Посвящается памяти профессора А. А. Потехина

В. В. Пакальнис, И. В. Зерова, С. И. Якимович, В. В. Алексеев^а

ВЗАИМОДЕЙСТВИЕ АРОИЛ- И ГЕТЕРОАРОИЛТРИФТОРАЦЕТОНОВ С ТИОБЕНЗОИЛГИДРАЗИНОМ

Взаимодействие ароил(гетероароил)трифторацетонов с тиобензоилгидразином может протекать по обеим карбонильным группам; реакции по трифторацетильной функции благоприятствуют терминальные заместители в 1,3-дикарбонильной части, способные к эффективному сопряжению со смежной связью С=О. Продукты конденсации по трифторацетильной функции – 2-[2-арил(гетероарил)-2-оксоэтил]-5-фенил-2-трифторметил-2,3-дигидро-1,3,4-тиадиазолы, по ароильной (гетероароильной) группе – 3-арил-(гетероарил)-5-гидрокси-1-тиобензоил-5-трифторметил-4,5-дигидро-1Н-пиразолы, не проявляющие склонности к таутомерным переходам в растворах.

Ключевые слова: 5-гидрокси-2-пиразолин, 1,3,4-тиадиазолин, фторированные 1,3-дикетоны.

Ранее нами было показано, что взаимодействие ароилуксусных альдегидов и ароилацетонов с тиоацилгидразинами протекает региоспецифично по формильной или ацетильной связи С=О [1, 2]. Продукты конденсации в кристаллическом состоянии имеют строение 1,3,4-тиадиазолинов, образующихся благодаря внутримолекулярной атаке атома серы по связи C=N промежуточно возникающих тиоацилгидразонов 1,3-дикарбонильных соединений. В растворах производные ароилуксусных альдегидов сохраняют свою 1,3,4-тиадиазолиновую структуру, а производные ароилацетонов существуют как таутомерные смеси 1,3,4-тиадиазолиновой и 5-гидрокси-2-пиразолиновой форм; в основных диполярных растворителях, ДМСО и ДМФА, к ним присоединяется сопряженный енгидразинный таутомер. Это пример достаточно редкого равновесия, в котором участвуют гетероциклы существенно различной природы [1–6].

В продолжение упомянутых выше исследований было изучено взаимодействие тиобензоилгидразина с 1,3-дикетонами CF₃COCH₂COR **1а–j**, в которых один из терминальных заместителей – трифторметильная группа, второй – арильный или гетероарильный цикл (табл. 1).

Нас интересовало, как скажется наличие акцепторной трифторметильной группы на регионаправленность реакции, строение и способность продуктов конденсации к таутомерным превращениям.

Взаимодействие 1,3-дикетонов **1а–ј** с тиобензоилгидразином осуществляли в мягких условиях: эквимолярные количества реагентов в абсолютном метаноле при комнатной температуре, без применения кислотных катализаторов. Окончание реакции фиксировали TCX. Реакция протекала весьма медленно, полное исчезновение реагентов происходило через 15–20 дн. После удаления растворителя в вакууме при комнатной температуре продукты реакции без предварительной перекристаллизации 765 анализировали с помощью спектроскопии ЯМР. Это позволяло судить прежде всего о региоселективности реакции.

Оказалось, что в случае выбранных фторированных 1,3-дикетонов наличие концевого арильного или гетероарильного заместителя не гарантирует однозначного протекания реакции с тиобензоилгидразином. Остановимся подробнее на результатах взаимодействия тиобензоилгидразина с 1,3-дикетонами **1a** и **1e**, несущими сильные электронодонорный и электроноакцепторный заместители в ароматическом ядре.

R = 4-XC₆H₄, **a** X = OMe, **b** X = Me, **c** X = H, **d** X = Cl, **e** X = NO₂, **f** R = 2-тиенил, **g** R = 2-фурил, **h** R = 2-Ру, **i** R = 3-Ру, **j** = 4-Ру

В спектре ЯМР ¹Н раствора в CDCl₃ кристаллической массы, выделенной после окончания реакции 1,3-дикетона **1а** с тиобензоилгидразином, наблюдается только один набор резонансных сигналов. Это, естественно, означает, что в данном случае реакция является региоспецифичной и приводит к продукту конденсации по одной из связей C=O. Наличие в спектре двух несимметричных дублетных сигналов интенсивностью один протон каждый при 3.65 и 3.86 м. д. с КССВ 17.0 Гц, образующих типичную систему AB, указывает на циклическую структуру производного 1,3-дикетона **1а**. Только при кольчатом строении, будь ли это 1,3,4-тиадиазолин или 5-гидрокси-2-пиразолин, атомы водорода метиленовой группы будут диастереотопны благодаря наличию центра хиральности и соответственно обусловливать в спектре ЯМР ¹Н появление системы AB.

Выбор между циклическими структурами, 1,3,4-тиадиазолиновой и 5-гидрокси-2-пиразолиновой, был сделан при помощи спектроскопии ЯМР ¹³С с привлечением надежных модельных соединений. В качестве таковых мы использовали продукты конденсации трифторацетоуксусного эфира с тиобензоилгидразином – 2k, трифторацетилацетона с тиобензоилгидразином – 4.

Соединение **2k** обладает 1,3,4-тиадиазолиновым строением. В спектре ЯМР ¹Н его раствора в CDCl₃ имеются два несимметричных дублетных сигнала при 3.10 и 3.19 м. д. с КССВ 15.3 Гц, обусловленные диастереотопными протонами метиленовой группы, примыкающей к циклу. Сигнал протона NH находится при δ 7.06 м. д., что соответствует спектральным свойствам производных 1,3-дикарбонильных соединений, имеющих 1,3,4тиадиазолиновое строение [1, 4, 5].

В спектре ЯМР ¹³С раствора соединения **2k** в CDCl₃ квадруплетный $(J = 30.9 \ \Gamma \mu)$ сигнал атома углерода в положении 2 находится при 82.53 м. д. Его мультиплетность обусловлена соседством трифторметильной группы.

