN)	2 61 (50)		
2i	2105 (N ₃), 1530, 1565, 1605 (C=C, C=N)	6.30 (2H, т, <i>J</i> = 2.3, 2CH); 7.27 (2H, уш. с, <i>J</i> = 2.3, 2CHN); 7.47 (2H, т, <i>J</i> = 7.8, <i>p</i> -Ph); 7.54 (4H, д, <i>J</i> = 7.8, <i>o</i> -Ph);); 7.57 (4H, т, <i>J</i> = 7.8, <i>m</i> -Ph);	354 (45)		
2ј	2100 (N ₃), 1540, 1580, 1600 (C=C, C=N)	1.1 (3H, т, <i>J</i> = 7.4, CH ₂ в NEt ₂); 1.25 (3H, т, <i>J</i> = 7.4, CH ₂ в NEt ₂); 3.35 (2H, кв, <i>J</i> = 7.4, CH ₂ в NEt ₂); 3.70 (2H, кв, <i>J</i> = 7.4, CH ₂ в NEt ₂); 6.20 (2H, т, <i>J</i> = 2.3, 2CH); 7.30 (2H, уш. с, 2CHN)			
2k	2110 (N ₃), 1560, 1585, 1615 (C=C, C=N)	6.20 (2H, т, <i>J</i> = 2.3, 2CH); 7.30 (2H, уш. с, 2CHN); 0.40–0.75 (6H, м, 2CH ₂ CH ₂ CH ₂ N); 1.1–1.50 (4H, м, 2CH ₂ CH ₂ N); 3.40–3.70 (4H, м, 2CH ₂ N)	286 (70)		
21	2110 (N ₃), 1550, 1590, 1610 (C=C, C=N)	6.17 (2H, т, <i>J</i> = 2.3, 2CH); 7.35 (2H, уш. с, 2CHN); 4.50–4.85 (2H, м, NCH ₂ C ₆ H ₅); 7.25–7.40 (5H, м, C ₆ H ₅)	306 (75)		
2m	2120 (N ₃), 1520, 1560, 1620 (C=C, C=N)	3.40 (3H, c, NCH ₃); 6.27 (2H, т, <i>J</i> = 2.3, 2CH); 7.12 (2H, уш. c, 2CHN); 7.23–7.35 (5H, м, C ₆ H ₅)	292 (60)		
а	3 1530, 1570, 1615 (C=C, C=N)	6.25 (2H, т, <i>J</i> = 2.3, 2CH); 7.30 (2H, т, <i>J</i> = 2.3, 2CHN); 6.95–7.20 (10H, м, 2С ₆ H ₅); 7.40–7.65 (15H, м, 3С ₆ H ₅)	588 (60)		
3 b	1550, 1590, 1610 (C=C, C=N)	0.60–0.95 (6H, м, 2CH ₂ в NEt ₂); 2.90–3.05 (4H, м, 2CH ₂ в NEt ₂); 6.20 (2H, т, <i>J</i> = 2.3, 2CH); 7.45 (2H, т, <i>J</i> = 2.3, 2CHN); 7.50–7.75 (15H, м, 3C ₆ H ₅)	492 (80)		
а	4 1505, 1575, 1600 (C=C, C=N, N=N), 1690 (C=O)	2.50 (3H, c, COCH ₃); 2.62 (3H, c, 5'-CH ₃); 6.37 (2H, т, <i>J</i> = 2.3, 2CH); 7.00 (4H, м, <i>о</i> - и <i>м</i> -C ₆ H ₅); 7.38 (1H, м, <i>р</i> -C ₆ H ₅); 7.65 (2H, т, <i>J</i> = 2.3, 2CHN)	436 (70)		
4b	1540, 1570, 1595 (C=C, C=N, N=N), 1680 (C=O)	1.17–1.27 (6H, м, 2CH ₃ в NEt ₂); 2.65 (3H, с, COCH ₃); 2.90 (3H, с, 5'-CH ₃); 3.67 (2H, кв, <i>J</i> = 7.3, CH ₂ в NEt ₂); 3.75 (2H, кв, <i>J</i> = 7.3, CH ₂ в NEt ₂); 6.40 (2H, т, <i>J</i> = 2.3, 2CH); 7.74 (2H, т, <i>J</i> = 2.3, 2CHN)	340 (40)		

