А. В. Задорожний, В. А. Ковтуненко, А. В. Туров, Т. Т. Кучеренко

конденсированные изохинолины

32*. СИНТЕЗ ПРОИЗВОДНЫХ 4H-ТИЕНО[3',2':5,6]- И -[2',3':5,6]ПИРИМИДО[1,2-*b*]ИЗОХИНОЛИНОВ И 6,12-ДИГИДРО-5H-ИЗОХИНО[2,3-*a*]ХИНАЗОЛИН-5,12-ДИОНА

Обработкой 2-(4-оксо-3,4-дигидротиено[2,3-d]- и -[3,2-d]пиримидин-2-илметил)бензойных кислот и 2-(4-оксо-3,4-дигидро-2-хиназолинилметил)бензойной кислоты уксусным ангидридом получены тиено[3',2':5,6]- и -[2',3':5,6]пиримидо[1,2-b]изохинолин-4,11-дионы и изохино[2,3-a]хиназолин-5,12-дион соответственно. С помощью спектроскопии ЯМР показано, что внутримолекулярное ацилирование упомянутых кислот проходит по атому N-1 пиримидиноновой части бицикла.

Ключевые слова: изохинохиназолин-5,12-дион, 4-оксопиримидиноны, тиенопиримидиноны, тиенопиримидоизохинолин-4,11-дионы, хиназолоны.

Ранее нами были описаны 2-(4-оксо-3,4-дигидротиено[2,3-*d*]- и -[3,2-*d*]пиримидин-2-илметил)бензойные кислоты **1** и **2** [2] и 2-(4-оксо-3,4-дигидро-2-хиназолинилметил)бензойная кислота **3** [3]. Настоящая работа продолжает наши исследования в области тиенопиримидинов и хиназолонов.

Кислоты 1-3 при попытке эстерификации классическим методом [4] (нагревание спиртовой суспензии в присутствии концентрированной серной кислоты) образуют желтые кристаллические вещества, которые по своим свойствам отличаются от исходных веществ и в то же время не являются сложными эфирами. Например, подобно исходным кислотам они растворяются в 2 н. растворе щелочи, но в отличие от них вовсе нерастворимы в 2 н. соляной кислоте. Их хроматографическая подвижность, по данным ТСХ, существенно выше, чем у исходных кислот и сложных эфиров. Данные элементного анализа и хромато-масс-спектры полученных веществ указывают на потерю молекулы воды исходными кислотами, т. е. в условиях реакции произошло внутримолекулярное ацилирование. Оказалось, что первоначально использованная нами в качестве водоотнимающего средства серная кислота - не совсем подходящий реагент, поскольку циклизация сопровождается энергичным осмолением продукта реакции, которое существенно снижает выходы. Более гладко дегидратация происходит при кипячении суспензии кислот 1-3 в уксусном ангидриде.

^{*} Сообщение 31 см. [1].

 $\label{eq:a} \begin{array}{ll} \textbf{4} \ \textbf{a} \ R = R^1 = & Me; \ \textbf{b} \ R + R^1 = & (CH_2)_3; \ \textbf{c} \ R + R^1 = (CH_2)_4; \ \textbf{d} \ R = H, \ R^1 = Ph; \\ \textbf{5} \ \textbf{a} \ R = H; \ \textbf{b} \ R = 4' - ClC_6H_4; \ \textbf{c} \ R = 4' - FC_6H_4 \end{array}$

Кислоты 4-оксотиено[2,3-*d*]- и -[3,2-*d*]пиримидинового (1 и 2), а также 4-оксохиназолинового (3) рядов имеют два нуклеофильных центра атаки: атомы N-1 и N-3. Внутримолекулярная циклизация с участием этих центров может привести к ангулярным (4–6) или линейным (7–9) тетрациклическим системам. Но как из наших исследований по алкилированию сложных эфиров кислот 1–3 [3, 4], так и из литературных данных по алкилированию [5] и ацилированию [6] 2-бензилпроизводных тиенопиримидиновых и хиназолиновых систем следует, что в данных реакциях принимает участие исключительно атом N-3. Исходя из этих предпосылок, следовало бы ожидать, что полученные системы имеют линейные структуры 7–9.

