А. Ю. Ершов, И. В. Лагода^а, М. В. Мокеев, С. И. Якимович⁶, И. В. Зерова⁶, В. В. Пакальнис⁶, В. В. Шаманин

ТИОСАЛИЦИЛОИЛГИДРАЗОНЫ АЛИФАТИЧЕСКИХ АЛЬДЕГИДОВ И ИХ ЦИКЛИЗАЦИЯ В ПРОИЗВОДНЫЕ 1,3,4-БЕНЗОТИАДИАЗЕПИНА

Методами спектроскопии ЯМР ¹Н и ¹³С показано, что неизвестные ранее тиосалицилоилгидразоны алифатических альдегидов 2-HSC₆H₄CONHN=CHAlk (Alk = Me, Et, Pr, Bu, *i*-Pr, *i*-Bu) существуют в растворах в виде таутомерной смеси линейной и циклической 1,3,4-бензотиадиазепиновой форм.

Ключевые слова: 1,3,4-бензотиадиазепины, тиосалицилоилгидразоны, коль-чато-цепная таутомерия.

Склонность функционально-замещенных гидразонов к внутримолекулярной циклизации по полярной связи С=N гидразонного фрагмента широко используется в синтезе пяти- и шестичленных гетероциклов [1, 2]. В ряде случаев такой процесс является обратимым, что приводит к сосуществованию гидразонной и циклической форм в виде их таутомерной смеси в растворе [3, 4]. Так, полученный нами тиосалицилоилгидразон ацетона в растворах переходит в альтернативную циклическую 1,3,4-бензотиадиазепиновую форму [5]. Отметим, что гидразоны, полученные при использовании гидразидов салициловой и антраниловой кислот, имеют линейное строение; возможная циклизация по связи C=N атакой имеющихся OH- или NH-функций не осуществляется [6, 7].

2 a R = Me, b R = Et, c R = Pr, d R = Bu, e R = *i*-Pr, f R = *i*-Bu

Целью данной работы было изучение строения тиосалицилоилгидразонов серии алифатических альдегидов **2a**–**f**, а также их склонности к обратимой внутримолекулярной циклизации, приводящей к образованию семичленного 1,3,4-тиадиазепинового цикла.

Таблица 1

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Выход,
нение	формула	С	Н	Ν		70
2a	$C_9H_{10}N_2OS$	<u>55.59</u> 55.65	<u>5.24</u> 5.19	$\frac{14.48}{14.42}$	148–149	45
2b	$C_{10}H_{12}N_2OS$	<u>57.71</u> 57.67	<u>5.76</u> 5.81	<u>13.39</u> 13.45	113–115	70
2c	$C_{11}H_{14}N_2OS$	<u>59.47</u> 59.43	<u>6.40</u> 6.35	<u>12.65</u> 12.60	73–75	65
2d	$\mathrm{C_{12}H_{16}N_2OS}$	<u>60.92</u> 60.99	<u>6.88</u> 6.82	<u>11.78</u> 11.85	89–92	70
2e	$C_{11}H_{14}N_2OS$	<u>59.36</u> 59.43	<u>6.31</u> 6.35	<u>12.57</u> 12.60	83-85	55
2f	$C_{12}H_{16}N_2OS$	<u>61.03</u> 60.99	<u>6.77</u> 6.82	<u>11.90</u> 11.85	136–138	65

Физико-химические характеристики соединений 2а-f

Соединения **2а–f** были получены с выходами 45–70% после непродолжительного выдерживания эквимолярных количеств гидразида тиосалициловой кислоты **1** и соответствующего альдегида в водно-спиртовом растворе при 25 °С (см. табл. 1 и экспериментальную часть).

Судя по изменению спектров ЯМР ¹Н во времени, в кристаллическом состоянии соединения **2a**–**f** находятся в циклической тиадиазепиновой форме **B**. В спектрах ЯМР ¹Н соединений **2a**–**f**, снятых сразу после растворения в ДМСО-d₆, наблюдается один набор резонансных сигналов, отвечающих этой форме. На это указывает наличие двух сигналов протонов NH при 5.70 и 9.45 м. д. и сигнал соответствующей мультиплетности при 4.50 м. д. (H-2) (табл. 2). В спектрах ЯМР ¹³С тиадиазепиновой форме **B** соответствует сигнал *sp*³-гибридного атома углерода при 75 (C-2), а также сигнал при 173 м. д. (C-5) (табл. 3).