Таблица 1

Соеди-	Брутто-формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Выход, %
нение		С	Н	Ν	C	
2 a	$C_{18}H_{15}F_{3}N_{2}O_{2}S$	<u>56.72</u> 56.84	<u>3.89</u>	<u>7.25</u> 7.36	98	31
2b	$C_{18}H_{15}F_3N_2OS$	<u>59.26</u> 59.33	<u>4.13</u> 4.15	7.56 7.69	118	42
2c	$C_{17}H_{13}F_3N_2OS$	<u>58.06</u> 58.28	<u>3.68</u> 3.74	<u>7.89</u> 8.00	104	26
2f	$C_{15}H_{11}F_3N_2OS_2$	<u>50.46</u> 50.55	<u>3.06</u> 3.11	<u>7.78</u> 7.86	135	33
2g	$C_{15}H_{11}F_3N_2O_2S$	<u>52.81</u> 52.94	<u>3.21</u> 3.26	<u>8.13</u> 8.23	142	32
3d	$C_{17}H_{12}F_3ClN_2OS$	<u>52.92</u> 53.06	<u>3.08</u> 3.14	<u>7.16</u> 7.28	93	30
3e	$C_{17}H_{12}F_3N_3O_3S$	<u>51.49</u> 51.65	<u>2.99</u> 3.06	<u>10.52</u> 10.63	234	52
3g	$C_{15}H_{11}F_3N_2O_2S$	<u>52.80</u> 52.94	<u>3.18</u> 3.26	<u>8.11</u> 8.23	135	49
3h	$C_{16}H_{12}F_3N_3OS$	<u>54.55</u> 54.70	<u>3.34</u> 3.44	<u>11.83</u> 11.96	142	53
3i	$C_{16}H_{12}F_{3}N_{3}OS$	<u>54.60</u> 54.70	<u>3.35</u> 3.44	<u>11.87</u> 11.96	138	48
3ј	$C_{16}H_{12}F_3N_3OS$	<u>54.58</u> 54.70	<u>3.41</u> 3.44	<u>11.83</u> 11.96	136	51

Характеристики соединений 2а-с,f,g и 3d,e,g-j

Соеди-	Химические сдвиги, б, м. д. (Ј, Гц)				
нение*	CDCl ₃	ДМСО-d ₆			
1	2	3			
2a	3.65 (1H, μ , $J = 16.4$, CH(H)CO); 3.86 (1H, μ , $J = 16.4$, CH(H)CO); 3.91 (3H, c, OCH ₃); 6.98 (2H, μ , $J_{H3',H2'} = 8.7$, H-3' 4-CH ₃ OC ₆ H ₄); 7.35 (1H, c, NH); 7.38–7.42 (3H, M, H-3',4' C ₆ H ₅); 7.61 (2H, μ , μ , $J_{H2',H3'} = 7.3$, $J_{H2',H4'} = 1.4$, H-2' C ₆ H ₅); 7.94 (2H, μ , $J_{H2',H3'} = 8.7$, H-2' 4-CH ₃ OC ₆ H ₄)	3.77 (1H, μ , $J = 17.4$, CH(H)CO); 3.85 (3H, c, OCH ₃); 4.19 (1H, μ , $J = 17.4$, CH(H)CO); 7.07 (2H, μ , $J_{H3',H2'} = 8.7$, H-3' 4-CH ₃ OC ₆ H ₄); 7.43–7.48 (3H, M, 2H-3',4' C ₆ H ₅); 7.57 (2H, μ , $J_{H2',H3'} = 8.7$, $J_{H2',H4'} = 1.4$, H-2' C ₆ H ₅); 7.98 (2H, μ , $J_{H2',H3'} = 8.7$, H-2' 4-CH ₃ OC ₆ H ₄); 8.75 (1H, c, NH)			
2b	2.45 (3H, c, CH ₃); 3.70 (1H, π , $J = 15.9$, C <u>H</u> (H)CO); 3.90 (1H, π , $J = 15.9$, CH(<u>H</u>)CO); 7.30 (1H, c, NH); 7.31 (2H, π , $J_{H3',H2'} = 8.0$, H-3' 4-CH ₃ C ₆ H ₄); 7.37–7.41 (3H, M, H-3',4' C ₆ H ₅); 7.62 (2H, ym π , $J_{H2',H3'} = 4.4$, C ₆ H ₅); 7.87 (2H, π , $J_{H2',H3'} = 8.0$, H-2' 4-CH ₃ C ₆ H ₄)	2.38 (3H, c, CH ₃); 3.82 (1H, π , $J = 17.4$, C <u>H</u> (H)CO); 4.22 (1H, π , $J = 17.4$, CH(<u>H</u>)CO); 7.36–7.44 (3H, M, H-3',4' C ₆ H ₅); 7.36 (2H, π , $J_{H3',H2'} = 8.0$, H-3' 4-CH ₃ C ₆ H ₄); 7.56 (2H, π , $J_{H2',H3'} = 7.3$, H-2' C ₆ H ₅); 7.89 (2H, π , $J_{H2',H3'} = 8.0$, H-2' 4-CH ₃ C ₆ H ₄); 8.76 (1H, c, NH)			
2c	3.74 (1H, μ , $J = 16.0$, C <u>H</u> (H)CO); 3.94 (1H, μ , $J = 16.0$, CH(<u>H</u>)CO); 7.31 (1H, c, NH); 7.38–7.41 (3H, M, H-3',4' C ₆ H ₅); 7.50–7.54 (3H, M, H-3',4' C ₆ H ₅); 7.63 (2H, μ . μ , $J_{H2',H3'} = 6.9$, $J_{H2',H4'} = 2.7$, H-2' C ₆ H ₅); 7.97 (2H, μ , $J_{H2',H3'} = 8.0$, H-2' C ₆ H ₅)	3.86 (1H, μ , J = 18.2, C <u>H</u> (H)CO); 4.21 (1H, μ , J = 18.2, CH(<u>H</u>)CO); 7.43– 7.61 (8H, M, C ₆ H ₅ , 2H-3', H-4' C ₆ H ₅); 8.00 (2H, μ , $J_{H2',H3'}$ = 8.0, H-2' C ₆ H ₅); 8.77 (1H, c, NH)			
2d	3.67 (1H, μ , $J = 16.5$, C <u>H</u> (H)CO); 3.87 (1H, μ , $J = 16.5$, CH(<u>H</u>)CO); 7.23 (1H, c, NH); 7.37–7.44 (5H, M, C ₆ H ₅); 7.50 (2H, μ , $J_{H3',H2'} = 9.3$, H-3' 4-ClC ₆ H ₄), 7.91 (2H, μ , $J_{H2',H3'} = 9.3$, H-2' 4-ClC ₆ H ₄)	3.89 (1H, π , $J = 17.4$, C <u>H</u> (H)CO); 4.23 (1H, π , $J = 17.4$, CH(<u>H</u>)CO); 7.43– 7.47 (3H, μ , 2H-3', H-4' C ₆ H ₅); 7.62 (2H, π , $J_{H2',H3'} = 8.0$, H-2' C ₆ H ₅); 7.64 (2H, π , $J_{H3',H2'} = 8.7$, H-3' 4-ClC ₆ H ₄); 8.01 (2H, π , $J_{H2',H3'} = 8.7$, H-2' 4-ClC ₆ H ₄); 8.75 (1H, c, NH)			
2f	3.64 (1H, д, $J = 16.0$, С <u>H</u> (H)CO); 3.76 (1H, д, $J = 16.0$, CH(<u>H</u>)CO); 7.20 (1H, т, $J_{\text{H3',H2'}} = J_{\text{H3',H4'}} = 4.4$, H-3' 2-тиенил); 7.31 (1H, c, NH); 7.39–7.41 (3H, м, H-2',4' 2-тиенил, H-4' C ₆ H ₅); 7.62 (2H, т, $J_{\text{H3',H2'}} = J_{\text{H3',H4'}} = 4.4$, H-3' C ₆ H ₅); 7.77 (2H, д. д, $J_{\text{H2',H3'}} = 4.4$, $J_{\text{H2',H4'}} = 1.45$, H-2' C ₆ H ₅)	3.69 (1H, д, $J = 16.4$, C <u>H</u> (H)CO); 4.00 (1H, д, $J = 16.0$, CH(<u>H</u>)CO); 7.22 (1H, д.д. $J_{\text{H3',H2'}} = 4.4$, $J_{\text{H3',H2'}} = 3.6$, H-3' 2-тиенил); 7.37–7.39 (3H, м, H-3',4' C ₆ H ₅); 7.55 (2H, д. д. $J_{\text{H2',H3'}} = 6.9$, $J_{\text{H2',H4'}} = 2.2$, H-2' C ₆ H ₅); 7.92 (1H, д, $J_{\text{H2',H3'}} = 4.4$, 2-тиенил); 7.95 (1H, д, $J_{\text{H4',H3'}} = 3.6$, 2-тиенил)			