В то же время квантово-химические расчеты энергий изомерных ангулярных и линейных систем 4 и 7, 5 и 8, а также соответствующих изохинохиназолиндионов 6 и 9, выполненные с помощью компьютерной 1054 программы [7] в рамках метода *ab initio*, в базисе $3-21G^{**}$ (с учетом *d*-орбиталей) и полной оптимизацией геометрии, составляют для молекулы **4a** -792188.67, а для **7** -792170.65 ккал·моль⁻¹. У позиционного изомера **5a** она равна -743454.73, а у линейной молекулы **8** -743437.23 ккал·моль⁻¹. Для молекулы **6** -543176.13, а для ее линейного изомера **9** -543165.97 ккал·моль⁻¹. Таким образом, вопреки литературным данным расчеты предсказывают внутримолекулярную циклизацию по атому N-1 кислот (**1**, **2** и **3**) как термодинамически выгодный процесс. Заслуживает быть отмеченным значительно меньшее различие полных энергий линейных и ангулярных изомеров у молекул **6** и **9** по сравнению с парами производных тиофена **4–7**, **5–8**.

Аналогичные выводы о направлении циклизации по атому N-1 кислот 1, 2 и 3 следуют из данных ЯМР для соединений 4 (или 7), 5 (или 8) а также 6 (или 9). Линейные либо ангулярные изомеры, образующиеся при циклизации, содержат одинаковые структурные фрагменты и поэтому прямое определение их структур на основании спектров на ядрах ¹Н либо 13 С не представляется возможным. Поэтому мы провели изучение двумерных спектров ЯМР с гомоядерной (COSY, NOESY) и гетероядерной ¹Н– 13 С корреляциями через одну (HMQC) и через 2–3 связи (HMBC).

Прежде всего, потребовалось отнести сигналы в спектрах ЯМР ¹Н соединений. В основу определения строения соединения 4 (или 7) положено выяснение пространственной близости протона NH к ароматическим протонам, а также дальних корреляций сигнала NH протона с атомами углерода скелета молекулы. Мы приводим (см. рисунок) результаты анализа и его объяснение только для соединения 4с, поскольку для всех остальных соединений ряда 4 они являются подобными. Рассмотрение формул 4 и 7 показывает, что единственным их существенным структурным различием является взаимное расположение протона NH и атомов углерода карбонильных групп. Если в структуре 4 между протоном NH и одним из карбонильных атомов углерода имеется 2 химические связи, то в структуре 7 их разделяют 4 связи. Поскольку атомы углерода карбонильных групп в спектре на ядрах ¹³С имеют достаточно характерное расположение, то наличие спин-спинового взаимодействия (ССВ) между сигналами протонов NH и атомом углерода одной из карбонильных групп однозначно свидетельствует в пользу структуры 4. В табл. 1 приведены корреляции для сигналов протонов соединения 4с. Найденные корреляции (см. рисунок) позволили надежно отнести сигналы и сделать выбор между альтернативными структурами в пользу структуры 4. Наличие корреляции дублета ароматического протона с химическим сдвигом 8.14 м. д. с сигналом одного из карбонильных атомов углерода, который резонирует при 158.6 м. д., дает возможность отнести данный сигнал так, как это показано на рисунке. Сигнал NH коррелирует с сигналом второго имеющегося в молекуле карбонила, который резонирует при 156.8 м. д. Наличие данной корреляции надежно подтверждает структуру соединения. На рисунке стрелками показаны корреляции НМВС. Сигналы атомов углерода, связанные с атомами водорода, отнесены на основании корреляций в спектре HMQC. Единственный углеродный сигнал, для которого НМВС-корреляции

Пример корреляции HMQC и HMBC для соединения 4c, 5a и 6

не обнаружены, имеет химический сдвиг 141.5 м. д. Мы отнесли его к узловому атому углерода, расположенному между гетероциклическими атомами азота и серы. При отнесении сигналов циклогексенового фрагмента было принято, что сигнал метиленовых протонов, сближенный в пространстве с карбонильной группой, поглощает в несколько более слабом поле, чем сигналы остальных алифатических протонов.

