А. В. Цуканов, А. Д. Дубоносов, В. А. Брень^а, В. И. Минкин^а

ОРГАНИЧЕСКИЕ ХЕМОСЕНСОРЫ С КРАУН-ЭФИРНЫМИ ГРУППИРОВКАМИ

(ОБЗОР)

В обзоре рассмотрены последние достижения химии органических хемосенсоров, содержащих краун-эфирные группировки.

Ключевые слова: краун-эфиры, хемосенсоры, флуоресценция, фотохромизм, электронные спектры поглощения.

Органические хемосенсоры – это молекулы абиотической природы, способные селективно и обратимо взаимодействовать с определяемым субстратом (ионом, молекулой) с соответствующими изменениями в одном или более свойствах системы. Описанию методов синтеза [1], применению хемосенсоров для определения катионов металлов [2–8], анионов и молекул [4, 9, 10] посвящен ряд обзоров. Некоторые из них избирательно рассматривают флуоресцентные хемосенсоры различной природы [5–8] либо фотопереключаемые соединения [11–14]. В данном обзоре, основанном исключительно на результатах последних лет, рассмотрены сенсоры, содержащие краун-эфирные группировки. Особое внимание уделено различным механизмам действия краунсодержащих хемосенсоров, которые классифицированы в соответствии с их электронными и фотохимическими особенностями.

В общем случае молекула хемосенсора состоит из сигнальной и рецепторной частей, а также мостика между ними; однако последний может и отсутствовать. Как правило, хемосенсоры подразделяются на хромогенные, флуоресцентные и фотопереключаемые.

При взаимодействии *хромогенного* сенсора с субстратом (в частности с ионом металла) наблюдается гипсо- или батохромный сдвиг длинноволновой полосы поглощения исходного соединения. Если смещение полосы поглощения значительно и происходит в видимой части спектра, то оно приводит к зрительно различимому изменению окраски раствора. Такие сигнальные системы принято называть колориметрическими ("naked-eye") хемосенсорами.

Принцип действия *флуоресцентных* хемосенсоров основан как на изменении интенсивности флуоресценции, так и на смещении полосы испускания исходных соединений при их комплексообразовании с субстратом.

Фотопереключаемые хемосенсоры способны к обратимому "включению-выключению" своих сенсорных свойств под действием света. Среди рецепторов-ионофоров, способных связывать положительно заряженные ионы, можно выделить хелатирующие агенты, поданды, коронанды (или краун-эфиры), криптанды, каликсарены, циклодекстрины и др. [15].

Краун-эфиры, открытые Педерсеном в 1962 г., занимают среди рецепторов особое место и широко используются в дизайне новых хемосенсорных систем благодаря их уникальной способности связывать катионы щелочных металлов, достаточно высокой селективности и доступности. Помимо щелочных металлов краун-эфиры являются эффективными комплексообразующими реагентами для катионов щелочноземельных металлов, Pb²⁺ и Tl⁺, а при введении в их структуру атомов азота и серы они становятся чувствительными к ионам Ag⁺, Hg²⁺, Cd²⁺. Детектирование данных ионов в биологических жидкостях и окружающей среде является особенно важным в медицине и биологии. С одной стороны, эти катионы включены в различные биологические процессы (Na⁺, K⁺, Mg²⁺, Ca²⁺) и применяются в лечении различных заболеваний (Li⁺, Ca²⁺), а с другой – могут нанести серьезный вред окружающей среде и здоровью человека (Ba²⁺, Pb²⁺, Tl⁺, Ag⁺, Hg²⁺, Cd²⁺). Несмотря на большое количество хемосенсоров для определения данных групп ионов задача получения новых соединений, сочетающих в себе одновременно такие показатели, как безопасность, доступность, чувствительность, селективность, является чрезвычайно актуальной.

