Д. В. Дарьин, С. Г. Рязанов, С. И. Селиванов, П. С. Лобанов, А. А. Потехин

ЦИКЛОКОНДЕНСАЦИЯ α-АЦИЛАЦЕТАМИДИНОВ С ЭФИРАМИ 5-НИТРО-2-ФТОРБЕНЗОЙНОЙ И 2-МЕТИЛ-4-ХЛОРПИРИМИДИН-5-КАРБОНОВОЙ КИСЛОТ

Циклоконденсации α-ацилацетамидинов с эфирами 5-нитро-2-фторбензойной и 2-метил-4-хлорпиримидин-5-карбоновой кислот приводит к конденсированным азинам. Реакция происходит хемоселективно так, что α-атом углерода амидина замещает атом галогена в ароматическом кольце, а аминогруппа взаимодействует со сложноэфирной группой.

Ключевые слова: α-ацилацетамидины, С,N-динуклеофилы, ароматические диэлектрофилы, ендиамины, изохинолин-1-оны, пиридо[4,3-*d*]пиримидины, ароматическое нуклеофильное замещение, циклоконденсация.

Продолжая наши исследования реакционной способности α -ацилацетамидинов с ароматическими диэлектрофилами [1, 2], мы изучили реакции амидинов **1а–с** со сложными эфирами **2** и **4**. α -Ацилацетамидины **1а–с** существуют в растворе ДМСО-d₆ в таутомерной форме ендиамина, что обусловливает их C,N-динуклеофильные свойства в реакциях с диэлектрофилами.

В реакциях со сложным эфиром 2 α-ациламидины 1а-с, выступая в роли C,N-динуклеофилов, образуют селективно и с хорошими выходами соответствующие изохинолины 3. Реакции с амидинами 1а и 1b проводились при комнатной температуре. Реакция с бензоилацетамидином 1с происходила медленнее и потребовалось нагревание (50 °C).

Можно отметить, что предложенный нами способ синтеза изохинолинов **3** удачно дополняет недавно описанный метод синтеза аналогичных 3-аминоизохинолинов из амидов 5-нитро-2-хлорбензойной кислоты и арил- и гетарилацетонитрилов [3, 4].

Реакция амидинов **1a** и **1b** со сложным эфиром **4** гладко протекает при комнатной температуре за 60–100 ч, при этом с высокими выходами образуются пиридо[4,3-*d*]пиримидины **5a** и **5b**. Реакция с амидином **1c** оказалась довольно медленной, как и в случае со сложным эфиром **2**, однако при попытке проведения ее при нагревании происходило значительное осмоление реакционной смеси. Проведение же ее при комнатной температуре потребовало 60 сут. Основным продуктом также оказался пиридо-[4,3-*d*]пиримидин **5c**. Кроме того, в реакции образуется также пиримидо-[4,5-*d*]пиримидин **6c**, который был выделен хроматографичеки в виде смеси *E*- и *Z*-изомеров, о чем свидетельствует двойной набор сигналов в спектрах ЯМР ¹H и ¹³C.

1, 3, 5 а R = N(CH₂)₄, b R = OEt; 1, 3, 5, 6 с R = Ph Выход, %: 3 а 80, b 83, с 57; 5 а 85, b 81, с 64; 6 с 5

Структуры всех изохинолинов **3** и пиридо[4,3-*d*]пиримидинов **5а** и **5b** доказаны спектрами ЯМР ¹Н и ¹³С, а также корреляционными спектрами NOESY, в которых наблюдаются кросс-пики между сигналами протонов заместителя R и сигналами протона H-5 – для изохинолинов и метильной группы в положении 2 – для пиридо[4,3-*d*]пиримидинов, свидетельствующие о наличии между этими протонами ЯЭО. Структура пиридо[4,3-*d*]-пиримидина **5с**, для которого не удалось наблюдать соответствующий ЯЭО в спектре NOESY, подтверждается химическим сдвигом атома углерода карбонильной группы кольца (C-5, 161.1 м. д.), который сильно зависит от взаимного расположения атома азота и карбонильной группы в кольце (химические сдвиги для C-2 и C-4 в 2- и 4-пиридонах составляют 162.3 и 175.7 м. д. соответственно [5]) и с точностью до 1 м. д. совпадает с химическими сдвигами аналогичных атомов углерода в изохинолинах **3** и пиридо[4,3-*d*]пиримидинах **5а** и **5b**.