Выводы о строении соединений ряда 5 (либо 8) базируются на выяснении пространственной близости протона NH с ароматическими протонами, с одной стороны, а, с другой – на выяснении дальних корреляций сигнала NH с атомами углерода скелета молекулы. В статье анализируются корреляции только для соединения 5а ввиду того, что таковые являются идентичными и для всех остальных соединений ряда (табл. 2). Рассмотрение формул изомеров показывает, что в случае линейного изомера 8 следует ожидать пространственной близости протона NH с двумя ароматическими протонами, а в случае ангулярного изомера 5а – только с одним. Из экспериментальных данных следует, что имеется кросс-пик в спектре NOESY между сигналом протона NH и сигналом при 6.27 м. д. Другие кросс-пики для данного сигнала не обнаружены и это свидетельствует в пользу ангулярного строения соединения, т. е. 5а. Дальнейшее подтверждение этому следует из данных по гетероядерной корреляции (см. рисунок). Отнесения химических сдвигов атомов углерода, связанных с атомами водорода, сделаны на основании корреляций НМОС, а отнесение четвертичных атомов углерода на основании имеющихся корреляций НМВС. Наиболее важным, с точки

Положение атома	δ, м. д.	HMQC	НМВС			
5	11.71	-	156.8; 137.6; 118.2; 86.5			
10	8.14	128.1	158.6; 137.3; 134.0			
8	7.63	134.0	137.3; 128.1			
7	7.51	125.6	137.3; 124.7; 118.8; 86.5			
9	7.31	124.7	125.6; 118.8			
6	6.26	86.5	137.6; 141.5; 125.6; 118.8			
3(4')	2.82	25.4	132.9; 130.6; 23.0; 22.5			
2(1')	2.65	24.0	132.9; 130.6; 23.0; 22.5			
2', 3'	1.73	23.0; 22.5	132.9; 130.6; 25.4; 24.0; 23.0; 22.5			

Результаты экспериментов по гетероядерной корреляции (HMBC и HMQC) для соединения 4c

Таблица 2

Результаты экспериментов по гомоядерной (спектр NOESY) и гетероядерной корреляции (HMBC и HMQC) для соединения 5а

Положение атома	δ, м. д.	HMQC	НМВС	NOESY	
5	12.03	-	138.8; 120.6; 155.6; 82.7	6.27	
1	8.68	123.9	141.7; 133.8; 120.6	8.17	
10	8.21	128.3	137.1; 133.8; 159.9	-	
2	2 8.17		141.7; 123.9; 120.6; 155.6	8.68	
8	7.65	133.9	137.1; 128.3	7.54; 7.33	
7	7.53	125.3	124.7; 120.6; 87.2	7.65	
9	7.33	124.7	125.2; 120.6	7.65; 8.21	
6 6.27		87.2	141.7; 138.8; 125.3; 120.6	12.03; 7.54	

Таблица З

Результаты экспериментов по гетероядерной корреляции (HMBC и HMQC) для соединения 6

Положение атома	δ, м. д.	HMQC	НМВС
6	11.86	-	119.9; 137.8; 158.4
1	9.22	121.6	158.4; 138.7; 126.8; 119.9
11	8.17	128.7	162.7; 136.9; 134.1
4	8.09	127.5	158.4; 138.7; 134.2
2	7.75	134.2	138.7; 127.5; 121.6
9	7.61	134.1	136.9; 128.7
3	7.46	126.8	121.6; 119.9
8	7.45	125.1	136.9; 125.0; 122.2; 87.7
10	7.30	125.0	125.1; 122.2; 136.9; 134.1; 128.7
7	6.18	87.7	137.8; 125.1; 122.2

