В. Д. Дяченко, Д. А. Красников, М. В. Хорик

СИНТЕЗ И АЛКИЛИРОВАНИЕ N₍₃₎-АРИЛ-N₍₅₎-ФЕНИЛ-6-АМИНО-4-АРИЛ(2-ФУРИЛ)-2-ТИОКСО-1,2,3,4-ТЕТРАГИДРОПИРИДИН-3,5-ДИКАРБОКСАМИДОВ

Взаимодействием N-фенил-3-арил(2-фурил)-2-цианоакриламидов с 3-амино-3-тиоксопропананилидами в условиях реакции Михаэля получены $N_{(3)}$ -арил- $N_{(5)}$ -фенил-6-амино-4-арил(2-фурил)-2-тиоксо-1,2,3,4-тетрагидропиридин-3,5дикарбокс- амиды, при алкилировании которых синтезированы $N_{(3)}$ -арил- $N_{(5)}$ -фенил-2-алкил-тио-6-амино-4-арил(2-фурил)-3,4-дигидропиридин-3,5дикарбоксамиды и $N_{(3)}$, $N_{(5)}$ -ди- фенил-6-бензилтио-2-оксо-4-(2-фурил)-1,2,3,4тетрагидропиридин-3,5-дикарбоксамид.

Ключевые слова: дигидропиридины, тетрагидропиридины, алкилирование, гетероциклизация, реакция Михаэля.

Производные 3,5-дикарбамоилзамещенных частично гидрированных пиридинов привлекают внимание исследователей в связи с обнаружением в их ряду биологически активных соединений, в частности, антагонистов кальциевых каналов [1–5].

Ранее мы впервые получили 3-карбамоил-6-метил-2-тиоксо-5-фенилкарбамоил-1,2,3,4-тетрагидропиридин-4-спироциклогексан [6] по реакции Михаэля и 6-амино-2-меркаптопиридин-3,5-дикарбоксамиды по реакции S_N vin [7].

В настоящей работе исследовано взаимодействие N-фенил-3-арил-(2-фурил)-2-цианоакриламидов **1а-d** с 3-амино-3-тиоксопропананилидами **2а-b** в абсолютном этаноле при 20 °C в присутствии этилата натрия. Показано, что данная реакция приводит к образованию N₍₃₎-арил-N₍₅₎-фенил-6-амино-4-арил(2-фурил)-2-тиоксо-1,2,3,4-тетрагидропиридин-3,5-

дикар- боксамидов **3а–е** (табл. 1). Схема данного процесса включает, вероятно, образование соответствующих аддуктов Михаэля **4**, легко подверга- ющихся в условиях реакции внутримолекулярной хемоселективной гетероциклизации в замещенные частично гидрированные пиридины **3а–е**.

При взаимодействии их с алкилгалогенидами **5а,b** в этаноле в присутствии этилата натрия синтезированы соответствующие N₍₃₎-арил-N₍₅₎фенил-2-алкилтио-6-амино-4-арил(2-фурил)-3,4-дигидропиридин-3,5-дикарбоксамиды **6а–с**. Замена в данной реакции этилата натрия на водный раствор КОН и нагревание реакционной смеси до 50 °C сопровождается не только образованием соответствующего органического сульфида, но и гидролизом аминогруппы. Таким путем получен N₍₃₎,N₍₅₎-дифенил-6бензил- тио-2-оксо-4-(2-фурил)-1,2,3,4-тетрагидропиридин-3,5-дикарбоксамид 1018

1 а R = 2-фурил, b R = Ph, c R = 4-MeC₆H₄, d R = 4-ClC₆H₄; 2 а Ar = Ph, b Ar = 3-MeC₆H₄; 3 а-d Ar = Ph; а R = 2-фурил, b R = Ph, c R = 4-MeC₆H₄, d R = 4-ClC₆H₄, e Ar = 3-MeC₆H₄, R = 4-ClC₆H₄; 5 а Hal = I, R¹ = H, b Hal = Cl, R¹ = Ph; 6 а R = 2-фурил, R¹ = H, b R = R¹ = Ph, c R = 4-MeC₆H₄, R¹ = Ph

