Посвящается памяти профессора А. А. Потехина

М. Ворона, Г. Вейнберг, С. Беляков, М. Петрова, Э. Лиепиньш, Э. Лукевиц

СИНТЕЗ И СТЕРЕОИЗОМЕРИЯ ПРОИЗВОДНЫХ *трет*-БУТИЛОВОГО ЭФИРА 7-АЛКИЛИДЕНЦЕФ-3-ЕМ-4-КАРБОНОВОЙ КИСЛОТЫ

Конденсацией *трет*-бутилового эфира 3-метил-7-оксоцеф-3-ем-4-карбоновой кислоты и его 3-ацетоксиметильного аналога с ацетилметилентрифенилфосфораном синтезированы *трет*-бутиловый эфир 7*Z*-ацетилметилен-3-метилцеф-3-ем-4-карбоновой кислоты, а также 7*Z*- и 7*E*-изомеры *трет*-бутилового эфира 3-ацетоксиметил-7-(3-триметилсилилпропин-2-илиден)цеф-3-ем-4-карбоновой кислоты. Окислением этих соединений 1 экв. *мета*-хлорпербензойной кислоты получены их 1*R*- и 1*S*-сульфоксиды, а окислением 2 экв. – соответствующие сульфоны. Согласно данным спектроскопии ЯМР ¹Н, карбонил β-лактама дезэкранирует протон H-9 алкилиденовой группы в 7*Z*-изомерах сильнее, чем в 7*E*-изомерах, смещая его сигналы в более слабое поле. Аналогичное смещение сигнала H-6 в более слабое поле наблюдается в 1*R*-сульфоксидах по сравнению с таковым для 1*S*-сульфоксида. Эти данные согласуются с результатами РСА *трет*-бутиловых эфиров 7*Z*-ацетилметилен-3-ем-4-карбоновой и 17*Z*-ацетилметилен-3-ем-4-карбоновой и 17*Z*-ацетилметилен-3-ем-4-карбоновой и 17*Z*-ацетилметилен-3-ем-4-карбоновой и 17*Z*-ацетилметилен-3-ем-4-карбоновой и 114.

Ключевые слова: *трет*-бутиловые эфиры 7*Z*-ацетилметилен-3-метилцеф-3-ем-4-карбоновой и 3-ацетоксиметил-7*Z*-(3-триметилсилилпропин-2илиден)цеф-3-ем-4-карбоновой кислот, 1(*S*)-, 1(*R*)-сульфоксиды и сульфоны *трет*-бутиловых эфиров 7*Z*-ацетилметилен-3-метилцеф-3-ем-4-карбоновой и 3ацетоксиметил-7*Z*-(3-триметилсилилпропин-2-илиден)цеф-3-ем-4-карбоновой кислот, PCA, спектро- скопия ЯМР ¹Н.

Ранее нами показано, что *трет*-бутиловые эфиры 7-алкилиден-3ацетоксиметилен-1,1-диоксоцеф-3-ем-4-карбоновой кислоты, благодаря наличию алкилиденовой группы, характеризуются высокой цитотоксичностью в отношении раковых клеток *in vitro*, зависящей не только от характера заместителей, но и от стереоизомерии алкилиденовой группы в положении 7 цеф-3-емового гетероцикла [1]. В продолжение этих исследований нами предприняты синтез производных *трет*-бутилового эфира 7-алкилиденцеф-3-ем-4-карбоновой кислоты и исследование их спектров ЯМР ¹Н с целью установления пространственной ориентации заместителей в алкилиденовой, а также сульфоксидной группе, необходимой для изучения взаимосвязи между строением и биологической активностью этих веществ.