Co-		Химические сдвиги, δ, м. д. (J, Гц) Позиция резонирующей группы (атома)								
еди-										
не-	1	2	3	4	5	6	7	8	9	10
4a	-	2.41 (3H, c)	2.36 (3H, c)	_	11.71 (1H, c)	6.30 (1H, c)	7.50 (1Н, д, ³ J = 8.0)	7.62 (1H, T, ${}^{3}J = 7.6$)	7.32 (1Н, т, ³ J = 7.6)	8.22 (1Н, д, ³ J = 8.4)
4b	-	I 2.99–2.93 (6Н, м)		-	11.83 (1H, c)	6.34 (1H, c)	7.53 (1Н, д, ³ <i>J</i> = 8.0)	7.65 (1Н, т, ³ J = 7.6)	7.35 (1Н, т, ³ J = 7.6)	8.24 (1H, д, ³ J = 8.0)
4c	_	1.90–1.80 (4Н, м); 2.77–2.75 (2Н, м); 2.93–2.91 (2Н, м)		_	11.71 (1H, c)	6.26 (1H, c)	7.51 (1Н, д, ³ J = 7.6)	7.63 (1Н, т, ³ J = 7.6)	7.31 (1Н, т, ³ J = 7.6)	8.14 (1Н, д, ³ <i>J</i> = 8.0)
4d	_	9.00 (1H, c)	7.78 (2H-2', д, <i>J</i> = 8.0); 7.51 (3H-3',4', м)	_	12.00 (1H, c)	6.28 (1H, c)	7.51 (1Н, м)	7.64 (1Н, т, ³ J = 7.6)	7.33 (1Н, т, <i>J</i> = 7.6)	8.24 (1Н, д, ³ J = 8.0)
5a	8.68 (1H, $^{\text{Д}},$ $^{3}J = 5.2)$	8.17 (1Н, д, ³ <i>J</i> = 5.2)	_	_	12.03 (1H, c)	6.27 (1H, c)	7.47 (1Н, д, ${}^{3}J = 7.6$)	7.65 (1H, T,) ${}^{3}J = 8.0$)	7.33 (1H, t, ${}^{3}J = 8.0$)	8.21 (1Н, д, ${}^{3}J = 8.0$)
5b	8.97 (1H, c)	7.77 (2H-3', c) 7.51 (2H-2', c)	_	_	12.04 (1H, c)	6.26 (1H, c)	7.51 (1Н, м)	7.63 (1H, c)	7.32 (1H, c)	8.19 (1H, c)
5c	8.92 (1H, c)	7.80 (2H-3', м); 7.33–7.29 (2H-2', м)	-	_	12.03 (1H, c)	6.26 (1H, c)	7.49 (1Н, д, ³ <i>J</i> = 6.4)	7.63 (1H, т, ${}^{3}J = 6.0$)	7.33–7.29 (1Н, м)	8.19 (1Н, д, ³ <i>J</i> = 6.4)
6*	9.24 (1H, $^{J}_{J}$, $^{3}J = 7.2$)	7.74 (1H, T , ${}^{3}J = 6.8$)	7.48 (2Н, м)	8.10 (1Н, д, ³ J = 6.0)	11.87 (1H, c) {6}	6.20 (1H, c) {7}	7.48 (2Н, м) {8}	7.63 (1Н, т, ³ J = 5.6) {9}	7.32 (1H, T, ${}^{3}J = 5.6$) {10}	8.19 (1Н, д, ³ J = 6.4) {11}

Спектры ЯМР ¹Н соединений 4–6

Таблица 4

* Порядковые номера атомов в молекуле, согласно принятой номенклатуре, приведены в { }.

