М. Петрова, Э. Лиепиньш, П. Пасторс^а, М. Флейшер, В. Кампарс^а

СИНТЕЗ 2-(4'-R-БЕНЗАЛЬ)-4-АЗА-1,3-ИНДАНДИОНОВ И ИССЛЕДОВАНИЕ ИЗОМЕРИЗАЦИИ ВОКРУГ ЭКЗОЦИКЛИЧЕСКОЙ ДВОЙНОЙ СВЯЗИ

Синтезированы 2-бензаль-4-аза-1,3-индандионы и исследованы их структуры методоми спектроскопии ЯМР и квантовой химии в приближении AM1.

Установлено что в растворах хлороформа этих соединений происходит вращение вокруг экзоциклической формально двойной связи C(2)=C(10). Энергетические характеристики этого процесса определены экспериментально и оценены теоретически.

Ключевые слова: 2-(4'-R-бензаль)-4-аза-1,3-индандионы, внутреннее вращение, *E*,*Z*-изомерия, метод AM1, спектроскопия ЯМР.

Многие производные 1,3-индандионов, в которых имеется сопряженная π -электронная система, представляют интерес как исходные реагенты при синтезе новых материалов, используемых в молекулярной электронике и нелинейной оптике [1–4]. Продолжая систематический поиск новых соединений, потенциальных полярных молекулярных кристаллов с нелинейными оптическими свойствами, мы синтезировали ряд 2-бензаль-4-аза-1,3-индандионов. Их строение и кинетическое поведение в растворах дейтерохлороформа были исследованы методами спектроскопии ЯМР ¹Н и ¹³С (табл. 1) и квантовой химии.

2, **3** \mathbf{a} R = NO₂, \mathbf{b} R = CN, \mathbf{c} R = Me, \mathbf{d} R = OMe, \mathbf{e} R = NMe₂

Мы обнаружили, что спектры ЯМР ¹Н и ¹³С соединений **3**, снятые сразу после их растворения в хлороформе, представляют собой один набор резонансных сигналов, однако по прошествии некоторого промежутка времени в спектрах начинают появляться новые сигналы, принадлежащие другому изомеру. Анализ спектров ЯМР ¹Н, ¹³С и двумерных гетероядерных

Соеди- нение	Химические сдвиги, б, м. д.*													
	C-1	C-2	C-3	C-5	C-6	C-7	C-8	C-9	C-10	C-1'	C-2'	C-3'	C-4'	R
Z-3a**	186.9	131.2	186.3	157.1 (9.16)	128.9 7.75	132.0 (8.38)	138.2	158.3	144.3 (8.01)	138.0	134.6 (8.59)	123.9 (8.37)	148.8	-
<i>E</i> -3a	186.3	131.2	187.1	157.1 (9.17)	128.9 7.75	132.0 (8.39)	137.6	159.3	144.9 (8.03)	138.0	134.6 (8.55)	123.8 (8.35)	149.8	-
<i>Z</i> -3b	187.3	130.9	187.0	157.6 (9.15)	128.9 (7.74)	131.9 (8.37)	138.1	157.6	145.6 (7.98)	136.3	134.0 (8.49)	134.4 (7.80)	116.1	118.1
E-3b**	186.4	130.9	188.4	157.6 (9.16)	128.4 (7.74)	132.0 (8.36)	135.4	159.3	148.0 (7.96)	136.3	134.0 (8.53)	132.5 (7.82)	116.1	118.1
Z-3c**	188.5	127.3	187.5	156.8 (9.09)	128.3 (7.67)	131.5 (8.30)	134.9	159.3	148.8 (8.01)	130.5	134.9 (8.43)	129.9 (7.35)	145.8	22.1 (2.45)
<i>E</i> -3c	187.0	127.3	189.6	156.7 (9.08)	128.4 (7.68)	131.4 (8.34)	137.8	157.5	149.5 (7.98)	130.4	134.9 (8.39)	129.8 (7.34)	145.7	22.0 (2.45)
<i>Z</i> -3d	188.8	126.5	187.8	156.7 (9.05)	128.3 (7.64)	131.5 (8.27)	135.0	159.6	148.6 (7.98)	125.9	138.0 (8.59)	114.9 (7.04)	165.0	55.9 (3.96)
E -3d **	187.3	126.6	189.9	156.8 (9.06)	128.4 (7.65)	131.4 (8.29)	137.8	157.8	149.3 (7.94)	125.9	138.0 (8.54)	114.8 (7.02)	165.1	55.9 (3.92)
Z-3e**	189.7	122.0	187.9	155.5 (8.98)	127.4 (7.56)	130.6 (8.18)	134.5	159.4	148.7 (7.91)	121.9	138.7 (8.57)	111.6 (6.75)	154.6	40.2 (3.16)
<i>E-</i> 3 e	187.7	122.0	190.6	155.3 (8.97)	127.45 (7.57)	130.5 (8.20)	137.2	157.8	149.4 (7.88)	121.9	138.7 (8.52)	111.6 (6.73)	154.6	40.2 (3.16)
	1	1	1	1	1	1	1		1	1	1	1	1	1