		1	
4c	1540, 1570, 1595 (C=C, C=N, N=N), 1680 (C=O)	0.90 (3H, т, <i>J</i> = 7.5, CH ₃ в NPr ₂); 0.95 (3H, т, <i>J</i> = 7.5, CH ₃ в NPr ₂); 1.60–1.75 (4H, м, 2CH ₂ в NPr ₂); 2.66 (3H, с, COCH ₃); 2.9 (3H, с, 5'-CH ₃); 3.60 (2H, т, <i>J</i> = 7.5, CH ₂ N в NPr ₂); 3.67 (2H, т, <i>J</i> = 7.5, CH ₂ N в NPr ₂); 6.40 (2H, т, <i>J</i> = 2.3, 2CH); 7.72 (2H, т, <i>J</i> = 2.3, 2CHN)	368 (55)
4d	1525, 1550, 1600 (C=C, C=N, N=N), 1700 (C=O)	2.65 (3H, c, COCH ₃); 2.85 (3H, c, 5'-CH ₃); 3.25 (3H, c, NCH ₃); 4.95–5.05 (2H, м, NCH ₂ C ₆ H ₅); 6.40 (2H, м, 2CH); 7.30–7.45 (5H, м, C ₆ H ₅); 7.77 (2H, м, 2CHN)	388 (90)
4 e	1500, 1545, 1615 (C=C, C=N, N=N), 1715 (C=O)	1.32 (3H, т, <i>J</i> = 7.4, CH ₃ в OEt); 2.60 (3H, с, 5'-CH ₃); 4.33 (2H, кв, <i>J</i> = 7.4, CH ₂ в OEt); 6.36 (2H, т, <i>J</i> = 2.3, 2CH); 7.45 (2H, т, <i>J</i> = 2.3, 2CHN); 7.47 (2H, м, <i>p</i> -C ₆ H ₅); 7.50 (8H, м, <i>o</i> - и <i>m</i> -C ₆ H ₅)	466 (50)
4f	1510, 1550, 1580 (C=C, C=N, N=N), 1710 (C=O)	0.92 (3H, т, <i>J</i> = 7.5, CH ₂ в NPr ₂); 0.95 (3H, т, <i>J</i> = 7.5, CH ₃ в NPr ₂); 1.35 (3H, т, <i>J</i> = 7.5, CH ₃ в OEt); 1.6–1.75 (4H, м, 2CH ₂ в NPr ₂); 2.93 (3H, с, 5'-CH ₃); 3.60 (2H, т, <i>J</i> = 7.5, CH ₂ N в NPr ₂); 3.67 (2H, т, <i>J</i> = 7.5, CH ₂ N в NPr ₂); 4.40 (2H, кв, <i>J</i> = 7.5, CH ₂ в OEt); 6.40 (2H, т, <i>J</i> = 2.3, 2CH); 7.75 (2H, т, <i>J</i> = 2.3, 2CHN)	398 (65)
lg	1515, 1555, 1590 (C=C, C=N, N=N), 1700 (C=O)	1.35 (3H, т, <i>J</i> = 8.0, CH ₃ в OEt); 2.95 (3H, с, 5'-CH ₃); 3.25 (3H, с, NCH ₃); 4.37 (2H, кв, <i>J</i> = 8.0, CH ₂ в OEt); 5.00 (2H, с, N <u>CH₂</u> C ₆ H ₅); 6.40 (2H, т, <i>J</i> = 2.3, CH); 7.32 (1H, м, <i>p</i> -C ₆ H ₅); 7.38 (4H, м, <i>o</i> - и <i>m</i> -C ₆ H ₅); 7.75 (2H, т, <i>J</i> = 2.3, 2CHN)	418 (100)
4h	1530, 1580, 1620 (C=C, C=N, N=N), 1700 (C=O)	1.35 (3H, уш. м, CH ₃ в OEt); 2.75 (3H, уш. с, 5'-CH ₃); 3.65 (3H, с, NCH ₃); 4.35 (2H, уш. м, CH ₂ в OEt); 6.38 (2H, уш. с, 2CH); 7.50 (2H, уш. с, 2CHN); 7.35–7.55 (5H, м, C ₆ H ₅)	404 (95)

(73–93%) выходам целевых продуктов **2а–m**. При использовании же более низкокипящего растворителя (бензола) продолжительность реакции увеличивается на 3–3.5 ч. Необходимо отметить, что проведение синтеза в ледяной уксусной кислоте в соответствии с [6, 8] требует более продолжительного нагревания (до 10 ч.); выходы соединений **2а–h** при этом не превышали 45–55%, а содержащих азидную группу **2i–m** (табл. 1 и 2) и того меньше (до 30%), что, по-видимому, связано с побочными реакциями, приводящими к быстрому осмолению.