1–5 а X = H, **b** X = OAc; **2–5 а** R = Ac, **b** R = Me₃SiC = C−; МСРВА – *мета*-хлорпербензойная кислота

7-Алкилидензамещенные *трет*-бутиловые эфиры цеф-3-ем-4-карбоновой кислоты **3а,b** синтезированы с использованием реакции Виттига, согласно методам, приведенным в работах [1, 2], конденсацией *трет*-бутилового эфира 3-метил-7-оксоцеф-3-ем-4-карбоновой кислоты (**1a**) и его 3-ацетоксиметильного аналога **1b** с ацетилметилентрифенилфосфораном (**2a**) и 3-триметилсилилпропин-2-илидентрифенилфосфораном (**2b**). В результате получены *трет*-бутиловый эфир 7*Z*-ацетилметилен-3-метилцеф-3-ем-4-карбоновой кислоты (7*Z*-**3a**), а также смесь 7*Z*- и 7*E*-изомеров *трет*-бутилового эфира 3-ацетоксиметил-7-(3-триметилсилилпропин-2-илиден)цеф-3-ем-4карбоновой кислоты (7*Z*-**3b**, 7*E*-**3b**) в соотношении 9:1.

Превращение синтезированных соединений в соответствующие сульфоксиды **4a,b** и сульфоны **5a,b** реализовано с помощью одного или более двух эквивалентов *мета*-хлорпербензойной кислоты (МСРВА). 1*R*- и 1*S*-Сульфоксиды **4a,b** выделены из реакционной смеси в индивидуальном виде с помощью колоночной хроматографии.

В соответствии с данными работы [2], идентификация 7*Z*- и 7*E*-изомерного состояния цефемов **3b** проводилась на основании анализа их спектров ЯМР ¹Н. Близкое расположение β -лактамного карбонила дезэкранирует протон алкилиденовой группы в 7*Z*-изомере сильнее, чем

Рис. 1. Пространственные модели молекул соединения 1S,7Z-4a (a) и 7Z-5a (b) с обозначением атомов и их эллипсоидами тепловых колебаний

620

аналогичный протон в 7*E*-изомере. Это приводит к слабопольному сдвигу резонансного сигнала H-9 в цеф-3-еме 7*Z*-**3b** по сравнению с этим сигналом в изомере 7*E*-**3**b.

Аналогичный дезэкранирующий эффект проявляет атом кислорода 1*R*-сульфоксидной группы в соединениях 7*Z*-**4а,b** по отношению к протонам H-6 и H-2, смещая их сигналы в более слабое поле по сравнению с изомерным 1*S*-сульфоксидом. Этот эффект еще более усиливается окислением этих соединений до сульфонов 7*Z*-**5а,b**. Интенсивность смещения сигналов в более слабое поле в рассмотренных соединениях, в зависимости от степени окисления гетероатома серы, уменьшается в следующей последовательности (табл. 1):

7*Z*-**5**а,**b** (сульфон) > 7*Z*-**4**а,**b** (1*R*-сульфоксид) > 7*Z*-**4**а,**b** (1*S*-сульфоксид) > 7*Z*-**3**а,**b** (сульфид)

Рассмотренная выше корреляция полностью согласуется с результатами РСА *трет*-бутиловых эфиров 7Z-ацетилметилен-3-метил-1(S)оксоцеф-3-ем-4-карбоновой (1S,7Z-4a) и 7Z-ацетилметилен-3-метил-1,1-диоксоцеф-3-ем-4-карбоновой кислот (7Z-5a), однозначно свидетельствующего о Z-изомерном состоянии ацетилметиленовой группы в 7Z-4a и 7Z-5a, а также 1S-конфигурации сульфоксидного кислорода в 1S,7Z-4a (рис. 1). В соответствии с литературными данными [3], шестичленный цикл в обеих молекулах имеет конформацию *конверта*: атом серы существенно выходит из плоскости атомов C(2), C(3), C(4), N(5), C(6).

В табл. 2 приведены основные геометрические характеристики цефемовой системы в молекулах соединений 7**Z**-4**a** и 7**Z**-5**a**. Двугранный угол между этой плоскостью и плоскостью атомов C(2), S(1), C(6) составляет 124.9(8) и 130.7(7)° для молекул 1*S*,7**Z**-4**a** и 7**Z**-5**a** соответственно.