Данные спектров ЯМР ¹Н и ¹³С соединений За–е

* Химические сдвиги протонов при соответствующих атомах углерода приведены в скобках. ** Преобладающий исходный изомер.

Таблица 1

корреляционных спектров ¹H-¹³C-HSQC и ¹H-¹³C-HMBC показал, что оба изомера различаются ориентацией 4'-R-бензилиденового фрагмента относительно атома азота в индандионовой части молекулы. цис- и транс-Константы ${}^{3}J_{C,H}$ протона H-10 с карбонильными атомами C(1) и C(3) различались в 2.5 раза и были равны 3 и 8 Гц, соответственно, в обоих изомерах. Соотнесение карбонильных атомов углерода далее выполнено с привлечением анализа взаимодействия H(7)-C(1). Для *Е*-изомера такое взаимодействие наблюдается с карбонилом, имеющим большую КССВ $^{3}J(^{13}CO-H(10)),$ однако отсутствует у карбонила с меньшей КССВ ³*J*(¹³CO–H(10)). Для *Z*-изомера подобные взаимодействия имеют обратную направленность: взаимодействие H(7)-C(1) наблюдается с карбонильным атомом углерода, имеющим меньшую КССВ ³ *J*(¹³CO-H(10)), и отсутствует для карбонила с большей КССВ ³ J(¹³CO-H(10)). Таким образом, в молекулах соединений 3 происходят Е-Z-изомеризация или заторможенное вращение вокруг экзоциклической формально двойной связи С(2)=С(10). Этот процесс довольно медленный в шкале времени ЯМР и через 10–12 ч в растворах соединений 3 устанавливается равновесие обоих *Z*- и *E*-изомеров, 1:1 (табл. 1).

Заторможенное вращение заместителей вокруг формально двойных связей (*E*- или *Z*-изомеризации) известно для большого числа соединений разных классов, из которых наиболее изученными в настоящее время являются пуш-пульные производные этилена и некоторые енамины [5–7]. Различные механизмы, облегчающие протекание процесса внутреннего вращения, рассмотрены Ногради [8]. В нашем случае этот процесс может быть обусловлен схемой, включающей промежуточное таутомерное превращение соединения в илид, содержащий одинарную экзоциклическую связь, вращение вокруг которой существенно облегчено.

Интересно отметить, что исходный изомер соединений **За,с,е** соответствует *Z*-форме, а соединений **Зb,d** – *E*-форме. Чем обусловлено такое различие форм в процессе кристаллизации пока не ясно.

Так как обменные процессы были относительно медленными в шкале времении ЯМР, мы определили кинетические характеристики этого процесса простым анализом интенсивностей спектров. Временная зависимость изменения интегральных интенсивностей ($I_{инт}$) в случае обоих индивидуальных изомеров (рис. 1) является типичной для реакций нулевого порядка и описывается уравнением

$$\ln[C] = \ln[C_0] - 2kt \tag{1}$$

Константы скорости динамического процесса в соединениях **3** рассчитаны по уравнению (1) (табл. 2). Барьеры вращения вокруг экзоциклической двойной связи C(2) = C(10) определялись как свободные энергии активации Гиббса $\Delta G^{\#}_{298}$ по уравнению (2) [9]:

$$\Delta G^{\#}_{298} = 4.575T(10.319 + \log T/k) \tag{2}$$

Рис. 1. Зависимость интегральной интенсивности (*I*_{инт}) сигнала протона H-10 минорного изомера в соединении **3b** от времени (*t*)

При этом можно отметить незначительный рост значений $\Delta^{\#}G_{298}$ в следующей последовательности *пара*-заместителей бензольного кольца: CN<NO₂<OMe<NMe₂<Me.