Таблица 1

Соеди-	Брутто-формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Выход, %
нение		С	Н	Ν		
3a	$C_{23}H_{20}N_4O_3S$	<u>63.79</u> 63.87	<u>4.72</u> 4.66	<u>12.78</u> 12.95	230–233	72
3b	$C_{25}H_{22}N_4O_2S$	<u>67.70</u> 67.85	<u>5.12</u> 5.01	<u>12.50</u> 12.66	195–197	86
3c	$C_{26}H_{24}N_4O_2S$	<u>68.18</u> 68.40	<u>5.12</u> 5.30	<u>12.09</u> 12.27	208–210	82
3d	$C_{25}H_{21}ClN_4O_2S$	<u>62.76</u> 62.95	<u>4.29</u> 4.44	<u>11.58</u> 11.75	190–192	85
3e	$C_{26}H_{23}ClN_4O_2S$	<u>63.42</u> 63.60	<u>4.52</u> 4.72	<u>11.29</u> 11.41	193–195	79
6a	$C_{24}H_{22}N_4O_3S$	<u>64.63</u> 64.56	<u>4.81</u> 4.97	<u>12.35</u> 12.55	204–206	70
6b	$C_{32}H_{28}N_4O_2S$	<u>72.13</u> 72.16	<u>5.28</u> 5.30	<u>10.41</u> 10.52	207–209	77
6c	$C_{33}H_{30}N_4O_2S$	<u>72.39</u> 72.50	<u>5.32</u> 5.53	<u>10.08</u> 10.25	173–175	79

Характеристики и данные элементного анализа соединений За-е, ба-с, 7

(7).

7	$C_{30}H_{25}N_{3}O_{4}S$	<u>68.68</u>	<u>4.76</u>	<u>8.18</u>	224–226	58
		68.82	4.81	8.03	т	
					1	аблица 2