Важным фактором, влияющим на скорость данной реакции, является и пространственный. Так, наиболее реакционноспособными оказались амино-*сим*-триазины **1а,с,f,h**, содержащие в положениях 4 или 6 триазинового цикла заместители небольшого объема (ОСН₃, N(CH₃)₂ и т. д.). Наибольшая продолжительность реакции наблюдалась в случае использования исходных соединений 1d,е, содержащих в указанных положениях одновременно остатки дифениламина, пиперидина или морфолина. В то же время наличие небольших по объему акцепторных групп, понижающих нуклеофильность аминогруппы (нитрильная и азидная), вопреки ожиданиям, значительно увеличило скорость образования конечных продуктов. Так, при использовании 2-амино-6-циано(азидо)-сим-триазинов соответствующие пирролил-*сим*-триазины 2с.i-т образуются с хорошими выходами (73–93%) уже после непродолжительного (0.5–1 ч) кипячения в среде толуола в присутствии P₂O₅. Вероятно это связано, с одной стороны, с отсутствием пространственно затрудненных заместителей в составе исходных веществ, а, с другой, с использованием апротонного растворителя. Напомним, что выходы соединений 2і-т при проведении реакции в среде уксусной кислоты (метод Б, экспериментальная часть) не превышали 30%.

Состав и структура пиррол-производных *сим*-триазина **2а**-**m** подтверждены данными элементного анализа, ИК и ЯМР ¹Н спектроскопии и масс-спектрометрии.

ИК спектры моно(ди)-N-пирролил-*сим*-триазинов **2а-m** содержат переменной интенсивности максимумы поглощения при 1510–1625 см⁻¹, характерные для валентных колебаний *сим*-триазинового кольца [9] и заместителей в положениях 4,6 *сим*-триазинового цикла. В то же время в спектрах всех синтезированных соединений наблюдается исчезновение уширенных полос поглощения валентных колебаний в области 3470–3270 см⁻¹, относящихся к колебаниям первичных аминогрупп в *сим*-триазинах **1а-m** [10] (табл. 1).

В спектрах ЯМР ¹Н синтезированных производных 1,3,5-триазинов **2а-m** присутствие всех сигналов протонов групп заместителей в положениях 4 и 6 триазинового цикла служит надежным подтверждением структуры синтезированных соединений (табл. 1). Следует отметить интересный экспериментальный факт, а именно, сигналы протонов H-2–5 в большинстве N-замещенных пирролов **1g, 2a-m, 3a,b, 4a-h** представлены в виде триплетов в интервале 7.12–7.92 м. д. с КССВ 2.3 Гц и интенсивностью в две протонные единицы. Сигналам протонов H-3 и H-4 в спектрах соединений также отвечает триплет в области 6.07–6.38 м. д., смещенный в более сильное поле, что характерно для N-замещенных пирролов такого типа [10].