Через двое суток после растворения соединений 2a-f в ДМСО-d₆ в спектрах ЯМР ¹Н появляются сигналы, отвечающие линейной тиосалицилоилгидразонной форме **A**. Типичными признаками этой формы, содержание которой для исследуемых соединений не превышает 10%, являются слабопольные сигналы протонов азометиновой и NH-групп при 7.50 и 11.60 м. д. соответственно (табл. 2). Впоследствии спектры соединений **2a**-f не претерпевают изменений, что указывает на установление кольчато-цепного равновесия в растворе.

Положение равновесия зависит от длины и разветвленности алкильного заместителя, при этом доля линейной формы **A** возрастает при переходе к соединениям 2e,f, содержащим объемистые изопропильные и изобутильные группировки. Между тем, четкой корреляции положения таутомерного равновесия со стерическими константами алкильных заместителей нами не наблюдалось. Переход от полярных сильноосно́вных апротонных растворителей типа ДМСО-d₆ или ДМФА-d₇ к малополярному CDCl₃ существенно стабилизирует циклическую тиадиазепиновую форму **B**, которая становится единственной в этом растворителе для всех исследуемых соединений 2a-f. Для ацилгидразонов карбонильных соединений возможны четыре пространственных построения, отличающиеся друг от друга расположением заместителей относительно связи C=N (геометрическая *Z*,*E*-изомерия) и связи C–N амидного фрагмента (конформационная *Z'*,*E'*-изомерия) [8, 9]. При этом производные альдегидов существуют преимущественно или полностью в *E*-конфигурации относительно связи C=N. Поэтому обнаруженные сигналы линейной формы A в спектрах ЯМР ¹H альдопроизводных гидразида тиосалициловой кислоты **2a–f** следует приписать одному из *E'*- или *Z'*-конформеров этого пространственного изомера.

Таблица 2

Соеди- нение	Форма	Состав, %	Спектр ЯМР ¹ Н, δ, м. д. (<i>J</i> , Гц)*
2a	E,Z-A	2	1.95 (д, <i>J</i> = 4.4, CH ₃); 11.62 (уш. с, NH)
	В	98	1.12 (д, <i>J</i> = 6.2, CH ₃); 4.70 (к, <i>J</i> = 6.4, H-2); 5.79 (уш. с, NH); 7.44–7.61 (м, Ar); 9.48 (д, <i>J</i> = 4.2, NH)
2b	<i>E</i> , <i>Z</i>'-A	4	1.37 (т, <i>J</i> = 7.6, CH ₃); 2.17 (м, CH ₂); 7.47 (т, <i>J</i> = 2.8, HC=N); 11.60 (уш. с, NH)
	В	96	0.87 (т, <i>J</i> = 7.4, CH ₃); 1.66 (м, CH ₂); 4.45 (т, <i>J</i> = 6.2, H-2); 5.75 (уш. с, NH); 7.43–7.61 (м, Ar); 9.44 (уш. с, NH)
2c	<i>E</i> , <i>Z</i> - A	5	0.97 (т, <i>J</i> = 7.5, CH ₃); 1.72 (м, 2CH ₂); 7.45 (т, <i>J</i> = 3.0, HC=N); 11.59 (уш. с, NH)
	В	95	0.90 (т, <i>J</i> = 7.2, CH ₃); 1.37 (м, CH ₂); 1.72 (м, CH ₂); 4.54 (т, <i>J</i> = 6.4, H-2); 5.73 (уш. с, NH); 7.43–7.61 (м, Ar); 9.41 (уш. с, NH)
2d	<i>E</i> , <i>Z</i>-A	7	0.94 (т, <i>J</i> = 7.4, CH ₃); 1.53 (м, 2CH ₂); 7.48 (т, <i>J</i> = 3.0, HC=N); 11.63 (уш. с, NH)
	В	93	0.89 (т, <i>J</i> = 7.1, CH ₃); 1.44 (м, 2CH ₂); 1.73 (м, CH ₂); 4.52 (т, <i>J</i> = 6.3, H-2); 5.75 (уш. с, NH); 7.39–7.64 (м, Ar); 9.41 (уш. с, NH)
2e	<i>E</i> , <i>Z</i> - A	10	1.13 (д, <i>J</i> = 6.8, 2CH ₃); 2.56 (м, CH); 7.53 (д, <i>J</i> = 3.0, HC=N); 11.56 (уш. с, NH)
	В	90	0.96 (д, <i>J</i> = 6.4, CH ₃); 1.01 (д, <i>J</i> = 6.6, CH ₃); 1.96 (м, CH); 4.32 (д, <i>J</i> = 7.4, H-2); 5.70 (уш. с, NH); 7.40– 7.65 (м, Ar); 9.42 (уш. с, NH)
2f	<i>E</i> , <i>Z</i> - A	11	0.94 (д, <i>J</i> = 6.7, 2CH ₃); 2.18 (м, CH); 7.62 (т, <i>J</i> = 2.8, HC=N); 11.61 (уш. с, NH)
	В	89	0.87 (д, <i>J</i> = 6.5, CH ₃); 0.89 (д, <i>J</i> = 6.7, CH ₃); 1.37 (м, CH ₂); 1.79 (м, CH); 4.62 (д, <i>J</i> = 6.4, H-2); 5.73 (уш. c, NH); 7.43–7.62 (м, Ar); 9.43 (уш. c, NH)