1058

зрения установления структуры соединения, является отсутствие корреляции между сигналом протона NH и сигналом атома углерода с химическим сдвигом 123.9 м. д., отвечающим атому С-4 тиофенового цикла. В альтернативной линейной структуре данная корреляция должна была бы быть достаточно интенсивной.

При определении строения соединения 6 (либо 9) трудности возникают из-за того, что спиновые системы двух входящих в состав молекулы бензольных колец являются одинаковыми. Отнесение можно осуществить с помощью сравнения имеющихся корреляций в спектрах COSY и NOESY. Ключом к отнесению сигналов является наличие ЯЭО между синглетом протона Н-7, который поглощает при 6.18, и дублетом при 7.45 м. д. Поскольку отнесение синглета сомнений не вызывает, то ЯЭО для него может наблюдаться только для сигнала ближайшего к нему протона Н-8. Далее все остальные сигналы данной спиновой системы можно отнести на основании корреляций COSY. Сигналы протонов второго бензольного кольца можно отнести, если считать, что протону, сближенному с карбонильным атомом кислорода, соответствует химический сдвиг 9.22 м. д. Тогда отнесение остальных сигналов спиновой системы следует из корреляций COSY. Уже имеющиеся данные свидетельствуют о том, что изучаемой молекуле соответствует структура 6. Это следует из того, что сигнал протона H-1 расположен в аномально слабом поле вследствие пространственной близости с неподеленной электронной парой карбонильного атома кислорода (в альтернативной структуре 9 такой ситуации не возникает). Кроме того, сигнал протона NH имеет COSY-корреляцию только с одним сигналом ароматических протонов. В случае структуры 9 таких корреляций должно было бы быть две. Дополнительное подтверждение строения 6 для данного продукта было получено на основании гетерогенных корреляций. В табл. 3 приведены корреляции HMQC и HMBC, найденные для сигналов протонов синтезированного гетероцикла. Важнейшим доказательством в пользу ангулярного строения молекулы 6 является корреляция сигнала протона группы NH, поглощающего при 11.86 м. д. с атомом углерода одной из карбонильных групп, расположенным при 158.4 м. д. В случае, если бы молекула имела альтернативное строение 9, такая корреляция была бы невозможной, поскольку карбонильные атомы углерода в ней удалены от NH более чем на 3 химические связи. На рисунке приведены отнесения всех углеродных сигналов и стрелками показаны важнейшие корреляции НМВС, которые послужили основанием для отнесений. Отнесение сигналов узловых атомов углерода основывалось на наличии корреляций с сигналами протонов, находящихся по отношению к ним в мета-положении. Сигнал узлового атома углерода, расположенного между гетероциклическими атомами азота отнесен на основании наличия корреляций с синглетом при 6.18 м. д. и с сигналом протона NH. Сигналы атомов углерода, связанных с атомами водорода, отнесены на основании наличия корреляций в спектре НМОС со связанными с ними протонами.

В табл. 4 приведены данные спектров ЯМР ¹Н для всех синтезированных соединений **4–6**.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С соединений **4–6**, эксперименты по ЯЭО и двумерной спектроскопии ЯМР ¹Н COSY, а также гетероядерные корреляционные спектры HMQC и HMBC зарегистрированы на спектрометре Varian Mercury-400 (400 и 100 МГц соответственно). Все двумерные эксперименты проводились с градиентной селекцией полезных сигналов. Время смешивания в импульсных последовательностях соответствовало ${}^{1}J_{\rm CH} = 140$ и ${}^{2-3}J_{\rm CH} = 8$ Гц. Количество инкрементов в спектрах COSY и HMQC составило 128, а в спектрах HMBC – 400. Во всех случаях растворитель ДМСО-d₆, внутренний стандарт ТМС.