1. Хромогенные сенсоры

Достаточно простая система **1a,b** способна связывать ионы тяжелых и переходных металлов с соответствующими изменениями в ультрафиолетовой части спектра: при краун-эфирном комплексообразовании с катионами (Ni²⁺, Pd²⁺, Co²⁺, Pb²⁺) появляется новая полоса поглощения в области 320 нм [16]. Сходным образом, но по отношению к ионам натрия и калия, действует сенсор **2** [17]. Взаимодействие с этими ионами вызывает гипсохромное смещение длинноволнового максимума поглощения данного соединения ($\lambda_{max} \sim 275$ нм).

Однако чаще используются сенсорные системы, поглощающие в видимой области [18]. Этим достигается не только более высокая чувствительность и точность количественного анализа веществ, но и возможность визуального детектирования тех или иных ионов в растворе. Примером являются соединения 3a,b, способные к селективному распознаванию ионов Ca^{2+} в крови и плазме человека [19].

Отрицательно заряженные атомы кислорода двух мероцианиновых фрагментов участвуют в дополнительной координации иона металла, что приводит к внутримолекулярному переносу заряда (Internal Charge Transfer, ICT-эффект). Это вызывает батохромное смещение длинноволновой полосы поглощения исходных соединений с 410 до 450 нм и разгорание флуоресценции на длине волны 575 нм. Данные сенсоры могут быть использованы для количественного определения кальция при $c = 1 \cdot 10^{-5} - 1 \cdot 10^{-2}$ моль/л даже в присутствии многократного избытка ионов Mg^{2+} , Li⁺, Na⁺, K⁺ ($c_{\rm M} = 0.1$ моль/л).

Недавно был синтезирован высокочувствительный и высокоселективный "naked-eye" азотсодержащий хемосенсор 4 [20], позволяющий проводить качественную и количественную оценку содержания в растворе ионов меди ($c \sim 3 \cdot 10^{-7}$ M) и ртути ($c \sim 7 \cdot 10^{-7}$ M) в присутствии катионов Fe²⁺, Co²⁺, Ni²⁺, Zn²⁺, Mn²⁺, Cd²⁺, Pb²⁺, Ag⁺, Na⁺, K⁺ и Mg²⁺.

Электронодонорный азакраун-эфир и акцепторный хромофор в составе большинства других хромогенных хемосенсоров сопряжены между собой и образуют единую π -электронную систему, принцип их действия также основан на ICT-эффекте. Изменения, происходящие в спектрах поглощения данных соединений, связаны с различным влиянием краун-эфирного комплексообразования на энергетические уровни основного и возбужденного состояний. Так, электронное возбуждение в донорно-акцепторных хромоионофорах **5a,b** [21–23], **6** [24], **7** [25], **8–10** [26], **11a,b** [27], **12** [28], **13a,b** [29], **14a–с**, **15** [30], как правило, сопровождается переносом электронной плотности в направлении акцепторных заместителей хромофора, поэтому взаимодействие рецептора с положительно заряженным ионом металла в большей степени дестабилизирует возбужденное состояние по сравнению с основным и приводит к гипсохромному сдвигу полосы поглощения.

Азокрасители **5**a, **b** являются эффективными колориметрическими сенсорами для селективного определения в крови ионов натрия или калия. При комплексообразовании гипсохромное смещение длинноволновой полосы поглощения у данных соединений ($\Delta\lambda$ 110 нм) сопровождается изменением окраски раствора от красного до желтого.

a n = m = 1; **b** n = 2, m = 1;**c** n = m = 2

Хемосенсорные системы 6–15 оказались чувствительными к присутствию в растворах ионов щелочных (соединения 6, 11, 13), щелочно-земельных (соединения 7–15) и некоторых переходных металлов (соединения 8–10).

Описаны синтез и спектральные свойства селективного амбидентатного сенсора **16** [31], содержащего две рецепторные части, выполняющие одновременно роль донора (азакраун-эфир) и акцептора (каликсареновая часть). Ионы Eu³⁺ реагируют преимущественно с атомами кислорода каликсарена, тогда как ион Na⁺ связывается с азакраун-эфиром, что вызывает бато- или гипсохромное смещение полосы поглощения соответственно.