Спектр ЯМР ¹Н соединений За-е, 6а-с и 7

Соеди- нение	Химические сдвиги, δ , м. д., $J(\Gamma \mathfrak{q})$
3a	4.24 (1H, c, H-3); 5.09 (1H, c, H-4); 5.99 (1H, д, <i>J</i> = 2.6, H-3 фурана); 6.34 (1H, д. д. <i>J</i> = 2.6, <i>J</i> = 1.6, H-4 фурана); 6.90 (1H, т, <i>J</i> = 7.2, H _{аром}); 7.05 (1H, т, <i>J</i> = 7.4, H _{аром}); 7.20–7.54 (9H, м, H-5 фурана и H _{аром}); 8.25 и 9.57 (по 1H, оба уш. с, NH ₂); 10.52 и 10.57 (по 1H, оба уш. с, 2NHCO); 13.18 (1H, уш. с, N ₍₁₎ H)
3b	4.11 (1H, c, H-3); 5.06 (1H, c, H-4); 6.90 (1H, т, <i>J</i> = 7.0, H _{аром}); 7.07 (1H, т, <i>J</i> = 7.0, H _{аром}); 7.20 (4H, м, H _{аром}); 7.31–7.38 (5H, м, H _{аром}); 7.54 (2H, д, <i>J</i> = 7.5, H _{аром}); 7.58 (2H, д, <i>J</i> = 7.5, H _{аром}); 8.17 и 9.41 (по 1H, оба уш. с, NH ₂); 10.52 и 10.54 (по 1H, оба уш. с, 2NHCO); 13.33 (1H, уш. с, N ₍₁₎ H)
3c	2.25 (3H, c, CH ₃); 4.07 (1H, c, H-3); 5.01 (1H, c, H-4); 6.90 (1H, т, $J = 6.7$, H _{аром}); 7.07 (1H, т, $J = 6.7$, H _{аром}); 7.12 (2H, д, $J = 6.9$, H _{аром}); 7.20 (2H, т, $J = 7.0$, H _{аром}); 7.24 (2H, д, $J = 6.9$, H _{аром}); 7.32 (2H, т, $J = 6.6$, H _{аром}); 7.53 (2H, д, $J = 7.8$, H _{аром}); 7.58 (2H, д, $J = 7.8$, H _{аром}); 8.13 и 9.38 (по 1H, оба уш. с, NH ₂); 10.49 и 10.51 (по 1H, оба уш. с, 2NHCO); 13.32 (1H, уш. с, N ₍₁₎ H)
3d	4,25 (1H, c, H-3); 5.02 (1H, c, H-4); 6.89 (1H, т, J = 7.1, H_{apom}); 7.05 (1H, т, J = 7.2, H_{apom}); 7.19 (2H, т, J = 7.7, H_{apom}); 7.30 (2H, т, J = 7.7, H_{apom}); 7.38 (2H, д, J = 8.3, H_{apom}); 7.47 (2H, д, J = 8.3, H_{apom}); 7.53 (2H, д, J = 8.0, H_{apom}); 7.65 (2H, д, J = 8.1, H_{apom}); 8.92 и 9.91 (по 1H, оба уш. с, NH ₂); 10.52 и 10.96 (по 1H, оба уш. с, 2CONH); 13.35 (1H, уш. с, N ₍₁₎ H)
3e	2.21 (3H, c, CH ₃); 4.25 (1H, c, H-3); 5.01 (1H, c, H-4); 6.72 (1H, д, <i>J</i> = 6.8, H _{аром}); 7.03–7.10 (2H, м, H _{аром}); 7.28–7.48 (8H, м, H _{аром}); 7.65 (2H, д, <i>J</i> = 8.4, H _{аром}); 8.88 и 9.88 (по 1H, оба уш. c, NH ₂); 10.52 и 10.95 (по 1H, оба уш. c, 2NHCO); 13.30 (1H, уш. c, N ₍₁₎ H)
6a	2.43 (3H, с, CH ₃); 3.96 (1H, с, H-3); 4.74 (1H, с, H-4); 6.11 (1H, д, <i>J</i> = 2.0, H-3 фурана); 6.34 (1H, д. д, <i>J</i> = 2.0, <i>J</i> = 1.5, H-4 фурана); 6.92 (1H, т, <i>J</i> = 7.3, H _{аром}); 7.05 (1H, т, <i>J</i> = 7.3, H _{аром}); 7.19 (2H, т, <i>J</i> = 7.8, H _{аром}); 7.30 (2H, т, <i>J</i> = 7.8, H _{аром}); 7.52 (2H, д, <i>J</i> = 7.7, H _{аром}); 7.56–7.60 (3H, м, H _{аром} и H-5 фурана); 7.78 (2H, уш. с, NH ₂); 8.40 и 10.25 (по 1H, оба уш. с, 2NHCO)
6b	3.60 (1H, c, H-3); 4.23 и 4.37 (по 1H, оба д, ${}^{2}J$ = 13.1, CH ₂); 4.66 (1H, c, H-4); 6.92 (1H, т, <i>J</i> = 7.2, H _{аром}); 7.08 (1H, т, <i>J</i> = 7.2, H _{аром}); 7.14–7.35 (12H, м, H _{аром}); 7.39 (2H, д, <i>J</i> = 8.0, H _{аром}); 7.44 (2H, д, <i>J</i> = 8.1, H _{аром}); 7.56 (2H, уш. с, NH ₂); 7.61 (2H, д, <i>J</i> = 8.0, H _{аром}); 8.89 и 9.91 (по 1H, оба уш. с, 2NHCO)
6c	2.25 (3H, c, CH ₃); 3.57 (1H, c, H-3); 4.24 и 4.37 (по 1H, оба д, ² <i>J</i> = 13.2, CH ₂); 4.62 (1H, c, H-4); 6.93 (1H, т, <i>J</i> = 6.5, H _{аром}); 7.06–7.50 (16H, м, H _{аром}); 7.56 (2H, уш. c, NH ₂); 7.61 (2H, д, <i>J</i> = 7.5, H _{аром}); 8.84 и 9.88 (по 1H, оба уш. c, 2NHCO)
7	3.90 (1H, д, $J = 5.3$, H-3); 4.12 и 4.24 (по 1H, оба д, ${}^{2}J = 12.1$, CH ₂); 4.70 (1H, д, $J = 5.3$, H-4); 6.20 (1H, д, $J = 3.0$, H-3 фурана); 6.35 (1H, д. д, $J = 3.0$, $J = 1.9$, H-4 фурана); 7.00 (1H, т, $J = 7.3$, H _{аром}); 7.07 (1H, т, $J = 7.3$, H _{аром}); 7.20–7.35 (10H, м, H _{аром}); 7.44 (1H, д, $J = 7.9$, H _{аром}); 7.56–7.60 (3H, м, H-5 фурана и H _{аром}); 9.58 (1H, уш. с, N ₍₁₎ H); 10.30 и 10.32 (по 1H, оба уш. с, NHCO)