Таутомерный состав и спектры ЯМР ¹Н соединений 2а-f

* Спектры сняты через 48 ч после растворения.

Таблица З

Соеди- нение		Химические сдвиги, б, м. д.*				
	Форма	С-2 или С=N	С-5 или С=О	R		
2a	В	68.1	173.2	20.4 (CH ₃)		
2b	В	74.6	173.2	11.1 (CH ₃); 27.0 (CH ₂)		
2c	В	72.6	173.2	13.7 (CH ₃); 19.3 (CH ₂); 35.9 (CH ₂)		
2d	В	72.9	173.2	13.9 (CH ₃); 21.9 (CH ₂); 28.3 (CH ₂); 33.5 (CH ₂)		
2e	E,Z-A	150.1	159.2	19.6 (2CH ₃); 33.9 (CH)		
	В	79.9	173.0	19.1 (CH ₃); 20.3 (CH ₃); 32.5 (CH)		
2f	E,Z-A	152.3	161.8	22.1 (2CH ₃); 31.8 (CH); 48.1 (CH ₂)		
	В	71.1	173.2	22.1 (CH ₃); 22.6 (CH ₃); 24.9 (CH); 42.3 (CH ₂)		

Спектры ЯМР ¹³С соединений 2а-f

* Сигналы С_{аром} лежат в интервале 128.0–140.5 м. д.

Выбор между возможными E,E'- и E,Z'-изомерами линейной формы A основан на известном различии в положении химических сдвигов атомов углерода связей C=N и C=O в спектрах ЯМР ¹³C; сигналы E'-изомера этих групп располагаются в области 145 и 170 м. д., тогда как для Z'-изомера эти сигналы лежат при 150 и 160 м. д. соответственно [10, 11]. Следовательно, приведенные в табл. 3 химические сдвиги атомов углерода связей C=N и C=O формы A соединений 2e,f отвечают E,Z'-пространственному расположению тиосалицилоилгидразонного фрагмента в молекуле.

Таким образом, в отличие от известных в литературе [6, 7] продуктов конденсации альдегидов с гидразидами салициловой и антраниловой кислот, тиосалицилоилгидразоны алифатических альдегидов проявляют склонность к циклизации с образованием семичленного 1,3,4-бензотиадиазепинового цикла. Это естественное отражение значительно бо́льшей нуклеофильности атома серы SH-функции, участвующей во внутримолекулярной циклизации, по сравнению с нуклеофильностью атомов кислорода и азота OH- и NH-функций в гидразонах, полученных при использовании гидразидов салициловой и антраниловой кислот. В этом отношении тиосалицилоилгидразоны близки к исследованным нами ранее продуктам конденсации карбонильных соединений с гидразидами тиобензойной и тиогликолевой кислот, для которых внутримолекулярная атака атомом серы по связи C=N гидразонного фрагмента приводит к образованию 1,3,4-тиадиазолинового [12] и 1,3,4-тиадиазинового [11, 13] циклов соответственно.