Ранее нами методом динамического ЯМР были определены барьеры вращения вокруг экзоциклической двойной связи в ряде 2-аминометилендимедонов [10]. Относительно низкие значения последних $\Delta G^{\#}_{298} = 19.71$ и 17.94 ккал/моль были объяснены уменьшением порядка экзоциклической двойной связи C(2)=C(10) за счет увеличения вклада резонансной диполярной структуры, обусловленной *p*- π -сопряжением неподеленной электронной пары атома азота с карбонильными группами. Согласно данным табл. 3, в соединениях **3** порядок связи C(2)=C(10) даже меньше, чем в производных димедона.

Для оценки оптимальной геометрии соединений **За–е**, а также возможности теоретического описания процесса вращения вокруг экзоциклической двойной связи C(2)=C(10) мы осуществили полуэмпирические квантово-химические расчеты в приближении AM1. Исходя из геометрии оптимизированного основного состояния, мы провели сканирование в режиме координаты реакции с шагом в 30 °C поверхности потенциальной энергии вращения вокруг связи C(2)=C(10). Барьер вращения (ΔE) определялся как разница энергий переходного и основного состояния.

Результаты (рис. 2 и табл. 3) обнаруживают тенденцию к понижению барьеров с уменьшением порядка связи C(2)=C(10) при переходе от акцепторных к донорным заместителям за счет увеличения делокализации внутримолекулярного распределения заряда в молекуле. Однако эта тенденция очень незначительна, что соответствует экспериментальным данным (табл. 2).

Рис. 2. Наиболее стабильные конформации соединений **3a** и **3e**, рассчитанные методом AM1 (длины связей приведены в Å, порядки связей даны курсивом).

Соединение	k, c^{-1}	Погрешность, с ⁻¹	Коэффициент корреляции	$\Delta \ G^{\!$
3c	6.1	0.5	0.96	16.39
3e	7.5	0.5	0.96	16.24
3d	10.9	0.8	0.98	16.03
3a	11.5	1.4	0.93	16.01
3b	12.0	0.6	0.99	15.98

Кинетические и термодинамические характеристики *E*-*Z*-изомеризации вокруг формально двойной связи C(2)=C(10) в соединениях 3а-е

Рассчитанные значения теплот образования (ΔH_f) показывают энергетическую эквивалентность обоих *Z*- и *E*-изомеров и согласуются с экспериментальными данными ЯМР.

Другой замечательной особенностью соединений **За–е** является значительный низкопольный сдвиг (порядка 1 м. д.) ароматических протонов H-2',6', по сравнению с *пара*-замещенными стиролами [11].

Отмеченный эффект может быть обусловлен образованием водородной связи типа С-Н...О= между орто-протонами и карбонильной группой 1,3индандионового фрагмента. Короткие взаимодействия типа С-Н...О играют важную роль в биологии и наблюдались ранее [12]. Было установлено [13], что арильные протоны Н-2',6', расположенные пространственно близко к карбонильной группе, могут испытывать слабопольный сдвиг и даже становятся неэквивалентными при замедлении заторможенного вращения фенильной группы при низких температурах. ЯМР $^{1}\mathrm{H}$ Наши исследования спектров 2-(4'-N,N-диметиламинобензилиден)-1,3-индандиона в CDCl₃ при -65 °C показали, что различие химических сдвигов для протонов в положениях 2' и 6' арильного цикла достигают 1.9 м. д. (рис. 3).