Характерным для спектров ЯМР ¹Н соединений **За**–е является наличие всех сигналов протонов заместителей тетрагидропиридинового ядра в соответствующих областях (табл. 2), а также сигналов протонов H-3 и H-4 в виде синглетов при 4.07–4.25 и 5.01–5.09 м. д. соответственно. Отсутствие расщепления этих сигналов на ожидаемые дублеты можно объяснить реализацией такой конформации тетрагидропиридинового цикла, в которой двугранный угол фрагмента H–C₍₃₎–C₍₄₎–H, описываемый уравнением 1020

Карплуса, приближается к 90° [8].

Таблица З

C	ИК спектр, v, см ⁻¹		Marana /				
Соеди- нение	NH ₂ , NH	$\underset{\delta_{NH_2}}{\text{CONH}},$	Масс-спектр, <i>m/z</i> (<i>I</i> _{отн} , %)				
3 a	3380, 3296, 3161	1684, 1656	434 (14) [M+2] ⁺ , 432 [M] ⁺ (62), 430 [M-2] ⁺ (100), 356 (19), 312 (14), 218 (9), 193 (7), 124 (6), 84 (5)				
3b	3302, 3268 2965	1684, 1654	444 [M+2] ⁺ (9), 442 [M] (49), 440 [M-2] ⁺ (100), 366 (12), 322 (10), 280 (6), 188 (15), 154 (7), 106 (9), 85 (16)				
3с	3359, 3177, 2963	1687, 1622	458 [M+2] ⁺ (11), 456 [M] ⁺ (65), 454 [M-2] ⁺ (100), 428 (6), 380 (8), 352 (12), 188 (15), 159 (13), 122 (10), 84 (17)				
3d	3350, 3294, 3134	1696, 1662	479 [M+2] ⁺ (48); 477 [M] ⁺ (100), 384 (18), 356 (9), 239 (11), 186 (5), 94 (16)				
3e	3318, 3296, 2956	1686, 1631	492 [M+1] ⁺ (61), 491 (100) [M] ⁺ , 459 (10), 398 (14), 296 (5), 220 (19), 180 (11), 83 (10)				
6a	3342, 3218, 2995	1698, 1653	448 [M+2] ⁺ (37), 447 [M+1] ⁺ (100), 428 (5), 354 (10), 260 (8), 157 (50), 99 (11)				
6b	3365, 3300, 3115	1684, 1637	534 [M+2] ⁺ (50), 533 [M+1] ⁺ (100), 440 (12), 295 (16), 157 (48), 94 (22)				
6с	3352, 3205, 3199	1683, 1653	546 [M] ⁺ (48), 544 [M–2] ⁺ (100), 388 (11), 261 (9), 136 (15), 106 (4), 84 (7)				
7	3310, 3214, 2965	1685, 1647	524 [M+1] ⁺ (100), 432 (15), 157 (14), 94 (12)				

ИК и масс-спектры соединений За–е, 6а–с и 7

Отметим также наличие сигналов протонов аминогруппы, проявляющихся в виде двух уширенных синглетов при 8.31–8.92 и 9.38–9.91 м. д. соответственно. Эти данные указывают на неэквивалентность протонов группы NH₂, обусловленную, вероятно, внутримолекулярными водородными связями. Ранее, по данным РСА, нами было обнаружено наличие весьма прочной внутримолекулярной водородной связи, замыкающей шестичленный цикл, между атомом водорода аминогруппы и атомом кислорода амидного фрагмента в пиридине, в котором аминогруппа и арилкарбамоильный фрагмент расположены вицинально [9].