Масс-спектры измерены на масс-спектрометре Agilent 1100 Series, с селективным детектором Agilent LC/MSD SL, образец вводится в матрице трифторуксусной кислоты, ионизация ЭУ, приведены числовые значения m/z ($I_{\text{отн.}}$, %). $[M^++1]$ – пик молекулярного иона. Температуры плавления синтезированных веществ измерены в пирексовых капиллярах в приборе Тиле и не подвергались коррекции. ТСХ проводилась на пластинках Merck 60 F254, элюент смесь бензолметанол, 9 : 1. Продукты **4–6** имеют R_f 0.90–0.92. У сложных эфиров R_f 0.65–0.68, а у исходных кислот **1–3** – R_f 0.25–0.28.

2,3-Диметил-4Н-тиено[3',2':5,6]пиримидо[1,2-*b***]изохинолин-4,11(5Н)-дион (4а). К 0.31 г (10 ммоль) 2-(5,6-диметил-4-оксо-3,4-дигидротиено[2,3-***d***]пиримидин-2-илметил)бензойной кислоты (1а) прибавляют 10 мл (106 ммоль) уксусного ангидрида и кипятят с обратным холодильником при перемешивании 4 ч. Осадок отфильтровывают и промывают диэтиловым эфиром. Выход 90%, т. пл. 325 °C (из ДМФА). Масс-спектр,** *m/z***: 297 [M⁺+1]. Найдено, %: С 64.80; H 4.00; N 9.39; S 10.78. C₁₆H₁₂N₂O₂S. Вычислено, %: С 64.85; H 4.08; N 9.45; S 10.82.**

2,3-Дигидро-1Н,4Н-циклопента[4',5']тиено[3',2':5,6]пиримидо[1,2-*b***]изохинолин-4,11(5Н)-дион (4b) получают аналогично из 0.33 г (10 ммоль) 2-(4-оксо-3,5,6,7-тетрагидро-4Н-циклопента[4,5]тиено[2,3-***d***]пиримидин-2-илметил)бензойной кислоты (1b). Выход 92%, т. пл. 305 °С (из ДМФА). Масс-спектр,** *m/z***: 309 [M⁺+1]. Найдено, %: С 66.12; Н 3.86; N 8.96; S 10.35. С₁₇Н₁₂N₂O₂S. Вычислено, %: С 66.22; Н 3.92; N 9.08; S 10.40.**

8,9,10,11-Тетрагидро-7Н-бензо[1]тиено[3',2':5,6]пиримидо[1,2-*b***]изохинолин-4,14(6Н)-дион (4с) получают аналогично из 0.34 г (10 ммоль) 2-(4-оксо-3,4,5,6,7,8-гексагидробензо[4,5]тиено[2,3-***d***]пиримидин-2-илметил)бензойной кислоты (1с). Выход 93%, т. пл. 325 °С (из ДМФА). Масс-спектр,** *m/z***: 323 [M⁺+1]. Найдено, %: С 66.95; Н 4.31; N 8.57; S 9.86. С₁₈H₁₄N₂O₂S. Вычислено, %: С 67.06; Н 4.38; N 8.69; S 9.95.**

3-Фенил-4Н-тиено[3',2':5,6]пиримидо[1,2-*b***]изохинолин-4,11(5Н)-дион (4d)** получают аналогично из 0.36 г (10 ммоль) 2-(4-оксо-5-фенил-3,4-дигидротиено[2,3-*d*]пиримидин-2-илметил)бензойной кислоты (1d). Выход 90%, т. пл. 300 °С (из ДМФА). Масс-спектр, *m/z*: 345 [M⁺+1]. Найдено, %: С 69.72; Н 3.46; N 8.05; S 9.25. С₂₀H₁₂N₂O₂S. Вычислено, %: С 69.75; Н 3.51; N 8.13; S 9.31.