Таблица 1

Соеди- нение	Изомер	Химический сдвиг, б, м. д. (Ј, Гц)			
		2-СН ₂ (два д, АВ-система)	Н-6 (д)	Н-9 (д)	
3a	7 <i>Z</i>	3.15 и 3.57 (² <i>J</i> = 18)	$5.46 (^4J = 1)$	$6.66 (^4J = 1)$	
4 a	1 <i>S</i> ,7 <i>Z</i>	3.31 и 3.60 (² <i>J</i> = 18)	$5.15(^4J = 1)$	$6.81 (^4J = 1)$	
4 a	1 <i>R</i> ,7 <i>Z</i>	3.42 и 3.68 (² <i>J</i> = 18)	$5.23 (^4J = 1)$	$6.78 (^4J = 1)$	
5a	7Z	3.68 и 3.94 (² <i>J</i> = 18)	$5.56(^4J=1)$	$6.88 (^4J = 1)$	
3b	7Z	3.31 и 3.60 (² <i>J</i> = 16)	5.27 (${}^{4}J = 1.5$)	$6.27 (^4J = 1.5)$	
3b	7E	3.28 и 3.55 (² <i>J</i> = 18)	5.11 (${}^{4}J = 0.8$)	5.89 (уш. с)	
4b	7 <i>Z</i> ,1 <i>S</i>	3.22 и 3.84 (² <i>J</i> = 20)	$4.89(^4J=2)$	$6.44 (^4J = 2)$	
4b	7Z,1R	3.51 и 3.95 (² <i>J</i> = 18)	$4.95(^4J=2)$	$6.44 (^4J = 2)$	
5b	7Z	3.67 и 4.02 (² <i>J</i> = 18)	5.27 (уш. с)	$6.47 (^4J = 2)$	

Характерные сигналы протонов в спектрах ЯМР ¹Н цеф-3-емов 7Z-3a,b-7Z-5a,b

Chast		l, Å	VEOT	ω, град		
Связь	7 Z-4a	7 Z-5 a	91001	7 Z-4a	7 Z-5 a	
S(1)-O(17)	1.497(5)	1.438(4)	C(2)-S(1)-C(6)	92.7(2)	99.2(1)	
S(1)-O(18)		1.434(4)	O(17)-S(1)-O(18)		119.8(1)	
S(1)-C(2)	1.818(6)	1.773(4)	C(4) - N(5) - C(6)	126.5(4)	127.9(3)	
S(1)-C(6)	1.843(5)	1.798(4)	C(4)-N(5)-C(8)	133.6(5)	133.5(3)	
C(2)–C(3)	1.512(8)	1.514(7)	C(6)-N(5)-C(8)	93.5(4)	94.8(3)	
C(3)-C(4)	1.334(7)	1.352(7)	S(1)-C(6)-C(7)	113.9(4)	117.3(2)	
C(4)-N(5)	1.405(7)	1.405(6)	N(5)-C(6)-C(7)	87.7(4)	86.0(3)	
N(5)-C(6)	1.469(7)	1.478(7)	C(8)-C(7)-C(9)	134.8(5)	133.5(4)	
N(5)-C(8)	1.392(7)	1.384(6)	C(6)-C(7)-C(9)	136.8(5)	137.7(4)	
C(6)-C(7)	1.491(7)	1.529(7)	C(6)-C(7)-C(8)	88.3(4)	88.4(3)	
C(7)-C(8)	1.501(8)	1.494(7)	N(5)-C(8)-O(8)	132.1(6)	131.7(4)	
C(7)-C(9)	1.327(7)	1.321(7)	C(7)-C(8)-O(8)	137.8(5)	137.4(4)	
C(8)–O(8)	1.203(7)	1.210(6)	N(5)-C(8)-C(7)	90.2(4)	90.9(3)	

Основные длины связей (*I*) и валентные углы (ω) в молекулах 1(*S*)-сульфоксида и сульфона *трет*-бутилового эфира 7*Z*-ацетилметилен-3-метилцеф-3-ем-4-карбоновой кислоты