Спектры ЯМР ¹Н растворов соединений 2а-d,f,g и 3b-e,g-j

2g	3.58 (1H, д, $J = 15.5$, C <u>H</u> (H)CO); 3.76 (1H, д, $J = 15.5$, CH(<u>H</u>)CO); 6.62 (1H, д.д., $J_{H3',H2'} = 3.65$, $J_{H3,H4'} = 1.8$, H-3' 2-фурил); 7.23 (1H, с, NH); 7.32 (1H, д, $J_{H2',H3'} = 3.65$, H-2' 2-фурил); 7.38–7.41 (3H, м, 2H-3', H-4' C ₆ H ₅); 7.61 (2H, д. д., $J_{H2',H3'} = 6.7$, $J_{H2',H4'} = 2.7$, H-2' C ₆ H ₅); 7.67 (1H, $J_{H4',H3'} = 1.8$, H-4' 2-фурил)	3.77 (1H, д, <i>J</i> = 17.4, С <u>H</u> (H)CO); 3.85 (3H, с, OCH ₃); 4.19 (1H, д, <i>J</i> = 17.4, CH(<u>H</u>)CO); 6.77 (1H, д. д, <i>J</i> _{H3',H2'} = 2.9, <i>J</i> _{H3',H4'} = 1.45 H-3' 2-фурил); 7.54–7.62 (5H, м, C ₆ H ₅); 7.92 (1H, д, <i>J</i> _{H2',H3'} = 2.9, H-2' 2-фурил); 8.02 (1H, д, <i>J</i> _{H4',H3'} = 1.45, H-4' 2-фурил); 8.75 (1H, с, NH)
3b	2.39 (3H, c, CH ₃); 3.68 (1H, π , J_{AB} = 18.5, H _A -4); 3.88 (1H, π , J_{AB} = 18.5, H _B -4); 7.21 (2H, π , $J_{H3',H2'}$ = 8.4, H-3' 4-CH ₃ C ₆ H ₄); 7.49 (2H, π , $J_{H2',H3'}$ = 8.4, H-2' 4-CH ₃ C ₆ H ₄); 7.60–7.63 (3H, M, H-3',4' C ₆ H ₅); 7.67 (2H, π . π , $J_{H2',H3'}$ = 8.4, $J_{H2',H4'}$ = 1.7, H-2' C ₆ H ₅); 8.32 (1H, c, OH)	2.33 (3H, c, CH ₃); 3.82 (1H, π , J_{AB} = 19.3, H_{A} -4); 4.17 (1H, π , J_{AB} = 19.3, H_{B} -4); 7.28 (2H, π , $J_{H3',H2'}$ = 7.9, H-3' 4-CH ₃ C ₆ H ₄); 7.37–7.49 (5H, M, C ₆ H ₅); 7.61 (2H, π , $J_{H2',H3'}$ = 7.9, H-2' 4-CH ₃ C ₆ H ₄); 8.48 (1H, c, OH)
3c	3.67 (1H, μ , $J_{AB} = 18.5$, H_{A} -4); 3.87 (1H, μ , $J_{AB} = 18.5$, H_{B} -4); 7.40 (2H, τ , $J_{H3',H2'} = J_{H2',H3'} = 8.4$, H-3' C ₆ H ₅); 7.41 (2H, τ , $J_{H3',H2'} = J_{H3',H4'} = 7.6$, H-3' C ₆ H ₅); 7.47–7.55 (4H, μ , 2H-2', H-3',3' C ₆ H ₅); 7.66 (2H, μ , $J_{H2',H3'} = 7.6$, H-2' C ₆ H ₅); 8.25 (1H, c, OH)	3.88 (1H, д, <i>J</i> _{AB} = 19.6, H _A -4); 4.26 (1H, д, <i>J</i> _{AB} = 19.6, H _B -4); 7.43–7.61 (8H, м, 5H C ₆ H ₅ , 2H-3', H-4' C ₆ H ₅); 8.04 (2H, уш. д, <i>J</i> = 4.4, H-2' C ₆ H ₅); 8.54 (1H, уш. с, OH)
3d	3.67 (1H, μ , $J_{AB} = 18.9$, H_A -4); 3.87 (1H, μ , $J_{AB} = 18.9$, H_B -4); 7.38 (2H, τ , $J_{H3',H2'} = J_{H3',H4'} = 8.0$, H-3' C ₆ H ₅); 7.42 (2H, μ , $J_{H2',H3'} = 8.0$, H-2' C ₆ H ₅); 7.51–7.53 (3H, μ , 2H-3' 4-ClC ₆ H ₄ , H-4' C ₆ H ₅); 7.66 (2H, μ , $J_{H2',H3'} = 8.0$, H' 4-ClC ₆ H ₄); 8.25 (1H, c, OH)	3.84 (1H, д, J_{AB} = 19.6, H _A -4); 4.22 (1H, д, J_{AB} = 19.6, H _B -4); 7.37–7.49 (7H, м, 2H-3' 4-ClC ₆ H ₄ , 5H C ₆ H ₅); 8.06 (2H, д, $J_{H2;H3'}$ = 8.7, H-2' 4-ClC ₆ H ₄); 8.54 (1H, уш. с, OH)
3e	3.73 (1H, \exists , $J_{AB} = 18.5$, H_{A} -4); 3.93 (1H, \exists , $J_{AB} = 18.5$, H_{B} -4); 7.43 (2H, τ , $J_{H3',H2'} = J_{H3',H4'} = 7.6$, H-3' C ₆ H ₅); 7.53 (1H, τ , $J_{H4',H3'} = 7.6$, H-4' C ₆ H ₅); 7.66 (2H, \exists , $J_{H2',H3'} = 7.6$, H-2' C ₆ H ₅); 7.76 (2H, \exists , $J_{H2',H3'} = 9.3$, H-2' 4-NO ₂ C ₆ H ₄); 8.27 (2H, \exists , $J_{H3',H2'} = 9.3$, H-3' 4-NO ₂ C ₆ H ₄); 8.12 (1H, c, OH)	3.89 (1H, μ , $J_{AB} = 19.6$, H_{A} -4); 4.30 (1H, μ , $J_{AB} = 19.6$, H_{B} -4); 7.37–7.49 (5H, M, C ₆ H ₅); 7.87 (2H, μ , $J_{H2',H3'} = 8.7$, H-2' 4-NO ₂ C ₆ H ₄); 8.29 (2H, μ , $J_{H3',H2'} = 8.7$, H-3' 4-NO ₂ C ₆ H ₄); 8.63 (1H, c, OH)