Масс-спектры замещенных тетрагидропиридин-2-тионов **3а**-е характеризуются наличием пика молекулярного иона с четным значением числа, что отвечает "азотному правилу" [10], а также присутствием иона [M+2]⁺, что может свидетельствовать о содержании в молекуле одного атома серы [11] (табл. 3).

Особенностью спектров ЯМР ¹Н замещенных 3,4-дигидропиридинов **6а,b** и тетрагидропиридин-2-она **7** является расщепление сигналов протонов метиленовой группы фрагмента SCH₂Ph на два дублета, что ука-

зывает на их неэквивалентность, обусловленную отсутствием вращения алкильного заместителя вокруг связи S–CH₂Ph. Этот факт, известный в ряду частично гидрированных 2-алкилтиопиридинов [12, 13], позволяет регистрировать ${}^{2}J$ для группы SCH₂Ph, которая находится в пределах 12.1–13.2 Гц (табл. 2).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры синтезированных соединений записаны на приборе ИКС-40 в вазелиновом масле. Спектры ЯМР ¹Н зарегистрированы на приборе Varian Mercury-400 (400 МГц) в растворах ДМСО- d_6 , внутренний стандарт ТМС. Масс-спектры получены на приборе Chrommass GC/MS – Hewlett-Packard 5890/5972, колонка HP-5 MS (70 эВ) в растворе хлористого метилена. Температуры плавления определены на блоке Кофлера. Контроль за ходом реакции и чистотой полученных веществ осуществлялся методом ТСХ на пластинах Silufol UV-254, элюент смесь ацетон–гексан, 3:5, проявитель пары иода и УФ облучение.

N₍₃₎,N₍₅₎-Дифенил-6-амино-2-тиоксо-4-(2-фурил)-1,2,3,4-тетрагидропиридин-3,5-дикарбоксамид (3а), N₍₃₎,N₍₅₎,4-трифенил-6-амино-2-тиоксо-1,2,3,4-тетрагидропиридин-3,5-дикарбоксамид (3b), N₍₃₎,N₍₅₎-дифенил-6-амино-2-тиоксо-4-(4-толил)-1,2,3,4-тетрагидропиридин-3,5-дикарбоксамид (3с), N₍₃₎,N₍₅₎-дифенил-6-амино-2-тиоксо-4-(4-хлорфенил)-1,2,3,4-тетрагидропиридин-3,5-дикарбоксамид (3d) и N₍₃₎-(3-толил)-N₍₅₎-фенил-6-амино-2-тиоксо-4-(4-хлорфенил)-1,2,3,4-тетрагидропиридин-3,5-дикарбоксамид (**3e**). К перемешиваемому раствору 0.115 г (5 ммоль) металлического натрия в 30 мл абсолютного этанола при 20 °C прибавляют 5 ммоль CH-кислоты 2a,b и перемешивают 10 мин до образования гомогенной фазы, затем прибавляют 5 ммоль соответствующего акриламида 1а-d и перемешивают 2 ч, после чего разбавляют 10% соляной кислотой до pH 6 и оставляют при комнатной температуре. Через 1 сут образовавшийся осадок отфильтровывают, промывают этанолом и гексаном и перекристаллизовывают из этанола (табл. 1-3).