Реакционная способность амидинов 1a-c по отношению к сложному эфиру 4 сильно различается и качественно коррелирует с электронными свойствами заместителей при карбонильной группе. Амидин 1a, имеющий сильный донорный заместитель (пирролидинил), реагирует за 60, амидин 1b (OEt) за 100 и амидин 1c (Ph) за 1500 ч. Можно предполагать, что реакция начинается как нуклеофильное замещение атома хлора углеродным нуклеофильным центром, а затем происходит быстрая циклизация с участием аминогруппы. Поэтому скорость реакции определяется нуклеофильностью α -атома углерода амидина, которая зависит от электронных свойств заместителя при карбонильной группе амидина.

В хлорангидриде 7 карбонильный атом углерода существенно более электрофилен, чем ароматический атом С-2, поэтому в реакции с α-ацил-

ацетамидинами можно было ожидать образования других продуктов. При проведении реакции с амидином **1b** была выделена сложная многокомпонентная смесь, которую нам не удалось разделить или проанализировать. В случае же с менее реакционноспособным амидином **1c** удалось добиться синтетического результата. Реакция проводилась с двукратным избытком амидина.

Первоначально образуется продукт N-бензоилирования **8**, выделенный в виде смеси *E*- и *Z*-изомеров, который при нагревании выше температуры плавления циклизуется в хиназолин **9** с высоким выходом.

Использование триэтиламина ведет к повышенному осмолению и существенно снижает выход продукта N-бензоилирования **8**, а менее основный пиридин не препятствует образованию и выпадению гидрохлорида исходного амидина.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С записывали на приборе Bruker DPX 300 (300 и 75 МГц), растворитель ДМСО-d₆, в качестве внутренних стандартов использовали сигналы растворителя δ 2.50 (для ядер ¹Н) и δ 39.7 м. д. (для ядер ¹³С). КССВ в протонных спектрах измеряли в приближении первого порядка. Элементный анализ выпол-няли на CHN-анализаторе Hewlett-Packard HP-185B. Чистоту препаратов и степень протекания реакций контролировали методом TCX на пластинах Silufol UV-254.

3-Амино-7-нитро-4-пирролидинокарбонилизохинолин-1(2H)-он (3a). Смесь 0.3 г (1.5 ммоль) сложного эфира 2 [6], 0.31 г (2 ммоль) амидина 1a [2] и 2 мл ДМФА перемешивают при комнатной температуре в течение 72 ч, смешивают с 35 мл воды, образовавшиеся кристаллы отфильтровывают и высушивают при 130 °C. Получают 0.36 г (80%) изохинолина 3a. Аналитически чистый образец получают перекристаллизацией из этанола, т. разл. 335–344 °C. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.83 (4H, м, N(CH₂CH₂)₂); 3.15 (1H, м, N(CH₂CH₂)₂), 3.26 (1H, м, N(CH₂CH₂)₂), 3.53 (2H, м, N(CH₂CH₂)₂); 6.47 (2H, c, NH₂); 7.24 (1H, д, *J* = 9.0, H-5); 8.20 (1H, д. д. *J* = 2.3 и *J* = 9.0, H-6); 8.72 (1H, д. *J* = 2.3, H-8); 11.24 (1H, c, NH). Спектр ЯМР ¹³C, δ , м. д.: 25.0, 26.3 (N(CH₂CH₂)₂); 46.3, 47.7 (N(CH₂CH₂)₂); 92.8 (C-4); 118.0 (C-4a); 123.3 (C-5); 124.7 (C-6); 127.5 (C-8); 141.2, 143.2 (C-7,8a); 148.4 (C-3); 161.6 (C-1); 165.0 (<u>C</u>ON(CH₂CH₂)₂). Найдено, %: C 55.64; H 4.75; N 18.34. C₁₄H₁₄N₄O₄. Вычислено, %: C 55.63; H 4.67; N 18.53.