Окончание таблицы 2

1	2	3
3g	3.71 (1H, д, J_{AB} = 18.3, H_{A} -4); 3.87 (1H, д, J_{AB} = 18.3, H_{B} -4); 6.53 (1H, д. д, $J_{H3',H2'}$ = 3.7, $J_{H3',H4'}$ = 1.8, H-3' 2-фурил); 6.87 (1H, д, $J_{H2',H3'}$ = 3.7, H-2' 2-фурил); 7.37–7.45 (4H, м, H-2',3' C ₆ H ₅); 7.57 (1H, м, H-4' C ₆ H ₅); 7.66 (1H, д, $J_{H4',H3'}$ = 1.8); 8.32 (1H, с, OH)	3.75 (1H, д, <i>J</i> _{AB} = 18.9, H _A -4); 4.09 (1H, д, <i>J</i> _{AB} = 18.9, H _B -4); 6.70 (1H, д. д, <i>J</i> _{H3',H2'} = 2.9, <i>J</i> _{H3',H4'} = 1.45, H-3' 2-фурил), 7.21 (1H, д, <i>J</i> _{H2',H3'} = 2.9, H-2' 2-фурил), 7.37–7.45 (5H, м, H C ₆ H ₅), 7.90 (1H, д, <i>J</i> _{H4',H3'} = 1.45, H-4' 2-фурил); 8.55 (1H, уш. с, OH)
3h	3.72 (1H, д, $J_{AB} = 18.7$, H_{A} -4); 3.98 (1H, д, $J_{AB} = 18.7$, H_{B} -4); 7.42 (2H, т, $J_{H3',H2'} = J_{H3',H4'} = 7.3$, H-3' C ₆ H ₅); 7.51 (1H, т, $J_{H4',H3'} = 7.3$, H-4' C ₆ H ₅); 7.62 (2H, д, $J_{H2',H3'} = 7.3$, H-2' C ₆ H ₅); 7.72 (1H, т. д, $J_{H5',H4'} = J_{H5',H6'} = 8.0$, $J_{H5',H3'} = 1.45$, H-5' 2-пиридил); 7.34 (1H, д. д, $J_{H4',H5'} = 8.0$, $J_{H4',H3'} = 5.1$, H-4' 2-пиридил); 7.93 (1H, д, $J_{H6',H5'} = 8.0$, H-6' 2-пиридил); 8.33 (1H, с, OH); 8.63 (1H, уш. д, $J = 5.0$, H-3' 2-пиридил)	3.90 (1Н, д, <i>J</i> _{AB} = 19.6, H _A -4); 4.28 (1Н, д, <i>J</i> _{AB} = 19.6, H _B -4); 7.39–7.49 (5Н, м, C ₆ H ₅); 7.50 (1Н, уш. с, H-4' 2-пиридил); 7.77 (1Н, уш. д, <i>J</i> = 7.3, H-6' 2-пиридил); 7.88 (1Н, т, <i>J</i> _{H5',H4'} = <i>J</i> _{H5',H6'} = 8.0, H-5' 2-пиридил); 8.61 (1Н, с, OH); 8.65 (1Н, д, <i>J</i> _{H3',H4'} = 4.4, H-3' 2-пиридил)
3i	3.75 (1H, д, $J_{AB} = 18.6$, H_{A} -4); 3.95 (1H, д, $J_{AB} = 18.6$, H_{B} -4); 7.23 (2H, д. д, $J_{H3',H2'} = 8.0$, $J_{H3',H4'} = 7.3$, H-3' C ₆ H ₅); 7.30 (1H, $J_{H4',H3'} = 7.3$, H-4' C ₆ H ₅); 7.35 (1H, д. д, $J_{H5',H6'} = 7.6$, $J_{H5',H4'} = 4.2$, H-5' 3-пиридил); 7.61 (2H, д, $J_{H2',H3'} = 8.0$, H-2' C ₆ H ₅); 7.93 (1H, д, $J_{H6',H5'} = 7.6$, H-6' 3-пиридил); 8.21 (1H, с, OH); 8.72 (1H, д, $J_{H4',H5'} = 4.2$, H-4' 3-пиридил); 8.85 (1H, уш. с, H-2' 3-пиридил)	3.88 (1H, д, $J_{AB} = 19.3$, H_{A} -4); 4.29 (1H, д, $J_{AB} = 19.3$, H_{B} -4); 7.40–7.47 (3H, м, H-3' C ₆ H ₅ , H-5' 3-пиридил); 7.48 (1H, т, $J_{H4',H3'} = 6.9$, H-4' C ₆ H ₅); 7.59 (2H, д, $J_{H2',H3'} = 6.9$, H-2' C ₆ H ₅); 8.25 (1H, д. д. д. $J_{H6',H5'} = 8.0$, $J_{H6',H4'} = 2.2$, $J_{H6',H2'} = 1.45$, H-6' 3-пиридил); 8.56 (1H, с, OH); 8.86 (1H, д. $J_{H4',H5'} = 3.6$, H-4' 3-пиридил); 9.19 (1H, уш. с, H-2' 3-пиридил)
3ј	3.69 (1H, д, $J_{AB} = 18.9$, H_{A} -4); 3.90 (1H, д, $J_{AB} = 18.9$, H_{B} -4); 7.41 (2H, т, $J_{H3',H2'} = J_{H3',H4'} = 7.6$, H-3' C ₆ H ₅); 7.52 (1H, т, $J_{H4',H3'} = 7.6$, H-4' C ₆ H ₅); 7.50 (2H, уш. с, H-2' 4-пиридил); 7.61 (2H, д, $J_{H2',H3'} = 7.6$, H-2' C ₆ H ₅); 8.72 (2H, уш. с, H-3' 4-пиридил); 8.20 (1H, с, OH)	3.87 (1H, д, J_{AB} = 19.3, H _A -4); 4.29 (1H, д, J_{AB} = 19.3, H _B -4); 7.35–7.45 (3H, м, H-3',4' C ₆ H ₅); 7.57 (2H, д, $J_{H2',H3'}$ = 6.9, H-2' C ₆ H ₅); 7.60 (2H, д, $J_{H2',H3'}$ = 5.8, H-2' 4-пиридил); 8.67 (2H, уш. с, H-3' 4-пиридил); 8.62 (1H, с, OH)