Рис. 3. Ароматическая область спектра ЯМР ¹Н 2-(4'-N,N-диметиламинобензилиден)-1,3-индандиона при -65 °С

Таблица З

Соеди- нение	ΔH_f , ккал/ моль $^{-1}$	Δ <i>Е</i> , ккал/ моль ⁻¹	<i>l</i> , C=OH–C, Å	θ, град*	N** C(2)=C(10)	<i>N</i> ** C(10)–C(1')
Z-3a	34.43	28.49	2.289	1.2	1.799	1.023
E -3a	34.48		2.289	-178.9	1.799	1.023
Z -3 b	61.75	28.19	2.266	1.6	1.785	1.029
E -3b	61.78		2.264	-179.2	1.786	1.029
<i>Z</i> -3c	21.56	27.66	2.235	2.3	1.763	1.039
E -3c	21.60		2.233	-179.8	1.763	1.039
<i>Z</i> -3d	-8.99	27.39	2.212	2.8	1.754	1.047
E -3d	-8.97		2.208	179.9	1.754	1.047
<i>Z</i> -3e	36.87	27.04	2.186	3.2	1.732	1.060
E-3e	36.96		2.180	-179.4	1.733	1.060

Характеристики Z- и E-изомеров соединений За-е, рассчитанные методом AM1

* Торсионный угол С(3)–С(2)–С(10)–С(1').

** N – порядок связей.

При описании силы водородных связей типа С–Н...О часто используются геометрические характеристики. В нашем случае рассчитанные расстояния О...Н–С (табл. 3) согласуются с данными спектров ЯМР ¹Н. Согласно расчетам АМ1, расстояние О...Н–С уменьшается, а порядок связи C(10)–C(1') увеличивается при переходе от соединения **3a** к соединению **3e** (табл. 3). Наиболее короткое расстояние O(3)...Н (6') (2.19 Å) и наибольший порядок связи C(10)–C(1') (1.06) наблюдаются в соединении **3e**. В этом случае резонансные сигналы протонов H-2',6' в спектре ЯМР ¹Н уширены, а сами протоны уже при комнатной температуре становятся магнитно неэквивалентными (рис. 4).

Рис. 4. Ароматическая область спектра ЯМР ¹Н соединения Зе при 25 °С

Это наблюдение подтверждает факт ограничения вращения вокруг связи C(10)-C(1') ароматического кольца, обусловленное образованием внутримолекулярной водородной связи типа C=O...H–C, уже при температуре 25 °C.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С получали на приборе Varian UNITY INOVA (600 и 150 МГц соответственно), оснащенном криодатчиком, в CDCl₃ при температуре 25 °C. Низкотемпературные измерения проводили на приборе Varian Mercury 400 (400 и 100 МГц соответственно), оснащенном низкотемпературной приставкой. Температуру образца контролировали с точностью +0.01 °C и измеряли с помощью калиброванного образца метанола.

Химические сдвиги представлены по отношению к остаточным сигналам растворителя (¹H 7.24, ¹³C 77 м. д.).

Спектры ¹H—¹³C-HMBC регистрировали с использованием техники градиентов с временем эволюции взаимодействия для генерации дальних корреляций 62.5 мс. При регистрации всех двумерных спектров использовали матрицу данных размером 4098 × 1024, что обеспечивало $\tau_{2max} = 250$ мс для ¹H при регистрации по оси F2 и $\tau_{1max} = 100$ мс для ¹H или $\tau_{1max} = 50$ мс для ¹³C при регистрации по оси F1. Для улучшения отношения сигнал-шум матрицу данных перед Фурьепреобразованием дополняли нулями дважды и умножали на косинус-функцию.

Расчеты проводили с использованием пакета программ МОРАС 6.0 [14]. Все структуры полностью оптимизированы методом AM1 [15]. Оптимизацию геометрических параметров всех структур проводили с использованием ключевых слов программы EF и PRECISE. Характер стационарных точек поверхности потенциальной энергии проверяли путем анализа колебательных частот системы. Компьютерный дизайн исследуемых структур проводили с помощью программ ChemCraft и Jmol [16, 17].