В кристаллической структуре соединения 1S,7Z-4а один из параметров кристаллической решетки (параметр *c*) значительно превышает два других параметра, поэтому это вещество кристаллизуется в виде тонких пластинок, перпендикулярных кристаллографическому направлению *z*. Асимметрический атом C(6), имеющий *R*-конфигурацию, находится в окружении электроноакцепторных атомов; в связи с этим атом H(6) участвует в образовании межмолекулярных водородных связей C(6)–H(6)···O(8) длиной 3.092(6) (C–H 0.97 Å, H···O 2.18 Å, C–H···O \angle 157°). Посредством этих связей молекулы в кристалле образуют цепи вдоль направления *x*. На рис. 2 представлена упаковка молекул 1S,7Z-4а в элементарной ячейке кристалла с указанием водородных связей CH···O. Следует отметить, что в структуре соединения 7*Z*-5а такой связи нет.

Рис. 2. Фрагмент упаковки молекул *трет*-бутилового эфира 7*Z*-ацетилметилен-3-метил-1(*R*)-оксоцеф-3-ем-4-карбоновой кислоты (1*S*,7*Z*-**4a**) в кристалле с указанием межмолекулярных водородных связей СН…О

Таблица З

Характеристика	1 <i>S</i> ,7 Z-4a	7 Z-5 a	
Брутто-формула	C ₁₅ H ₁₉ NO ₅ S	C15H19NO6S	
$M_{ m r}$	325.38	341.38	
Цвет кристаллов	Желтоватый	Желтоватый	
Форма кристаллов	Пластина	Призма	
Размер, мм	$0.03 \times 0.21 \times 0.37$	$0.19 \times 0.25 \times 0.28$	
Кристаллическая сингония	Ромбическая	Ромбическая	
Параметры кристаллической решетки			
<i>a</i> , Å	5.6544(1)	7.7811(2)	
b, Å	6.8559(1)	13.6880(5)	
<i>c</i> , Å	42.9741(9)	15.8792(5)	
<i>V</i> , Å ³	1665.93(5)	1691.32(6)	
Пространственная группа	$P 2_1 2_1 2_1$	$P 2_1 2_1 2_1$	
Ζ	4	4	
F(000)	688	720	
Плотность, г/см ³	1.297	1.341	
μ, мм ⁻¹	0.22	0.29	
$2\theta_{max}$	55.0	60.0	
Число рефлексов			
измеренных	3494	5518	
независимых	2361	4806	
используемых	$1295 (I > 3\sigma(I))$	$3559 (I > 2\sigma(I))$	
Число уточняемых параметров	199	208	
<i>R</i> -Фактор	0.067	0.063	
wR2	0.194	0.184	

Кристаллографические данные и параметры уточнения кристаллических структур 1(S)-сульфоксида и сульфона *трет*-бутилового эфира 7Z-ацетилметилен-3-метилцеф-3-ем-4-карбоновой кислоты

Проведенное исследование позволило синтезировать новые производные *трет*-бутилового эфира 7-алкилиденцеф-3-ем-4-карбоновой кислоты, а также с помощью спектроскопии ЯМР ¹Н и РСА идентифицировать соединения, различающиеся пространственным расположением заместителей в алкилиденовой и сульфоксидной группах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н зарегистрированы на приборах Bruker WH90/DS (90 МГц) в CDCl₃, внутренний стандарт ТМС. Элементный анализ выполнен на анализаторе Carlo Erba 1108. Данные ВЭЖХ получены на приборе Du-Pont Model 8800, снабженном УФ детектором ($\lambda = 254$ нм) и колонкой (4.6 × 250 мм), заполненной фазой µ Porasil в системе этилацетат–гексан, 20:80, Alltima C18 в системе ацетонитрил–0.1 М фосфатный буфер (pH 2.5), 50:50; Zorbax R×C₁₈ в системе ацетонитрил–вода, 60:40. Контроль за ходом реакции осуществлялся методом TCX на пластинках Merck Kieselgel проявлением в УФ свете. Для препаративной колоночной хроматографии применялся силикагель марки Merck Kieselgel (0.063–0.230 мм). В экспериментах использовались реагенты и материалы фирм Acros, Aldrich, Sigma.