Таблица 2

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл.,	Выход,
нение		С	Н	Ν	٠C	%0
1	2	3	4	5	6	7
1a	$C_{17}H_{18}N_6$	<u>66.94</u> 66.65	<u>5.89</u> 5.92	<u>27.17</u> 27.43	202–203	65
1b	$C_{19}H_{22}N_6$	<u>68.48</u> 68.24	<u>6.77</u> 6.63	<u>24.75</u> 25.13	165	70
1c	$C_{16}H_{12}N_{6}$	<u>66.84</u> 66.65	$\frac{4.44}{4.20}$	<u>28.72</u> 29.15	186–187	86
1d	$C_{19}H_{20}N_6O$	<u>65.68</u> 65.50	<u>5.87</u> 5.79	<u>24.01</u> 24.12	202–203	73
1e	$C_{20}H_{22}N_6$	<u>69.61</u> 69.34	<u>6.37</u> 6.40	<u>24.02</u> 24.26	211–212	68
1g	$C_{13}H_{11}N_5$	<u>65.99</u> 65.81	<u>4.72</u> 4.67	<u>29.27</u> 29.52	153–154	76
1i	$C_{15}H_{12}N_8$	<u>59.34</u> 59.20	<u>4.15</u> 3.98	<u>36.60</u> 36.82	147–148	80
1j	$C_{7}H_{12}N_{8}$	$\frac{40.49}{40.38}$	<u>5.89</u> 5.81	<u>53.70</u> 53.81	121–122	83
1k	$C_9H_{16}N_8$	<u>45.55</u> 45.75	<u>7.00</u> 6.83	<u>47.25</u> 47.42	110–111	71
11	$C_{11}H_{12}N_8$	<u>51.70</u> 51.56	<u>4.87</u> 4.72	<u>43.55</u> 43.72	98–99	76
1m	$C_{14}H_{12}N_8$	<u>49.68</u> 49.58	<u>4.28</u> 4.16	<u>46.04</u> 46.26	177–178	70
2a	$C_{21}H_{20}N_6$	<u>70.64</u> 70.76	<u>5.74</u> 5.66	<u>23.49</u> 23.58	168–170	73 (метод А)
2b	$C_{23}H_{24}N_6$	<u>71.71</u> 71.85	<u>6.37</u> 6.29	<u>22.00</u> 21.86	116–117	82
2c	$C_{20}H_{14}N_6$	<u>71.13</u> 70.99	$\frac{4.03}{4.17}$	<u>24.71</u> 24.84	214–215	91
2d	$C_{23}H_{22}N_6O$	<u>69.50</u> 69.32	<u>5.62</u> 5.57	<u>20.97</u> 21.09	173–174	85
2e	$C_{24}H_{24}N_6$	<u>72.54</u> 72.70	<u>6.15</u> 6.10	$\frac{21.33}{21.20}$	142–143	77
2f	$C_{13}H_{11}N_5$	<u>65.68</u> 65.81	<u>4.77</u> 4.67	<u>29.54</u> 29.52	153–155	76
2g	$C_{17}H_{13}N_5$	<u>70.93</u> 71.06	<u>4.47</u> 4.56	<u>24.49</u> 24.38	185–187	79
2h	$C_{12}H_{15}N_5O_2$	<u>55.01</u> 55.16	<u>5.89</u> 5.79	<u>26.70</u> 26.81	89–90	85
2i	$C_{19}H_{14}N_8$	<u>64.45</u> 64.40	$\frac{4.07}{3.98}$	<u>31.58</u> 31.62	126–128	93
2j	$C_{11}H_{14}N_8$	<u>50.90</u> 51.15	<u>5.70</u>	<u>43.72</u> 43.38	_*	77

Физико-химические характеристики соединений 1a-e, g, i-m, 2a-m, 3a,b и 4a-h

Окончание таблицы 2 447

1	2	3	4	5	6	7
2k	$C_{13}H_{18}N_8$	<u>54.27</u> 54.53	<u>6.67</u> 6.34	<u>39.45</u> 39.13	_*	72
21	$C_{15}H_{14}N_8$	<u>54.27</u> 54.53	<u>4.82</u> 4.61	<u>36.85</u> 36.58	_*	73
2m	$C_{14}H_{12}N_8$	<u>57.30</u> 57.53	<u>4.30</u> 4.14	<u>38.40</u> 38.83	104–105	77
3a	$C_{37}H_{29}N_6P$	<u>75.58</u> 75.49	<u>4.80</u> 4.96	<u>14.35</u> 14.28	185–186	87
3b	$C_{29}H_{29}N_6P$	<u>70.66</u> 70.71	<u>6.01</u> 5.93	<u>17.00</u> 17.06	156–157	80
4a	$C_{24}H_{20}N_8O$	<u>65.87</u> 66.04	<u>4.75</u> 4.62	<u>25.56</u> 25.68	240–241	75
4b	$C_{16}H_{20}N_8O$	<u>56.56</u> 56.56	<u>6.50</u> 6.56	<u>32.80</u> 32.92	135–136	80
4c	$\mathrm{C}_{18}\mathrm{H}_{24}\mathrm{N}_{8}\mathrm{O}$	<u>58.55</u> 58.68	<u>6.50</u> 6.56	<u>30.53</u> 30.42	95–96	71
4d	$C_{20}H_{20}N_8O$	<u>61.80</u> 61.84	<u>5.27</u> 5.19	<u>28.99</u> 28.85	62–63	71
4e	$C_{25}H_{22}N_8O_2$	<u>64.21</u> 64.36	<u>4.60</u> 4.75	<u>24.18</u> 24.02	174–175	73
4 f	$C_{19}H_{26}N_8O_2$	<u>57.16</u> 57.27	<u>6.66</u> 6.58	<u>28.01</u> 28.12	84-85	70
4g	$C_{21}H_{22}N_8O_2$	<u>60.35</u> 60.27	<u>5.44</u> 5.30	<u>26.83</u> 26.78	110–111	68
4h	$C_{20}H_{20}N_8O_2$	<u>59.22</u> 59.39	<u>5.08</u> 4.98	<u>27.86</u> 27.71	215–216	78
	1	1	1		1	1