^{*} Соотношение региоизомерных продуктов конденсации, %: **2b:3b**, 80:20; **2c:3c**, 34:66; **2d:3d**, 31:69; **2g:3g**, 68:32.

Спектры ЯМР ¹³С соединений 2а-d,f,g и 3b-e,g-j

Соеди- нение	Химические сдвиги, CDCl ₃ б, м. д. (<i>J</i> , Гц)
2a	40.86 (CH ₂); 55.98 (OCH ₃); 82.11 (κ , $J = 30.4$, C-2); 114.53, 125.02 (κ , $J = 284.2$, CF ₃); 127.50, 129.02, 129.79, 130.53, 130.67, 131.33, 147.55 (C ₍₅₎); 164.81, 193.90 (C=O)
2b	22.01 (CH ₃); 41.26 (CH ₂); 82.99 (к, <i>J</i> = 30.4, C-2); 124.25 (к, <i>J</i> = 290.8, CF ₃); 127.50, 129.00, 130.02, 130.54, 130.66, 131.53, 134.30, 145.69, 147.47 (C-5); 195.07 (C=O)
2c	41.61 (CH ₂); 82.88 (κ , $J = 29.9$, C-2); 125.03 (κ , $J = 284.7$, CF ₃); 127.48, 127.85, 128.35, 128.84, 129.08, 129.60, 131.21, 132.19, 147.35 (C-5); 195.45 (C=O)
2d	41.65 (CH ₂); 82.90 (κ , $J = 30.4$, C-2); 125.04 (κ , $J = 284.3$, CF ₃); 127.56, 127.98, 128.23, 128.95, 129.16, 129.38, 130.56, 134.55, 147.38 (C-5); 195.64 (C=O)
2f	42.18 (CH ₂); 82.16 (κ , $J = 29.9$, C-2); 124.85 (κ , $J = 284.2$, CF ₃); 127.52, 128.98, 129.04, 130.55, 130.60, 133.88, 136.28, 144.00, 147.37 (C-5); 187.89 (C=O)
2g	40.98 (CH ₂); 83.03 (κ , J = 30.9, C-2); 113.50, 119.42, 124.83 (κ , J = 283.2, CF ₃); 127.51, 129.02, 130.47, 130.59, 147.52 (C-5); 148.02, 152.58, 183.83 (C=O)
3b	22.12 (CH ₃); 44.50 (CH ₂); 96.01 (к, <i>J</i> = 33.2, C-5); 128.10 (к, <i>J</i> = 290.8, CF ₃); 126.82, 127.15, 128.35, 129.99, 130.86, 132.72, 133.38, 143.11, 154.76 (C-3); 200.53 (C=S)
3c	44.52 (CH ₂); 96.51 (κ , $J = 33.2$, C-5); 124.23 (κ , $J = 290.3$, CF ₃); 127.50, 128.29, 129.32, 130.37, 130.85, 131.59, 132.70, 133.10, 154.64 (C-3); 200.99 (C=S)
3d	44.44 (CH ₂); 96.14 (κ , J = 33.7, C-5); 124.15 (κ , J = 290.8, CF ₃); 127.47, 128.12, 129.06, 129.71, 130.24, 131.32, 138.39, 143.02, 153.40 (C-3); 201.24 (C=S)
3e	44.44 (CH ₂); 96.40 (κ , $J = 33.7$, C-5); 124.04 (κ , $J = 290.8$, CF ₃); 124.55, 128.04, 128.33, 129.11, 131.68, 135.54, 142.91, 149.72, 151.93 (C-3); 202.40 (C=S)
3g	44.26 (CH ₂); 95.56 (κ , J = 33.9, C-5); 112.91, 115.11, 126.78 (κ , J = 290.8, CF ₃); 127.91, 129.03, 131.26, 142.95, 146.13, 146.43 (C-3); 200.81 (C=S)
3h	44.59 (CH ₂); 95.59 (κ , J = 33.9, C-5); 123.93 (κ , J = 287.8, CF ₃); 121.70, 125.44, 128.29, 130.86, 132.45, 136.87, 149.79, 150.43, 155.53 (C-3); 201.61 (C=S)
3i	44.26 (CH ₂); 95.32 (к, <i>J</i> = 33.9, C-5); 124.63 (к, <i>J</i> = 290.8, CF ₃); 124.25, 126.62, 128.23, 129.61, 129.75, 134.45, 135.37, 148.19, 150.63, 151.53 (C-3); 202.02 (C=S)
3ј	44.48 (CH ₂); 95.42 (κ , J = 33.9, C-5); 121.39, 124.09 (κ , J = 287.8, CF ₃); 128.86, 130.13, 132.31, 135.49, 138.17, 151.28, 151.33 (C-3); 201.42 (C=S)