Этиловый эфир 3-амино-7-нитро-1-оксо-1,2-дигидроизохинолин-4-карбоновой кислоты (3b). Раствор 0.33 г (1.65 ммоль) сложного эфира 2 и 0.22 г (1.7 ммоль) амидина 1b [2] в 3 мл ДМФА выдерживают 80 ч при комнатной температуре, выливают в 30 мл воды, образовавшиеся кристаллы отфильтровывают, высушивают при 130 °C. Выход 0.38 г (83%), т. пл. 336–339 °C (с разл.). Чистый для анализа образец получают перекристаллизацией из ацетонитрила. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.36 (3H, т, *J* = 7.3, CH₃); 4.32 (2H, к, *J* = 7.3, CH₂); 7.68 (2H, с, NH₂); 8.26 (1H, д. д. *J* = 2.2 и *J* = 9.2, H-6); 8.55 (1H, д. *J* = 9.2, H-5); 8.72 (1H, д. *J* = 2.2, H-8); 11.37 (1H, с, NH). Спектр ЯМР ¹³С, δ , м. д.: 14.6 (CH₃); 60.5 (CH₂); 83.4 (C-4); 119.2 (C-4a); 123.3 (C-5); 125.5 (C-6); 126.9 (C-8); 141.5, 143.5 (C-7,8a); 155.1 (C-3); 160.6 (C-1); 167.1 (<u>CO</u>₂Et). Найдено, %: C 51.66; H 4.02; N 15.20. C₁₂H₁₁N₃O₅. Вычислено, %: C 51.99; H 4.00; N 15.16.

3-Амино-4-бензоил-7-нитроизохинолин-1(2H)-он (**3c**). Раствор 0.33 г (1.65 ммоль) сложного эфира **2** и 0.28 г (1.7 ммоль) амидина **1c** [7] в 3 мл ДМФА выдерживают 20 ч при комнатной температуре, затем нагревают при 55 °С в течение 20 ч. Выливают смесь в 25 мл воды, декантируют раствор с образовавшегося масла, которое кипятят с 15 мл ацетонитрила, охлаждают, кристаллы отфильтровывают и высушивают. Получают 0.26 г изохинолина **3c**. Из водного маточного раствора выпадают кристаллы, которые кипятят с 5 мл ацетонитрила, охлаждают, сотфильтровывают еще 30 мг. Выход изохинолина **3c** составляет 0.29 г (57%), т. пл. 328–330 °С (с разл.). Чистый для анализа образец получают перекристаллизацией из ацетонитрила. Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 6.84 (1H, д, *J* = 8.7, H-5); 7.39–7.62 (5H, м, C₆H₅); 7.70 (2H, с, NH₂); 7.89 (1H, д, *J* = 8.7, H-6); 8.70 (1H, с, H-8); 11.54 (1H, с, NH). Спектр ЯМР ¹³С, δ, м. д.: 93.6 (C-4); 119.1 (C-4a); 123.4 (C-5); 125.5, 125.9 (C-6,8); 128.9 (*m*-C₆H₅); 129.1 (*o*-C₆H₅); 132.1 (*p*-C₆H₅); 141.2, 141.5 (*ipso*-C₆H₅, C-7); 144.2 (C-8a); 154.0 (C-3); 161.0 (C-1); 193.5 (<u>C</u>OC₆H₅). Найдено, %: C 62.15; H 3.65; N 13.60. C₁₆H₁₁N₃O₄. Вычислено, %: C 62.14; H 3.58; N 13.59.

7-Амино-2-метил-8-пирролидинокарбонилпиридо[4,3-d]пиримидин-5(6Н)-он (5а). Раствор 0.34 г (1.7 ммоль) сложного эфира 4 [8] и 0.71 г (4.6 ммоль) амидина 1а в 3 мл ДМФА выдержевают 60 ч при комнатной температуре. Отгоняют рас-творитель при пониженном давлении, остаток очищают на хроматографической колонке с 60 г силикагеля. Элюируют смесью хлороформ-метанол, постепенно увели-чивая долю метанола от 1 до 10%. Выход 0.39 г (85%), т. пл. 340-345 °С (с разл.). Чистый для анализа образец получают перекристаллизацией из смеси ацето-нитрил-метанол, 1:1. Спектр ЯМР ¹Н, δ, м. д.: 1.70-2.00 (4H, м, N(CH₂CH₂)₂); 2.51 (3H, с, CH₃); 3.10-3.60 (4H, м, N(CH₂CH₂)₂); 6.55 (2H, с, NH₂); 8.89 (1H, с, H-4); 11.10 (1H, с, NH). Спектр ЯМР ¹³С, б, м. д.: 24.4, 25.8 (N(CH₂<u>C</u>H₂)₂); 26.7 (CH₃); 45.9, 47.4 (N(<u>C</u>H₂CH₂)₂); 91.3 (С-8); 108.9 (C-4a); 152.4 (C-7); 156.8 (C-4); 157.1 (C-8a); 161.1 (C-5); 164.5 (<u>C</u>ON(CH₂CH₂)₂); 169.9 (С-2). Найдено, %: С 57.26; Н 5.60; N 25.64. С₁₃H₁₅N₅O₂. Вычислено, %: С 57.13; Н 5.53; N 25.63.