* Масла.

В масс-спектрах соединений **2а-m** обнаружены их молекулярные ионы, что также подтверждает их строение.

С целью расширения ряда производных *сим*-триазина [2, 11], представлялось интересным синтезировать иминотрифенилфосфораны, содержащие одновременно пиррольный фрагмент в их структуре. В качестве исходных соединений использовали 2-(1H-1-пирролил)-4-азидо-1,3,5-триазины **2i,j**. Реакцию проводили в бензольном растворе при 10–15 °C, а ее окончание контролировали по прекращению выделения азота.

Синтезированные иминофосфорано-*сим*-триазины **За,b** (табл. 1 и 2) представляют собой бесцветные мелкокристаллические вещества.

В ИК спектрах соединений **За,b** наблюдаются полосы поглощения в области 1530–1615 см⁻¹, характерные для валентных колебаний C=C, а в сравнении со спектрами исходных азидов **2i–m** – исчезновение полосы поглощения в области 2100–2105 см⁻¹, характерной для азидной группы.

В спектрах ЯМР¹Н соединений **За,b** обнаружены характерные сигналы протонов всех заместителей в *сим*-триазиновом цикле, а также мульти-

плетные сигналы протонов трех фенильных остатков в достаточно узкой области 7.40–7.75 м. д. интенсивностью в пятнадцать протонных единиц. 448

Данные масс-спектров соединений **За,** b также подтверждают их строение.

С учетом высокой ростстимулирующей и антидотной активности [12, 13] полученных нами ранее триазин-триазольных бигетероциклических систем [1, 2], представлялось целесообразным изучить возможность получения новых производных *сим*-триазина, содержащих одновременно триазольный и пиррольный фрагменты.

С этой целью осуществлено взаимодействие пирролил-*сим*-триазинов **2i-m** с ацетилацетоном и ацетоуксусным эфиром в растворе ДМФА в присутствии триэтиламина. В результате с высокими (68–80%) выходами получены соответствующие целевые соединения **4a-h** (схема, табл. 1 и 2).

Установлено, что скорость реакции существенно зависит как от строения исходного азида, так и от активности дикарбонильного соединения. Наличие пространственно затрудненных групп в составе исходного азида увеличивает продолжительность реакции с 0.5–1 до 10 ч в случае использования более активного ацетилацетона и до 48 ч – в случае ацетоуксусного эфира [2].

Синтезированные полигетероциклические системы **4а–h** представляют собой белые, мелкокристаллические порошки, хорошо растворимые в полярных органических растворителях и ароматических углеводородах. Индивидуальность полученных соединений подтверждена с помощью TCX, а состав и строение – результатами элементного анализа, данными ИК, ЯМР ¹Н и масс-спектроскопии (табл. 1).

Таким образом, изучена реакция присоединения-циклизации различных моно- и диаминопроизводных *сим*-триазина **1а-m** с 2,5-диметокситетрагидрофураном. Показана зависимость продолжительности реакции от строения заместителей, имеющихся в составе амино-1,3,5триазинов, и подобраны оптимальные условия (P₂O₅, толуол) синтеза N-замещенных пирролил-*сим*-триазинов, содержащих различного строения заместители.