Реакция трифторацетилацетона с бензоилгидразином осуществляется по ацетильной функции; продукт конденсации, согласно ранее полученным данным ЯМР ¹Н и ¹³С и результатам РСА, имеет 5-гидрокси-2-пиразолиновое строение [7, 8]. В спектре ЯМР ¹Н раствора соединения **4** в CDCl₃ сигналы протонов метиленовой группы имеют вид несимметричных дублетов при §3.09 и 3.27 с КССВ 19.0 Гц, сигнал протона группы ОН проявляется при 6.70 м. д. В спектре ЯМР ¹³С квартетный сигнал (J = 34.0 Гц) атома углерода в положении 5 находится при 92.89 м. д.

В спектре ЯМР ¹Н раствора в CDCl₃ продукта конденсации тиобензоилгидразина с трифторацетилацетоном **31** наблюдается синглетный сигнал интенсивностью в три протона при 1.90, два несимметричных дублета при 3.25 и 3.41 с КССВ 18.9 Гц и слабопольный сигнал при 8.23 м. д. Интенсивность последних трех сигналов – один протон каждый.

Все это согласуется с циклическим строением обсуждаемого производного трифторацетилацетона. Первый сигнал, естественно, принадле- жит метильной группе, два последующих – диастереотопным протонам метиленовой группы, последний – протону, связанному с гетероатомом.

Вид спектра ЯМР ¹³С раствора соединения **3I** в CDCl₃ полностью согласуется с циклическим строением, а наличие квартетного сигнала при δ 95.35 м. д. с КССВ 33.9 Гц после сопоставления со спектрами соединений **2k** и **4** окончательно убеждает, что продукт взаимодействия трифторацетилацетона с тиобензоилгидразином возникает при конденсации по ацетильной связи C=O и имеет 5-гидрокси-2-пиразолиновое строение. Отметим, что сигнал атома углерода связи C=S в спектре ЯМР ¹³С соединения **3I** находится при 200.72 м. д.

Таким образом, сигнал четвертичного атома углерода в спектре ЯМР ¹³С в положении 2 1,3,4-тиадиазолиновой структуры, где этот атом связан с трифторацетильной группой и атомами азота и серы, находится в существенно более сильных полях, чем сигнал атома углерода в положении 5 5-гидрокси-2-пиразолиновой структуры, где он связан с той же трифторметильной группой и атомами азота и кислорода. Это различие позволяет надежно идентифицировать кольчатые формы, в которых способны существовать продукты взаимодействия фторированных 1,3-дикетонов с тиобензоилгидразином.

В спектре ЯМР ¹³С раствора в CDCl₃ соединения 2a – продукта конденсации 1,3-дикетона 1a с тиобензоилгидразином, имеющего по данным спектроскопии ЯМР ¹Н циклическое строение, наблюдается квартетный сигнал при 82.11 м. д. с КССВ 30.4 Гц (табл. 3). Мультиплетность сигнала указывает на наличие соседней трифторметильной группы, а положение сигнала после сопоставления со спектрами модельных соединений 2k, 3lи 4 позволяет утверждать, что речь идет о 1,3,4-тиадиазолиновой форме, образующейся при внутримолекулярной циклизации промежуточного гидразона A^1 по связи C=N.

Только продукт конденсации по трифторацетильной связи C=O, имеющий при этом 1,3,4-тиадиазолиновое строение **2f**, согласно аналогичному спектроскопическому изучению (табл. 2, 3), образуется при реакции тиобензоилгидразина с 1,3-дикетоном **1f**, где в качестве терминального заместителя выступает тиофеновый цикл.

Отметим, что спектры ЯМР ¹Н и ¹³С растворов соединений **2a** и **2f**, зарегистрированные непосредственно после растворения и после продолжительного выдерживания растворов, полностью совпадают, новые наборы сигналов не появляются. Следовательно, не происходит таутомерных переходов ни в потенциально возможные линейные гидразонную и сопряженную енгидразинную, ни в альтернативную циклическую 5-гидрокси-2-пиразолиновую формы.

В спектре ЯМР ¹Н раствора кристаллической массы, выделенной после реакции тиобензоилгидразина с 1,3-дикетоном **1e**, также имеется один набор резонансных сигналов (табл. 2), и в этом случае возникает один продукт конденсации **3e** циклического строения. Вид спектра, наличие несимметричных дублетов при 3.73 и 3.93 м. д. с КССВ 18.9 Гц доказывает это однозначно.