2-(4'-R-Бензаль)-4-аза-1,3-индандионы За–е. Нагревают 0.45 г (2 ммоль) метилового эфира 4-аза-1,3-индандион-2-карбоновой кислоты и 2 ммоль 4-R-бензальдегида в 5 мл ледяной уксусной кислоты до 70–75 °С и выдерживают при этой температуре 1 ч. Реакционную смесь оставляют при комнатной температуре на 24 ч. Фильтруют. Фильтрат упаривают в вакууме до маслообразного остатка, который кристаллизуют из изопропилового спирта. Выход соединений 40–60%. Соединение **За.** Т. пл. ~220 °С (разл.). Найдено, %: С 64.35; Н 2.68; N 9.98. С₁₅H₈N₂O₄. Вычислено, %: С 64.29; Н 2.88; N 10.00. Соединение **Зb**. Т. пл. ~240 °С (разл.). Найдено, %: С 73. 95; Н 2.97; N 10.82. С₁₆H₈N₂O₂. Вычислено, %: С 73.84; Н 3.10; N 10.76. Соединение **Зс.** Т. пл. ~ 214 °С (разл.). Найдено, %: С 76.72; Н 4.31; N 5.66. С₁₆H₁₁NO₂. Вычислено, %: С 77.10; Н 4.45; N 5.62. Соединение **Зd**. Т. пл. ~245 °С (разл.). Найдено, %: С 72.26; Н 4.02; N 5.31. С₁₆H₁₁NO₃. Вычислено, %: С 73.42; Н 5.02; N 10.01. С₁₇H₁₄N₂O₂. Вычислено, %: С 73.37; Н 5.07; N 10.07.

Авторы выражают глубокую благодарность рецензентам настоящей статьи.

СПИСОК ЛИТЕРАТУРЫ

- 1. S. Jursenas, V. Gulbinas, A. Gruodis, G. Kodis, V. Kovalevskij, L.Valkunas, *Phys. Chem. Chem. Phys.*, **1**, 1715 (1999).
- 2. J. Gulbis, V. Kampars, Scientific Proceedings of Riga Technical University, Material Science and Applied Chemistry, 11, 11 (2005).

- V. Kampars, M. Utinans, P. Pastors, E. Kalnina, V. Grazulevicus, Scientific Proceedings of Riga Technical University, Material Science and Applied Chemistry, 9, 148 (2004).
- 4. O. Neilands, Latv. J. Physics Techn. Sci., No. 4, 28 (1998).
- 5. B. Benassi, C. Bertarini, E. Kleinpeter, F. Taddei, J. Mol. Struct. (Theochem), 498, 217 (2000).
- 6. R. R. Pappalardo, E. S. Marcos, M. F. Ruiz-Lopez, D. Rinaldi, J.-L. Rivail, J. Am. Chem. Soc., 115, 3722 (1993).
- 7. Н. З. Тугушева, С. Ю. Рябова, Н. П. Соловьева, В. Г. Граник, *ХГС*, 781 (1994). [*Chem. Heterocycl. Comp.*, **30**, 683 (1994)].
- 8. М. Ногради, Стереохимия. Основные понятия и приложения, Мир, Москва, 1984, с. 216.
- 9. J. Sandstrom, Dynamic NMR Spectroscopy, Acad. Press, New York, 1982, p. 93.
- М. В. Петрова, Вад. В. Негребецкий, А. Х. Рекис, А. Я. Страков, Я. Я. Паулиньш,
 Э. Ю. Гудриниеце, *Latv. Ķīm. Žurn.*, 474 (1993).
- 11. C. J. Pourchert, J. Behnke, *The Aldrich Library of* ¹³C and ¹H FT NMR Spectra, 1993, vol. 2.
- 12. J. L. Leroy, K. Snoussi, M. Gueron, Magn. Res. Chem., 39, 171 (2001).
- 13. M. Sigalov, A. Vashchenko, V. Khodorkovsky, J. Org. Chem., 70, 92 (2005).
- 14. J. J. P. Stewart, MOPAC, Version 6; QCPE N 455:Bloomingtion (1984).
- 15. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc., 107, 3902 (1985).
- 16. ChemCraft:http://chemcraft.boom.ru
- 17. J Mol: http://www.chem.columbia.edu/~gezelter

Латвийский институт органического синтеза, Pura LV-1006 e-mail: marina@osi.lv Поступило 03.04.2007 После переработки 30.11.2007

^аРижский технический университет, Рига LV-1048, Латвия e-mail: pauls@ktf.tru.lv