Определение конформационного состояния семичленного 1,3,4-бензотиадиазепинового цикла требует дополнительного изучения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С получены на спектрометре Bruker AV-400 (400 и 100 МГц соответственно) в ДМСО-d₆, внутренний стандарт ГМДС, δ 0.05 м. д. Количественный состав таутомерных форм определялся интегрированием

соответствующих сигналов в спектрах ЯМР ¹Н. Погрешность измерения $\pm 1\%$. Контроль за ходом реакций и чистотой полученных соединений осуществлялся методом TCX на пластинках марки Silufol UV-254 в системе бензол–ацетон, 4:1. Гидразид тиосалициловой кислоты получен по известной методике [14].

2-Алкил-1,2,3,4-тетрагидро-5H-1,3,4-бензотиадиазепин-5-оны 2а-f. Смесь 1.68 г (10 ммоль) гидразида тиосалициловой кислоты и 15 ммоль альдегида в 30 мл метанола и 15 мл воды выдерживают при 25 °С в течение 2 ч. Выпавшие кристаллы фильтруют, промывают эфиром и сушат.

СПИСОК ЛИТЕРАТУРЫ

- 1. Р. Э. Валтер, Кольчато-цепная изомерия в органической химии, Зинатне, Рига, 1978, 238.
- 2. R. E. Valters, F. Fülöp, D. Karbonits, Adv. Heterocycl. Chem., 64, 251 (1995).
- 3. L. Lázár, F. Fülöp, Eur. J. Org. Chem., 16, 3025 (2003).
- К. Н. Зеленин, В. В. Алексеев, XГС, 851 (1992). [Chem. Heterocycl. Comp., 28, 708 (1992)].
- 5. А. Ю. Ершов, И. В. Лагода, С. И. Якимович, В. В. Пакальнис, В. В. Шаманин, *ЖОрХ*, **43**, 1742 (2007).
- 6. С. А. Флегонтов, З. С. Титова, А. П. Столяров, Б. И. Бузыкин, Ю. П. Китаев, *Изв. АН СССР. Сер. хим.*, **5**, 1014 (1979).
- 7. А. В. Долгарев, В. В. Лукачина, О. И. Карпова, *ЖАХ*, **29**, 721 (1974).
- 8. Ю. П. Китаев, Б. И. Бузыкин, Гидразоны, Наука, Москва, 1974. 381.
- 9. Н. А. Парпиев, В. Г. Юсупов, С. И. Якимович, Х. Т. Шарипов, Ацилгидразоны и их комплексы с переходными металлами, Фан, Ташкент, 1988, 163.
- К. Н. Зеленин, С. В. Олейник, В. В. Алексеев, А. А. Потехин, ЖОХ, 71, 1116 (2001).
- 11. А. Ю. Ершов, Н. В. Кошмина, *XГС*, 1076 (2004). [*Chem. Heterocycl. Comp.*, **40**, 926 (2004)].
- В. Н. Николаев, С. И. Якимович, Н. В. Кошмина, К. Н. Зеленин, В. В. Алексеев, В. А. Хрусталев, *XIC*, 1048 (1983). [*Chem. Heterocycl. Comp.*, 19, 838 (1983)].
- 13. А. Ю. Ершов, Н. В. Кошмина, *XГС*, 1431 (2001). [*Chem. Heterocycl. Comp.*, **37**, 1317 (2001)].
- 14. L. Katz, L. S. Karger, W. Schroeder, M. S. Cohen, J. Org. Chem., 18, 1380 (1953).

Институт высокомолекулярных соединений РАН, Санкт-Петербург 199004, Россия e-mail: ershov@hq.macro.ru Поступило 05.10.2007

^аНаучно-исследовательский испытательный центр (медико-биологической защиты) Государственного научно-исследовательского испытательного института военной медицины МО РФ, Санкт-Петербург 195043 e-mail: lagodai@peterstar.ru

⁶Санкт-Петербургский государственный университет, Санкт-Петербург 198504, Россия e-mail: viktoriapakalnis@mail.ru