трет-Бутиловый эфир 7Z-ацетилметилен-3-метилцеф-3-ем-4-карбоновой

623

кислоты (7*Z***-3a**). К раствору 200 мг (0.74 ммоль) *трет*-бутилового эфира 3-метил-7-оксоцеф-3-ем-4-карбоновой кислоты, полученного согласно методу [4], в 20 мл дихлорметана при 0 °C и перемешивании добавляют 248 мг (0.78 ммоль) ацетилметилентрифенилфосфорана. Смесь перемешивают при 18 °C в течение 30 мин. Растворитель упаривают при пониженном давлении. Остаток фракционируют на хроматографической колонке с силикагелем (элюент этилацетат– петролейный эфир, 1:3). Фракции с R_f 0.63 объединяют и упаривают. Выход 158 мг (69%) аморфного вещества, содержащего 95% основного вещества, согласно анализу ВЭЖХ. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.55 (9H, с, C₄H₉); 2.11 (3H, с, 3-CH₃); 2.40 (3H, с, CH₃COC=); 3.15 и 3.57 (2H, два д, AB-система, ²*J* = 18, SCH₂); 5.46 (1H, д, ⁴*J* = 1, H-6); 6.66 (1H, д, ⁴*J* = 1, COCH=).

трет-Бутиловый эфир 7*Z*-ацетилметилен-3-метил-1*S*-оксоцеф-3-ем-4карбоновой кислоты (1*S*,7*Z*-4а) и *трет*-бутиловый эфир 7*Z*-ацетилметилен-3-метил-1*R*-оксоцеф-3-ем-4-карбоновой кислоты (1*R*,7*Z*-4а). К раствору 158 мг (0.51 ммоль) *трет*-бутилового эфира 7*Z*-ацетилметилен-3-метилцеф-3-ем-4-карбоновой кислоты в 20 мл дихлорметана при 0 °С и перемешивании добавляют 117 мг (0.51 ммоль) 75% 3-хлорпербензойной кислоты. Смесь перемешивают при комнатной температуре 4 ч, разбавляют 20 мл дихлорметана, промывают 50 мл 5% раствора Na₂SO₃, 2×50 мл 5% раствором Na₂CO₃ и сушат над безводным Na₂SO₄. Растворитель упаривают при пониженном давлении и остаток фракционируют на хроматографической колонке с силикагелем (элюент этилацетат– петролейный эфир, 1:3).

Фракции с R_f 0.14 объединяют, упаривают и получают 101 мг (61%) соединения 1*S*,7*Z*-**4a**. Т. пл. 153–155 °С. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.53 (9H, c, C₄H₉); 2.09 (3H, c, CH₃); 2.38 (3H, c, CH₃COC=); 3.31, 3.60 (2H, два д, AB-система, ²*J* = 18, SOCH₂); 5.15 (1H, д, ⁴*J* = 1, H-6); 6.81 (1H, д, ⁴*J* = 1, COCH=). Найдено, %: С 55.45; H 5.95; N 4.28. C₁₅H₁₉NO₅S. Вычислено, %: C 55.37; H 5.89; N 4.30.

Фракции с R_f 0.08 объединяют, упаривают и получают 50 мг (30%) соединения 1*R*,7*Z*-**4a**. Т. пл. 177 °С. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.53 (9H, с, C₄H₉); 2.25 (3H, с, CH₃); 2.46 (3H, с, CH₃COC=); 3.42, 3.68 (2H, два д, AB-система, ²*J* = 18, SOCH₂); 5.23 (1H, д, ⁴*J* = 1, H-6); 6.78 (1H, д, ⁴*J* = 1, COCH=). Найдено, %: C 55.41; H 5.97; N 4.35. C₁₅H₁₉NO₅S. Вычислено, %: C 55.37; H 5.89; N 4.30.