Этиловый эфир 7-амино-2-метил-5-оксо-5,6-дигидропиридо[4,3-*d*]пиримидин-8-карбоновой кислоты (5b). Раствор 0.34 г (1.7 ммоль) сложного эфира 4 и 0.6 г (4.6 ммоль) амидина 1b в 3 мл ДМФА выдерживают 100 ч при комнатной температуре, охлаждают до -10 °C, выпавшие кристаллы отфильтровывают, тщательно промывают водой, горячим ацетонитрилом, сушат. Выход 0.34 г (81%), т. пл. 300–302 °C (с разл.). Спектр ЯМР ¹Н, δ , м. д.: 1.31 (3H, т, J = 7.3, CH₃); 2.56 (3H, c, CH₃); 4.24 (2H, κ , J = 7.3, CH₂); 7.65 (2H, c, NH₂); 8.93 (1H, c, H-4); 11.27 (1H, c, NH). Спектр ЯМР ¹³С, δ , м. д.: 14.5 (OCH₂CH₃); 26.9 (CH₃); 59.9 (OCH₂CH₃); 84.5 (C-8); 109.7 (C-4a); 156.7 (C-7); 156.8 (C-4); 159.2 (C-8a); 161.0 (C-5); 167.4 (CO₂CH₂CH₃); 169.9 (C-2). Найдено, %: C 53.11; H 4.84; N 22.26. C₁₁H₁₂N₄O₃. Вычислено, %: C 53.22; H 4.87; N 22.57.

7-Амино-8-бензоил-2-метилпиридо[4,3-d]пиримидин-5(6Н)-он (5с) и 2-(бензоилметилен)-7-метил-2,3-дигидропиримидо[4,5-*d*]пиримидин-4(1H)-он (6с). Раствор 0.3 г (1.5 ммоль) сложного эфира 4 и 0.6 г (3.7 ммоль) амидина 1с в 3 мл ДМФА выдерживают 60 сут при комнатной температуре. Отгоняют растворитель при пониженном давлении, остаток хроматографируют на колонке с 60 г силикагеля. Элюируют смесью хлороформ-метанол, постепенно увеличивая долю метанола от 0 до 7%. Первым выделяют сильно загрязненный пиримидо[4,5-d]пиримидин 6с в виде смеси Е- и Z-изомеров (1:1), выход после перекристаллизации из метанола составляет 20 мг (5%), т. пл. 318–322 °С. Спектр ЯМР ¹Н, б, м. д.: 2.61, 2.64 (3H, c, CH₃); 6.95 (1H, c, =CH); 7.4–7.9 (5H, м, C₆H₅); 8.95, 8.97 (1H, c, Н-5); 11.3-12.8 (1Н, с, NН); 13.65 (0.5Н, с, NН); 14.17 (0.5Н, с, NН). Найдено, %: С 63.89; Н 4.72; N 18.24. С₁₅H₁₂N₄O₂. Вычислено, %: С 64.28; Н 4.32; N 18.99. Затем из колонки выделяют 0.27 г (64%) соединения 5с, т. пл. 306–308 °С. Чистый для анализа образец получают перекристаллизацией из метанола. Спектр ЯМР ¹Н, δ, м. д.: 2.04 (3H, c, CH₃); 7.29–7.49 (5H, м, C₆H₅); 7.98 (2H, c, NH₂); 8.92 (1H, c, H-4): 11.37 (1Н, с, NН). Спектр ЯМР ¹³С, б, м. д.: 26.7 (СН₃); 93.9 (С-8); 110.2 (С-4а); 128.2 (m-C₆H₅); 128.5 (o-C₆H₅); 130.9 (p-C₆H₅); 143.7 (ipso-C₆H₅); 157.2 (C-7); 157.3 (С-4); 159.97 (С-8а); 161.6 (С-5); 169.1 (С-2); 195.1 (СОС6H5). Найдено, %: С 64.45; Н 4.35; N 19.93. С₁₅Н₁₂N₄O₂. Вычислено, %: С 64.28; Н 4.32; N 19.99.