В спектре ЯМР ¹³С раствора соединения **3е** в CDCl₃ наблюдается квартетный сигнал при 96.40 м. д. ($J = 3.7 \Gamma$ ц) (табл. 3). Сопоставление со спектрами ЯМР ¹³С модельных соединений убеждает, что взаимодействие

1,3-дикетона **1е** с тиобензоилгидразином приводит к продукту конденсации по ароильной связи C=O, имеющему 5-гидрокси-2-пиразолиновое строение, благодаря циклизации гидразона A^2 по трифторацетильной функции.

При взаимодействии тиобензоилгидразина с 1,3-дикетонами **1h–j**, где терминальный заместитель – пиридиновое кольцо, согласно данным спектроскопии ЯМР ¹Н и ¹³С (табл. 2, 3), также образуются продукты конденсации по гетероароильной связи C=O, обладающие 5-гидрокси-2-пиразолиновым строением.

Спектры ЯМР ¹Н и ¹³С растворов в CDCl₃ и ДМСО-d₆ соединений **3е,h–j** не меняются во времени, возможные таутомерные переходы не совершаются, 5-гидрокси-2-пиразолиновая форма полностью доминирует.

Взаимодействие тиобензоилгидразина с остальными 1,3-дикетонами 1b-d,g приводит к смесям продуктов конденсации по обеим связям C=O. Соотношение региоизомерных производных 1,3-дикетонов приведено в табл. 2. В спектрах ЯМР ¹Н растворов кристаллических масс, выделенных после окончания реакции, имеется по два набора резонансных сигналов. Один соответствует 1,3,4-тиадиазолинам 2b-d,g, образующимся при конденсации по трифторацетильной функции, второй – 5-гидрокси-2пиразолинам **3b-d,g**, полученным при конденсации по связи C=O, соседней с арильным или гетарильным заместителем (табл. 2). Отнесение сигналов в спектрах ЯМР ¹Н и ¹³С (табл. 2, 3) выполнено при сравнении со спектрами модельных соединений 2k, 3l и 4 и производных 1,3-дикетонов, для которых реакция протекает региоспецифично по трифторацетильной функции (2a,f) и по альтернативной гетероароильной связи C=O (3e,h-j). Отметим, что спектры ЯМР ¹Н и ¹³С продуктов конденсации 1,3-дикетонов **1b–d.g** не меняются во времени, появление новых таутомерных форм не происходит ни для производных по трифторацетильной, ни по ароильной или гетероароильной связям С=О.

Полученные результаты показывают, что введение в ароматическое ядро 1,3-дикарбонильной составляющей электронодонорных заместителей, а также использование в качестве терминального заместителя гетероциклов, 2-фурильного и особенно 2-тиенильного, способных к эффективному сопряжению с соседней связью С=О, благоприятствует образованию продуктов конденсации по трифторацетильной функции. Введение сильного электроноакцепторного заместителя в ароматический цикл, а также привлечение 2-, 3- и 4-пиридильных циклов, усиливающих электрофильность атома углерода смежной связи С=О, может привести и приводит к полному преобладанию продуктов конденсации по ароильной или гетероароильной карбонильной группе.

Можно сказать, что региоселективность реакции тиобензоилгидразина с фторированными 1,3-дикетонами **1а–** определяется электронными свойствами концевого заместителя 1,3-дикарбонильного компонента, строение же образующихся в конечном счете циклических соединений зависит от положения трифторметильной группы в структуре промежуточно образующихся гидразонов, внутримолекулярная циклизация осуществляется исключительно по кратной связи, соседней с трифторметильным радикалом.

Последовательной перекристаллизацией нам удалось выделить в индивидуальном виде 1,3,4-тиадиазолины **2b,c,g** и 5-гидрокси-2-пиразолины **3d,g**. Получить в индивидуальном виде оба циклических изомера для каждого 1,3-дикетона не удается. В лучшем случае мы имеем дело со смесью продуктов конденсации по обоим направлениям с повышенным до 90–95% содержанием одного из изомеров, что, однако, позволяет надежно идентифицировать сигналы циклов в смеси. Оба региоизомера были получены для производного 1,3-дикетона 1g, несущего в качестве концевого заместителя 2-фурильный цикл. Следует отметить, что соединения 2g и 3g, помещенные на длительное время в реакционные условия, не испытывают взаимных переходов. Это означает, что они возникают независимыми путями, а региоселективность реакции – результат кинети- ческого контроля.

Проведенные исследования показывают, что фторированные 1,3-дикетоны **1а–ј** занимают особое положение в реакциях с тиобензоилгидразином. Для них подбором терминального заместителя в 1,3-дикарбонильной составляющей можно направить реакцию к региоспецифичному образованию функционализированных производных 2,3-дигидро-1,3,4-тиадиазола или 4,5-дигидро-1Н-пиразола. Трифторметильная группа фиксирует определенное циклическое построение, не допускает возможных таутомерных переходов. В этом отношении продукты конденсации фторированных 1,3-дикетонов с тиобензоилгидразином отличаются от производных родственных ароилацетонов [2], существующих в растворах как кольчато-кольчатые таутомерные смеси.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С записаны на приборе Bruker DX-300 (300 и 75 МГц, соответственно) в CDCl₃ и ДМСО- d_6 , внутренний стандарт ТМС.

Исходные 1,3-дикетоны получены сложноэфирной конденсацией метиларилили метилгетарилкетонов с этиловым эфиром трифторуксусной кислоты, конденсиру- ющий arent NaH.

Взаимодействие 1,3-дикетонов с тиобензоилгидразином. К раствору 3 ммоль 1,3-дикетона 1а–I в 15 мл абсолютного метанола добавляют раствор 3 ммоль тиобензоилгидразина в 15 мл абсолютного метанола и выдерживают реакционную смесь при 20–25 °C. Контроль за ходом реакции осуществляют методом TCX на пластинах Silufol UV-254 (элюент CHCl₃). По окончании реакции растворитель упаривают в вакууме. Выпавшие кристаллы перекристаллизовывают из гексана. По данной методике были получены в индивидуальном виде 2-[2-арил- (гетероарил)-2-оксоэтил]-5-фенил-2трифторметил-2,3-дигидро-1,3,4-тиадиазолы 2а–с,f,g и 3-арил(гетероарил)-5гидрокси-1-тиобензоил-5-трифторметил-4,5-дигидро- 1H-пиразолы 3d,e,g–j.