трет-Бутиловый эфир 7*Z*-ацетилметилен-3-метил-1,1-диоксоцеф-3-ем-4-карбоновой кислоты (7*Z*-5а). К раствору 300 мг (0.97 ммоль) *трет*-бутилового эфира 7*Z*-ацетилметилен-3-метилцеф-3-ем-4-карбоновой кислоты в 40 мл дихлорметана при 0 °С и перемешивании добавляют 669 мг (2.91 ммоль) 75% 3-хлорпербензойной кислоты. Смесь перемешивают при комнатной температуре 4 ч, разбавляют 40 мл дихлорметана, промывают 2 × 50 мл 5% раствора Na₂SO₃, 2 × 50 мл 5% раствора Na₂CO₃ и сушат над безводным Na₂SO₄. Растворитель упаривают при пониженном давлении и остаток фракционируют на хроматографической колонке с силикагелем (элюент этилацетат–петролейный эфир, 1:3). Фракции с R_f 0.28 объединяют, упаривают и получают 258 мг (78%) соединения 7Z-5а. Т. пл. 187–188 °С. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.53 (9H, с, C₄H₉); 2.12 (3H, с, CH₃); 2.42 (3H, с, CH₃COC=); 3.68, 3.94 (2H, два д, AB-система, ²*J* = 18, SO₂CH₂); 5.56 (1H, д, ⁴*J* = 1, H-6); 6.88 (1H, д, ⁴*J* = 1, COCH=). Найдено, %: C 52.83; H 5.65; N 3.94. C₁₅H₁₉NO₆S. Вычислено, %: C 52.77; H 5.61; N 4.10.

трет-Бутиловый эфир 3-ацетоксиметил-7*Z*-(3-триметилсилилпропин-2-илиден)цеф-3-ем-4-карбоновой кислоты (7*Z*-3b) и *трет*-бутиловый эфир 3-ацетоксиметил-7*E*-(3-триметилсилилпропин-2-илиден)цеф-3-ем-4-карбоновой кислоты (7*E*-3b). К суспензии 367 мг (0.81 ммоль) бромида (3-триметилсилил-2пропинил)трифенилфосфония в 10 мл абсолютного ТГФ при 10 °С добавляют при перемешивании 0.7 мл 1.6 М раствора бутиллития в гексане до образования прозрачного раствора. Перемешивают 30 мин при 10 °С, охлаждают до -78 °С

и добавляют раствор 265 мг (0.81 ммоль) трет-бутилового эфира 3-ацетоксиметил-7-оксоцеф-3-ем-4-карбоновой кислоты, полученного согласно методу [4], в 5 мл абсолютного ТГФ. Смесь перемешивают 30 мин при −78 °С и выливают в 100 мл насышенного раствора NH₄Cl со льдом. Смесь перемешивают до растворения льда и экстрагируют 2 × 20 мл дихлорметана. Органическую фазу промывают охлажденным раствором NH₄Cl, сушат над безводным Na₂SO₄. Растворитель упаривают при пониженном давлении и остаток фракционируют на хроматографической колонке с силикагелем (элюент этилацетат-петролейный эфир, 1:3). Фракции с R_f 0.25 объединяют и упаривают. Получают 147 мг (43%) соединения 72-3b. Продукт содержит 97% основного вещества, согласно анализу ВЭЖХ. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 0.24 (9H, с, (CH₃)₃Si); 1.33 (9H, с, C₄H₉); 2.06 (3H, с, CH₃OCO); 3.31 и 3.60 (2H, два д, AB-система, ${}^{2}J = 16$, SCH₂); 4.78 и 5.06 (2Н, два д, АВ-система, ²*J* = 14, 3-CH₂OCO); 5.27 (1Н, д, ⁴*J* = 1.5, Н-6); 6.27 (1H, д, ${}^{4}J$ = 1.5, C=C-CH=). Фракции с R_{f} 0.08 объединяют, упаривают и получают 15 мг (4%) соединения 7Е-3b. Спектр ЯМР ¹Н, б, м. д. (J, Гц): 0.22 (9Н, с, (CH₃)₃Si); 1.33 (9H, с, C₄H₉); 2.06 (3H, с, CH₃OCO); 3.28 и 3.55 (2H, два д, AB-система, ²*J* = 18, SCH₂); 4.73 и 5.04 (2Н, два д, АВ-система, ²*J* = 12, 3-CH₂OCO); 5.11 $(1H, д, {}^{4}J = 0.8, H-6); 5.89 (1H, уш. с, C=C-CH=).$