 $N_{(3)}$, $N_{(5)}$ -Дифенил-6-амино-2-метилтио-4-(2-фурил)-3,4-дигидропиридин-3,5-дикарбоксамид (6а), $N_{(3)}$, $N_{(5)}$,4-трифенил-6-амино-2-бензилтио-3,4-дигидропиридин-3,5-дикарбоксамид (6b) и $N_{(3)}$, $N_{(5)}$ -дифенил-6-амино-2-бензилтио-4-(4-толил)-3,4-дигидропиридин-3,5-дикарбоксамид (6c). К перемешиваемой суспензии 5 ммоль соединений **3а-с** в 15 мл абсолютного этанола при 20 °С прибавляют раствор 0.115 г (5 ммоль) металлического натрия в 15 мл абсолютного этанола, перемешивают 10 мин до получения гомогенной фазы. Затем в реакционную смесь прибавляют 5 ммоль алкилгалогенида **5а,b**, перемешивают 1 ч и оставляют на 2 сут при комнатной температуре. Образовавшийся осадок отфильтровывают, промывают этанолом и гексаном и перекристаллизовывают из этанола (табл. 1–3).

N₍₃₎,N₍₅₎-Дифенил-6-бензилтио-2-оксо-4-(2-фурил)-1,2,3,4-тетрагидропиридин-3,5-дикарбоксамид (7). К перемешиваемой суспензии 1.30 г (3 ммоль) соединения 3а в 30 мл этанола прибавляют 1.68 мл (3 ммоль) 10% водного раствора КОН и перемешивают при 50 °C до полного растворения. К полученному раствору добавляют 0.35 мл (3 ммоль) бензилхлорида 5b и оставляют на 2 сут. Образовавшийся осадок отфильтровывают, промывают этанолом и гексаном и перекристаллизовывают из этанола (табл. 1–3).

СПИСОК ЛИТЕРАТУРЫ

- 1. S. K. Swami, T. M. Reddy, V. M. Reddy, Indian J. Pharm. Sci., 60, 102 (1998).
- 2. G. A. Kilcigil, R. Ertan, S. Özbey, E. Kendi, J. Heterocycl. Chem., 35, 1485 (1998).
- 3. P. E. Aldrich, R. A. Earl, P. Ma, US Pat. 5166148; PXXum, 7056II (1994).
- D. Nagarathman, J. M. Wetrel, S. W. Miao, M. R. Marzabadi, G. Chin, W. C. Wong, X. Hong, J. Fang, C. Forray, T. A. Branchek, W. E. Hlydor, R. S. I. Chang, T. Broten, T. W. Schort, C. Gluchowski, *J. Med. Chem.*, 41, 5320 (1988).
- C. Gluchowski, J. M. Wetrel, G. Chin, M. R. Marzabadi, W. C. Wong, D. Nagarathnam, US Pat. 5767131; *Chem. Abstr.*, **129**, 67709 (1998).
- 6. А. Д. Дяченко, С. М. Десенко, В. Д. Дяченко, Э. Б. Русанов, *XГС*, 872 (2003). [*Chem. Heterocycl. Comp.*, **39**, 744 (2003)].
- 7. В. Д. Дяченко, Р. П. Ткачев, *ЖОрХ*, **39**, 1245 (2003).
- 8. Б. И. Ионин, Б. А. Ершов, А. И. Кольцов, *ЯМР-спектроскопия в органической химии*, Химия, Ленинград, 1983, с. 57.
- 9. В. Д. Дяченко, Р. П. Ткачев, А. Н. Чернега, *XTC*, 589 (2005). [*Chem. Heterocycl. Comp.*, **41**, 503 (2005)].
- 10. В. Г. Замкин, А. В. Варламов, А. И. Микая, Н. С. Простаков, Основы массспектроскопии органических соединений, МАИК "Наука"/Интерпериодика, Москва, 2001, с. 286.
- 11. Р. Сильверстейн, Г. Басслер, Т. Меррил, Спектроскопическая идентификация органических соединений, Мир, Москва, 1977, с. 442.
- 12. В. Д. Дяченко, Д. А. Красников, *Вісник Харківського національного ун-ту*, **596** (Хімія), вип. 10 (33), 63 (2003).
- 13. В. Д. Дяченко, Укр. хим. журн., 72, 53 (2006).

Луганский национальный педагогический университет им. Тараса Шевченко, Луганск 91011, Украина e-mail: dvd_lug@online.lg.ua Поступило 22.03.2007