Этиловый эфир 2-(2-трифторметил-5-фенил-2,3-дигидро-1,3,4-тиадиазол-2-ил)уксусной кислоты (2k). К раствору 0.552 г (3 ммоль) этилового эфира 4,4,4-трифторбутан-3-оновой кислоты в 10 мл абсолютного метанола добавляют раствор 0.456 г (3 ммоль) тиобензоилгидразина в 10 мл абсолютного метанола. Смесь выдерживают 20 сут при ~20 °C, часть растворителя удаляют в вакууме. Выпавшие кристаллы перекристаллизовывают из спирта. Выход соединения 2k 0.82 г (86%). Т. пл. 38–39 °C. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 1.28 (3H, т, *J* = 7.3, OCH₂CH₃); 3.10 (1H, д. *J* = 15.3, C<u>H</u>(H)CO); 3.19 (1H, д. *J* = 15.3, CH(<u>H</u>)CO); 4.23 (2H, к. *J* = 7.3, OC<u>H₂CH₃); 7.06 (1H, уш. с, NH); 7.40–7.42 (3H, м. H_{Ph}); 7.61– 7.64 (2H, м. H_{Ph}). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (*J*, Гц): 14.26 (OCH₂CH₃); 39.48 (CH₂); 62.20 (OCH₂CH₃); 82.53 (к. *J* = 30.9, C-2); 124.79 (к. *J* = 283.2, CF₃); 127.42, 129.07, 130.47, 130.63, 147.15 (C-5); 168.42 (CO₂C₂H₅). Найдено, %: C 48.89; H 4.05; 774</u> N 8.69. С₁₃H₁₃F₃N₂O₂S. Вычислено, %: С 49.05; Н 4.12; N 8.80.

5-Гидрокси-3-метил-1-тиобензоил-4,5-дигидро-1Н-пиразол (**3I**). К раствору 0.456 г (3 ммоль) тиобензоилгидразина в 5 мл хлороформа добавляют 0.462 г (3 ммоль) 1,1,1-трифторбутан-2,4-диона, через 20 мин при ~20 °C растворитель упаривают в вакууме. Выход соединения **31** 0.58 г (67%). Т. пл. 41 °C. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 2.86 (3H, с, CH₃); 3.25 (1H, д, *J*_{AB} = 18.9, H_A-4); 3.41 (1H, д, *J*_{AB} = 18.9, H_B-4); 7.27–7.50 (5H, м, C₆H₃); 8.23 (1H, с, OH). Спектр ЯМР ¹³C (CDCl₃), δ , м. д. (*J*, Гц): 43.34 (CH₂); 47.93 (CH₃); 95.35 (к, *J* = 33.9, C-5); 122.55 (к, *J* = 285.2, CF₃); 127.72, 128.21, 128.87, 129.49, 157.68 (C-3); 200.72 (C=S). Найдено, %: C 49.84; H 3.76; N 9.60. C₁₂H₁₁F₃N₂OS. Вычислено, %: C 50.00; H 3.85; N 9.72.

1-Бензоил-5-гидрокси-3-метил-5-трифторметил-4,5-дигидро-1Н-пиразол (4). К раствору 1.48 г (9.6 ммоль) 1,1,1-трифторпентан-2,4-диона в 10 мл абсолютного метанола добавляют раствор 1.36 г (10 ммоль) бензоилгидразина в 10 мл абсолютного метанола, через 1 сут (~20 °C) часть растворителя удаляют в вакууме. Выпавшие кристаллы перекристаллизовывают из метанола. Выход соединения 4 2.03 г (76%). Т. пл. 105–106 °C. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 2.06 (3H, с, CH₃); 3.09 (1H, д, *J* = 19.0, H_A-4); 3.27 (1H, д, *J* = 19.0, H_B-4); 6.70 (1H, с, OH); 7.42–7.57 (3H, м, C₆H₅), 7.93 (2H, д, *J* = 7.3, C₆H₅). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (*J*, Гц): 16.09 (CH₃); 47.17 (C-4); 92.89 (к, *J* = 34.0, C-5); 123.86 (к, *J* = 286.9, CF₃); 128.23, 130.51, 132.53, 133.47, 155.08 (C-3); 171.56 (C=O). Найдено, %: C 52.78; H 4.10; N 10.32. C₁₂H₁₁F₃N₂O₂. Вычислено, %: C 52.94; H 4.04; N 10.29.

СПИСОК ЛИТЕРАТУРЫ

- С. И. Якимович, К. Н. Зеленин, В. Н. Николаев, Н. В. Кошмина, В. В. Алексеев, В. А. Хрусталев, *ЖОрХ*, **19**, 1875 (1983).
- 2. С. И. Якимович, К. Н. Зеленин, ЖОХ, 65, 705 (1995).
- 3. С. И. Якимович, И. В. Зерова, К. Н. Зеленин, *Рос. хим. журн.*, **43**, 115 (1999).
- 4. R. E. Valters, F. Fulop, D. Korbonits, Adv. Heterocycl. Chem., 64, 251 (1995).
- В. Н. Николаев, С. И. Якимович, Н. В. Кошмина, К. Н. Зеленин, В. В. Алексеев, В. А. Хрусталев, *XГС*, 1048 (1983). [*Chem. Heterocycl. Comp.*, **19**, 838 (1983)].
- К. Н. Зеленин, В. В. Алексеев, В. А. Хрусталев, С. И. Якимович, В. Н. Николаев, Н. В. Кошмина, *ЖОрХ*, 20, 180 (1984).
- М. Т. Тошев, Х. Б. Дустов, С. О. Сандов, Б. Б. Умаров, Н. А. Парпиев, С. И. Якимович, И. В. Зерова, *Координац. химия*, 18, 1184 (1992).
- С. И. Якимович, И. В. Зерова, К. Н. Зеленин, В. В. Алексеев, Р. Р. Тугушева, *ЖОрХ*, 33, 418 (1997).

Санкт-Петербургский государственный университет, Санкт-Петербург 198504, Россия e-mail: viktoriapakalnis@mail.ru Поступило 09.04.2007

^аВоенно-медицинская академия им. С. М. Кирова, Санкт-Петербург 194044, Россия e-mail: alekseyevv.v@mail.ru