трет-Бутиловый эфир 3-ацетоксиметил-7*Z*-(3-триметилсилилпропин-2-илиден)-1*R*-оксоцеф-3-ем-4-карбоновой кислоты (1*R*,7*Z*-4b) и трет-бутиловый эфир З-ацетоксиметил-72-(3-триметилсилилпропин-2-илиден)-1S-оксоцеф-3-ем-4-карбоновой кислоты (1S,7Z-4b). К раствору 80 мг (0.19 ммоль) соединения 7Z-3b в 20 мл дихлорметана при 0 °С и перемешивании добавляют 46 мг (0.20 ммоль) 75% 3-хлорпербензойной кислоты. Смесь перемешивают при комнатной температуре 4 ч, разбавляют 20 мл дихлорметана, промывают 50 мл 5% раствора Na_2SO_3 , 2 × 50 мл 5% раствора Na_2CO_3 и сушат над безводным Na₂SO₄. Растворитель упаривают при пониженном давлении и остаток фракционируют на хроматографической колонке с силикагелем (элюент этилацетат-петролейный эфир, 1:3). Фракции с R_f 0.25 объединяют, упаривают и получают 10 мг (12%) соединения 1*R*,7*Z*-4b. Продукт содержит 95% основного вещества, согласно анализу ВЭЖХ. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 0.24 (9H, с, (CH₃)₃Si); 1.55 (9H, с, C₄H₉); 2.09 (3H, с, CH₃OCO); 3.51 и 3.95 (2H, два д, AB-система, ${}^{2}J = 18$, SOCH₂); 4.78 и 5.04 (2H, два д, AB-система, ${}^{2}J = 14$, 3-CH₂OCO); 4.95 (1H, д, ${}^{4}J = 2$, H-6); 6.44 (1H, д, ${}^{4}J = 2$, C=C-CH=). Фракции с R_{f} 0.18 объединяют, упаривают и получают 30 мг (36%) соединения 1S,7Z-4b. Т. пл. 30 °С. Продукт содержит 95% основного вещества, согласно анализу ВЭЖХ. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 0.24 (9Н, с, (СН₃)₃Si); 1.58 (9Н, с, С₄Н₉); 2.09 (3Н, с, CH₃OCO); 3.22 и 3.84 (2H, два д, AB-система, ²J = 20, SOCH₂); 4.69 и 5.31 (2H, два д, AB-сис- тема, ${}^{2}J = 14$, 3-CH₂OCO); 4.89 (1H, д, ${}^{4}J = 2$, H-6); 6.44 (1H, д, ${}^{4}J = 2$, С=С-СН=). Найдено, %: С 56.50; Н 6.63; N 2.68. С₂₀H₂₇NO₆SSi•0.25C₆H₁₄. Вычислено, %: С 56.24; Н 6.69; N 3.05.