В результате, впервые получен ряд производных *сим*-триазина, содержащих одновременно пиррольный, триазольный или иминофосфорановый фрагменты с высокой потенциальной биоактивностью.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны для суспензий образцов в вазелиновом масле на спектрофотометре Specord IR-75. Спектры ЯМР ¹Н сняты на радиоспектрометре Bruker DRX-500 (500 МГц) в ДМСО- d_6 , внутренний стандарт ТМС. Масс-спектры записаны на приборе Finnigan MAT INCOS50 (энергия ионизирующего излучения 70 эВ). Элементный анализ синтезированных соединений выполнен на анализаторе Carlo-Erba, модели 1106. Контроль за ходом реакции и чистотой получаемых продуктов осуществляли методом TCX на пластинках Silufol UV-250, элюент ацетон–гексан, 1:1.

Все использованные реагенты непосредственно перед употреблением очищают кристалллизацией из подходящего растворителя или фракционной разгонкой. Растворители очищают и высушивают известными методами [14].

4-Диметиламино-6-дифениламино-2-(1Н-1-пирролил)-1,3,5-триазин (2а).

А. Суспензию из 1.0 г (3.26 ммоль) 2-амино-4-диметиламино-6-дифениламино-

1,3,5-триазина (1а), 0.46 г (3.26 ммоль) P_2O_5 и 10 мл абсолютного толуола нагревают до кипения и вносят при перемешивании 0.51 мл (3.91 ммоль) 2,5-диметокситетрагидрофурана. Реакционную массу продолжают кипятить в течение 1.5–2 ч, охлаждают и далее фильтруют, фильтрат упаривают досуха. Остаток промывают водой, высушивают до постоянной массы, растворяют в 10–15 мл хлористого метилена и пропускают через слой силикагеля толщиной 1 см (марки ЛС – 5/40 µ). Дополнительную отчистку проводят кристаллизацией из этанола. Выход соединения **2a** 0.85 г (73%).

Соединения 2b-і получают аналогично. Окончание реакции в каждом конкретном случае определяют методом TCX.

Б. Раствор 1.0 г (3.26 ммоль) соединения **1а** в 8 мл ледяной AcOH нагревают до кипения и вносят при перемешивании 0.51 мл (3.91 ммоль) 2,5-диметокситетрагидрофурана. Реакционную массу кипятят в течение 3–3.5 ч, охлаждают, разбавляют 30 мл холодной воды. Образовавшийся осадок отделяют, промывают водой до нейтральной реакции промывных вод и высушивают. После очистки, как в методе A, получают 0.55 г (47%) продукта соединения **2а**.

2-(1Н-1-Пирролил)-4-диэтиламино-6-(1,3,5-триазинил-2)-иминотрифенилфосфоран (3b). К раствору 1.0 г (3.87 ммоль) 2-(1Н-1-пирролил)-4-диэтиламино-6-азидо-1,3,5-триазина **2j** в 15 мл абсолютного бензола при перемешивании и температуре 10–15 °С прибавляют небольшими порциями 1.01 г (3.87 ммоль) трифенилфосфина. Реакционную массу перемешивают до прекращения выделения пузырьков газа и оставляют на ночь при комнатной температуре. Образовавшийся осадок отфильтровывают, маточный раствор упаривают и получают дополнительное количество продукта. Осадки объединяют, промывают холодным гексаном и высушивают на воздухе до постоянной массы. После очистки кристаллизацией из этанола получают 1.33 г (80%) соединения **3b** в виде белых кристаллов.

Соединение За получают в аналогичных условиях.

2-(1Н-1-Пирролил)-4-дипропиламино-6-(4-ацетил-5-метил-1,2,3-триазол-1-ил)-1,3,5-триазин (**4c**). К раствору 1.0 г (3.49 ммоль) 2-(1Н-1-пирролил)-4-дипропиламино-6-азидо-1,3,5-триазина в 10 мл сухого ДМФА при перемешивании и комнатной температуре прибавляют по каплям раствор 0.72 мл (6.98 ммоль) ацетилацетона и 0.97 мл (6.98 ммоль) триэтиламина в 5 мл ДМФА. Реакционную массу перемешивают при той же температуре в течение 3 ч и далее при беспрерывном перемешивании тонкой струей выливают в 100 мл холодной воды. Выпавший осадок целевого продукта отфильтровывают, многократно промывают водой и высушивают. Получают 0.91 г (71%) соединения **4c**. Продукт не требует дополнительной очистки.