4Н-Тиено[2',3':5,6]пиримидо[1,2-*b***]изохинолин-4,11(5Н)-дион (5а)** получают аналогично из 0.29 г (10 ммоль) 2-(4-оксо-3,4-дигидротиено[3,2-*d*]пиримидин-2-илметил)бензойной кислоты (**2а**) в 10 мл (106 ммоль) уксусного ангидрида. Выход 92%, т. пл. 290 °С (из НОАс). Масс-спектр, *m/z*: 269 [M⁺+1]. Найдено, %: С 62.72; Н 3.09; N 10.52; S 11.84. С₁₄H₈N₂O₂S. Вычислено, %: С 62.68; Н 3.01; N 10.44; S 11.95.

2-(4-Хлорфенил)-4Н-тиено[2',3':5,6]пиримидо[1,2-*b***]изохинолин-4,11(5Н)дион (5b) получают аналогично из 0.40 г (10 ммоль) 2-[6-(4-хлорфенил)-4-оксо-3,4-дигидротиено[3,2-***d***]пиримидин-2-илметил]бензойной кислоты (2b). Выход 90%, т. пл. 320 °С (из ДМФА). Найдено, %: С 63.32; Н 2.90; N 7.43; S 8.38. C₂₀H₁₁ClN₂O₂S. Вычислено, %: С 63.41; Н 2.93; N 7.39; S 8.46.** **2-(4-Фторфенил)-4Н-тиено[2',3':5,6]пиримидо[1,2-***b***]изохинолин-4,11-(5Н)дион (5с) получают аналогично из 0.38 г (10 ммоль) 2-[6-(4-фторфенил)-4-оксо-3,4-дигидротиено[3,2-***d***]пиримидин-2-илметил]бензойной кислоты (2с**). Выход 93%, т. пл. 300 °С (из ДМФА). Масс-спектр, *m/z*: 363 [M⁺+1]. Найдено, %: С 66.11; Н 3.11; N 7.65; S 8.93. С₂₀H₁₁FN₂O₂S. Вычислено, %: С 66.29; Н 3.06; N 7.73; S 8.85.

5Н-Изохино[2,3-а]хиназолин-5,12(6Н)-дион (6) получают аналогично из 0.28 г (10 ммоль) 2-[(4-оксо-3,4-дигидро-2-хиназолинил)метил]бензойной кислоты (3) в 10 мл (106 ммоль) уксусного ангидрида. Выход 90%, т. пл. 305 °С (из НОАс). Масс-спектр, *m/z*: 263 [М⁺+1]. Найдено, %: С 73.16; Н 3.76; N 10.60. С₁₆Н₁₀N₂O₂. Вычислено, %: С 73.27; Н 3.84; N 10.68.

Авторы благодарят фирму "Енамин" (г. Киев) за поддержку проекта.

СПИСОК ЛИТЕРАТУРЫ

- 1. Л. М. Потиха, В. М. Кисиль, А. В. Туров, В. А. Ковтуненко, *XГС*, 1044 (2008
- 2. Т. Т. Кучеренко, А. В. Задорожний, В. А. Ковтуненко, ХГС, 940 (2008).
- 3. В. А. Ковтуненко, Т. Т. Кучеренко, О. В. Шишкин, В. М. Кисель, *XTC*, 1408 (2002). [*Chem. Heterocycl. Comp.*, **38**, 1242 (2002)].
- 4. Органикум, Мир, Москва, 1992, т. 2, с. 84.
- 5. H. Hosni, W. Basyouni, Acta Pol. Pharm., 56, 49 (1999).
- 6. H. Hosni, W. Basyouni, J. Chem. Res. Miniprint., 11, 2775 (1999).
- 7. HyperChem Professional 5.1; Hypercube©Inc. 2002 [предоставлена проф. О. Д. Качковским (ИОХ НАН Украины, г. Киев)].

Киевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: vkovtunenko@univ.kiev.ua Поступило 27.07.2007