трет-Бутиловый эфир 3-метил-7*Z*-(3-триметилсилилпропин-2-илиден)-1,1-диоксооцеф-3-ем-4-карбоновой кислоты (7*Z*-5b). К раствору 100 мг (0.24 ммоль) соединения 7*Z*-3b в 20 мл дихлорметана при 0 °С и перемешивании добавляют 138 мг (0.60 ммоль) 75% 3-хлорпербензойной кислоты. Смесь перемешивают при комнатной температуре 4 ч, разбавляют 20 мл дихлорметана, промывают 50 мл 5% раствора Na₂SO₃, 2 × 50 мл 5% раствора Na₂CO₃ и сушат над безводным Na₂SO₄. Растворитель упаривают при пониженном давлении и остаток фракционируют на хроматографической колонке с силикагелем (элюент этилацетат–петролейный эфир, 1:3). Фракции с R_f 0.35 объединяют, упаривают и получают 25 мг (23%) соединения 7*Z*-5b. Т. пл. 40–41 °С. По данным анализа ВЭЖХ, продукт содержит 97% основного вещества. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 0.23 (9H, c, (CH₃)₃Si); 1.56 (9H, c, C₄H₉); 2.08 (3H, c, CH₃OCO); 3.67 и 4.02 (2Н, два д, АВ-система, ²*J* = 18, SO₂CH₂); 4.69 и 5.08 (2Н, два д, АВ-система, ²*J* = 14, 3-CH₂OCO); 5.27 (1Н, уш. с, H-6); 6.47 (1Н, д, ⁴*J* = 2, C≡C−CH=).

Рентгеноструктурный анализ проводили на автоматическом дифрактометре Nonius KappaCCD (съемка при комнатной температуре, молибденовое излучение с $\lambda = 0.71073$ Å, графитовый монохроматор, φ - и ω -сканирование). Структуры расшифровывали прямым методом [5] и уточняли полноматричным МНК с помощью комплексов maXus [6] (для 1*S*,7*Z*-4*a*) и SHELXL [7] (для 7*Z*-5*a*). Абсолютную конфигурацию хиральных кристаллических структур определяли по аномальному рассеянию атома серы. Основные кристаллографические характеристики для соединений 1*S*,7*Z*-4*a* (этилацетат–петролейный эфир, 1:3) и 7*Z*-5*a* (этилацетат–петролейный эфир, 1:3) и 7*Z*-5*a* (этилацетат–петролейный эфир, 1:3), а также условия съемки и параметры уточнения даны в табл. 3. Кристаллографическая информация депонирована в Кембриджском банке структурных данных [депонент № ССDC 681162 (7*Z*-4*a*) и 681163 (7*Z*-5*a*)].

СПИСОК ЛИТЕРАТУРЫ

- G.Veinberg, M. Vorona, I. Shestakova, I. Kanepe, O. Zharkova, R. Mezapuke, I. Turovskis, I. Kalvinsh, E. Lukevics, *Bioorg. Med. Chem.*, 8, 1033 (2000).
- J. D. Buynak, K. Wu, B. Bachman, D. Khasnis, L. Hua, H. K. Nguyen, C. L. Carver, J. Med. Chem., 38, 1022 (1995).
- P. E. Finke, S. K. Shah, B. M. Ashe, R. G. Ball, J. T. Blacklock, R. J. Bonney, K. A. Brause, G. O. Chandler, M. Cotton, P. Davies, P. S. Dellea, C. P. Dorn, Jr, D. S. Fletcher, L. O'Grady, W. K. Hagmann, K. M. Hand, W. B. Knight, A. L. Maycock, R. A. Mumford, D. G. Osinga, P. Sohar, K. R. Thompson, H. Weston, J. B. Doherty, *J. Med. Chem.*, **35**, 3731 (1992).
- 4. J. D. Buynak, A. S. Rao, S. D. Nidamarthy, Tetrahedron Lett., 39, 4945 (1998).
- A. Altomare, M. C. Burla, M. Camaali, G. L. Cascarano, C. Giacovazzo, C. Guagliardi, A. Moliterni, R. Spagna, J. Appl. Crystallogr., 32, 115 (1999).
- 6. S. Mackay, C. J. Gilmore, C. Edwards, N. Stewart, K. Shankland (1999), *maXus* Computer Program for the Solution and Refinement of Crystal Structures, Bruker Nonius, The Netherlands, MacScience, Japan & The Univ. of Glasgow.
- 7. G. M. Sheldrick, *SHELXL97. Program for the Refinement of Crystal Structures*, Univ. of Göttingen, Germany, 1997.

Латвийский институт органического синтеза, Puгa LV-1006 e-mail: veinberg@osi.lv e-mail: max@osi.lv Поступило 10.03.2008