2-(Бензоилметилен)-6-нитро-2,3-дигидрохиназолин-4(1Н)-она (9). К раствору 0.42 г (3 ммоль) бензоилацетамидина **1с** в 30 мл ацетонитрила при перемешивании добавляют по каплям раствор 0.305 г (1.5 ммоль) хлорангидрида 5-нитро-2-фторбензойной кислоты 7 [9] в 10 мл хлористого метилена в течение 1 ч. Продолжают перемешивание еще в течение 3 ч и оставляют смесь на ночь при комнатной температуре. Отфильтровывают выпавшие кристаллы, кипятят их с 30 мл ацетонитрила, охлаждают до комнатной температуры, отфильтровывают выпавшие кристаллы, кипятят их с 30 мл ацетонитрила, охлаждают до комнатной температуры, отфильтровывают гидрохлорид бензоилацетамидина. Объединенные маточные растворы упаривают в вакууме, остаток дважды перекристаллизовывают из ацетонитрила. Получают 0.27 г (54%) N-(1-амино-3-оксо-3-фенилпропенил)-5-нитро-2-фторбензамида (**8**) в виде смеси *E*- и *Z*-изомеров (1 : 1), т. пл. 196–198 °C (с циклизацией). Спектр ЯМР ¹H, δ , м. д.: 5.72, 5.82 (0.5H, 0.5H, с, =CH); 7.48–7.53 (3H, м. *m*-C₆H₅, *p*-C₆H₅); 7.67–7.84 (3H, м. *o*-C₆H₅, H-3); 8.25–8.73 (3.5H, м. NH, H-4,6); 10.45 (0.5H, с, NH); 11.12 (0.5H, с, NH); 15.29 (0.5H, с, NH). Найдено, %: C 58.31; H 3.77; N 12.81. C₁₆H₁₂FN₃O₄. Вычислено, %: C 58.36; H 3.67; N 12.76.

Нагревают 0.1 г (0.3 ммоль) амида **8** в течение 20 мин при 220 °С и еще 10 мин при 240 °С. Перекристаллизовывают продукт из ДМФА, кипятят с этанолом, отфильтровывают, промывают эфиром и высушивают. Получают 85 мг (91%) соединения **9** в виде смеси *E*-и *Z*-изомеров (3:2), т. пл. 296–303 °С (с разл.). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 5.86, 5.99 (0.4H, 0.6H, с, =С<u>H</u>–СОС₆H₅); 7.38 (0.4H,

д, *J* = 8.8, H-8); 7.45–7.60, 7.70–7.90 (5.6H, м, C₆H₅ и H-8); 8.45 (1H, м, H-7); 8.61 (1H, с, H-5); 12.19 (1H, с, NH); 13.93 (0.4H, с, NH); 14.57 (0.6H, с, NH). Найдено, %: С 61.90; H 3.55; N 13.49. С₁₆H₁₁N₃O₄. Вычислено, %: С 62.14; H 3.58; N 13.59.

СПИСОК ЛИТЕРАТУРЫ

- 1. Д. В. Дарьин, С. И. Селиванов, П. С. Лобанов, А. А. Потехин, *XTC*, 1036 (2004). [*Chem. Heterocycl. Comp.*, **40**, 888 (2004)].
- 2. С. Г. Рязанов, Д. В. Дарьин, С. И. Селиванов, П. С. Лобанов, А. А. Потехин, Вестник СПбГУ, Сер. 4, Физика, химия, вып. 2, 138 (2005).
- 3. А. Г. Немазаный, Ю. М. Воловенко, Т. А. Силаева, М. Ю. Корнилов, Ф. С. Бабичев, *XГС*, 378 (1991). [*Chem. Heterocycl. Comp.*, **27**, 307 (1991)].
- 4. А. Г. Немазаный, Ю. М. Воловенко, Т. А. Силаева, М. Ю. Корнилов, Ф. С. Бабичев, *XГС*, 1104 (1991). [*Chem. Heterocycl. Comp.*, **27**, 886 (1991)].
- 5. T. Eicher, S. Hauptmann, *The Chemistry of Heterocycles*, Georg Thieme Verlag, Stuttgart, New York, 1995, p. 311.
- 6. W. D. Chandler, J. J. Bergman, G. H. Haas, Can. J. Chem., 49, 583 (1971).
- 7. B. Roth, J. M. Smith, J. Am. Chem. Soc., 71, 616 (1949).
- 8. E. Peters, H. J. Minnemeyer, A. W. Spears, H. J. Tieckelmann, *J. Org. Chem.*, **25**, 2137 (1960).
- 9. O. Scherer, H. Hahn, Liebigs Ann. Chem., 677, 83 (1964).

Санкт-Петербургский государственный университет, Санкт-Петербург 198504, Россия e-mail: pslob@mail.ru Поступило 16.10.2007