Соединения 4а, b, d получают аналогично.

2-(1Н-1-Пирролил)-4-дипропиламино-6-(5-метил-1,2,3-триазол-1-ил-4-

этокси- карбонил)-1,3,5-триазин (4f). При комнатной температуре и перемешивании к раствору 1 г (3.49 ммоль) 2-(1H-1-пирролил)-4-дипропиламино-6-азидо-1,3,5-триазина в 10 мл сухого ДМФА прибавляют по каплям раствор 0.89 мл (6.98 ммоль) ацетоуксусного эфира и 0.97 мл (6.98 ммоль) триэтиламина в 5 мл ДМФА. Реакционную массу перемешивают при 30–40 °C в течение 48 ч, обрабатывают аналогично соединению 4с и получают 0.97 г (70%) целевого продукта соединения 4f, который не требует дополнительной очистки.

Соединения 4е, g, h синтезируют аналогично.

СПИСОК ЛИТЕРАТУРЫ

- 1. С. Н. Михайличенко, А. А. Чеснюк, Л. Д. Конюшкин, С. И. Фирганг, В. Н. Заплишный, *XTC*, 731 (2006). [*Chem. Heterocycl. Comp.*, **42**, 642 (2006)].
- 2. С. Н. Михайличенко, А. А. Чеснюк, С. И. Фирганг, Л. Д. Конюшкин, В. Н. Заплишный, *XГС*, 1343 (2004). [*Chem. Heterocycl. Comp.*, **40**, 1162 (2004)].
- 3. С. Н. Михайличенко, А. А. Чеснюк, Л. Д. Конюшкин, В. Н. Заплишный, *XTC*, 1351 (2004). [*Chem. Heterocycl. Comp.*, **40**, 1169 (2004)].
- 4. J. K. Chakrabarti, D. E. Tupper, J. Heterocycl. Chem., 11, 417 (1974).
- 5. Y. Fang, D. Leysen, H. C. J. Ouenheijm, Synth. Commun., 25, 1857 (1995).
- 6. Z. Brzozowski, F. Saczewski, Eur. J. Med. Chem. Chim. Ther., 37, 709 (2002).
- 7. Г. М. Погосян, В. А. Понкратов, В. Н. Заплишный, *Политриазины*, Изд-во АН АрмССР, Ереван, 1987.
- 8. Е. А. Кайгородова, А. А. Осипова, В. К. Василин, Л. Д. Конюшкин, Г. Д. Крапивин, *XIC*, 444 (2003). [*Chem. Heterocycl. Comp.*, **39**, 400 (2003)].
- 9. M. Yasutomo, K. Satoshi, H. Yoji, J. Chem. Soc. Jpn. Chem. Ind. Chem., 396 (1990).
- 10. A. Gordon, R. Ford, *The Chemist's Companion*, Wiley-Intersci. Publ., John Wiley and Sons, New York, London, Sydney, Toronto, 1972.
- С. Н. Михайличенко, А. А. Чеснюк, А. И. Суслов, А. И. Шкребец, М. М. Юхоменко, В. Н. Заплишный, Изв. вузов. Химия и хим. технология, 45, вып. 4, 136 (2002).
- С. Н. Михайличенко, А. А. Чеснюк, И. Г. Дмитриева, А. И. Суслов, Н. С. Котляров, В. Н. Заплишный, Пат. РФ 2230066; Б. И., № 16 (2004).
- С. Н. Михайличенко, А. А. Чеснюк, И. Г. Дмитриева, Н. С. Котляров, В. Н. Заплишный, Пат. РФ 2230065; Б. И., № 16 (2004).
- 14. А. Вайсбергер, Э. Проскауэр, Дж. Риддик, Э. Тупс, в кн. Органические растворители, Изд-во иностр. лит., Москва, 1958.

Кубанский государственный университет, Краснодар 350044, Россия e-mail: alex_ch2003@list.ru e-mail :vlad_zplv@mail.ru Поступило 16.03.2006 После доработки 08.10.2007

^aUniversity of Toronto at Scarborough, 1265 Military Trial, Toronto, ON, Canada e-mail: mikhay@utsc.utoronto.ca

⁶Институт органической химии им. Н. Д. Зелинского РАН, Москва 119991 e-mail: LeonidK@chemical-block.com