Представлены результаты спектральных исследований серии соединений 17, содержащих пикриламиновые хромофоры, способные к дополнительной координации с катионами металлов [32]. Обнаружено, что при экстракции солей натрия, калия и лития из водного щелочного раствора в хлороформный слой происходит ионизация молекул сенсора и селективное взаимодействие того или иного иона металла с краун-эфирной полостью, сопровождающееся появлением новой интенсивной полосы поглощения в видимой области.

Соединение **18** высокоселективно по отношению к ионам калия и образует с ними внутримолекулярные "сэндвичевы" структуры, что спектрально проявляется в гипсохромном смещении длинноволновой полосы поглощения [33].

17 X = (CH₂)₃, CH₂CH₂OCH₂CH₂, CH₂(CH₂OCH₂)₂CH₂, R¹ = NO₂, CF₃; R² = NO₂, CN, CF₃

В качестве эффективных сенсорных систем могут применяться также различные хелатные комплексы **19–22** [34–36].

В последнее время быстрыми темпами развивается химия дитопных сенсоров, способных к распознаванию не отдельных ионов, а целых ионных пар, что имеет большое значение не только в химии, но и в медицине, так как биологическая активность и фармакологические свойства ионизированных молекул часто зависят от вида противоиона. Так, соединения **23а,b** [37], **24а,b** [38] и **25** [39] могут быть использованы для визуального детектирования токсичных солей щелочных металлов (NaCN, KCN, KF) в водных и органических средах. Согласно данным ЯМР ¹Н спектроскопии, катион металла удерживается краун-эфирной полостью, а противоион – атомом цинка порфиринового макроцикла или мочевинным фрагментом соответственно.

Представлена оригинальная дитопная хемосенсорная система **26** для селективного распознавания широкого спектра анионов (MeCOO⁻, F⁻, I⁻ и CN⁻) [40].

Комплексы данных соединений с катионами Cu²⁺, Zn²⁺, Hg²⁺, Fe²⁺, Pb²⁺ выполняют роль "naked-eye" реагентов. При их взаимодействии с анионами наблюдается различный для каждого аниона оптический отклик системы, выражающийся в изменении окраски раствора.

Анализ этого массива данных позволяет однозначно судить о присутствии того или иного аниона в исследуемом образце (за исключением анионов NO_3^- , CI^- и Br^- , для которых характерна сходная спектральная картина).

2. Флуоресцентные хемосенсоры

Флуоресцентный анализ имеет ряд преимуществ по сравнению с другими спектральными методами; он высокочувствителен, прост в исполнении и может применяться в широком диапазоне концентраций исследуемого вещества. Характерны два основных типа флуоресцентных хемосенсоров – РЕТ- (Photoinduced Electron Transfer) и ICT-системы, хотя в некоторых случаях провести четкую грань между ними достаточно

Таблица 1

Mo	Соелинение	\mathbf{M}^{n+}	1/1 *	Ли-
745	Сосдинение	11/1	1/10	тура
1	2	3	4	5
27		Ba ²⁺	~7	[41]
28	= 1-3	Ca ²⁺	4	[42]
29	$\begin{cases} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	Li^+	1.4	[43]
30	$R \xrightarrow{N} S \xrightarrow{N} R \qquad R \xrightarrow{N} S \xrightarrow{N} R \qquad R \xrightarrow{N} S \xrightarrow{N} R \qquad S \xrightarrow{N} R \qquad$	Mg ²⁺ Cd ²⁺ Hg ²⁺	1000 3 12	[44– 48]
31	Me O O O O O O O O O O O O O O O O O O O	Na ⁺	5.5	[21]

Примеры краунсодержащих РЕТ-сенсоров

		Продолжен	ние табл	ицы 1
1	2	3	4	5
32	O O O N H H	Na ⁺	18	[49]
33	n = 1, 2	Li ⁺ K ⁺	6 7	[50, 51]
34	HN O O NH Me Me	Li ⁺	~6	[52]
35	$Me \xrightarrow{N-CH_2Ph} SO_2 \xrightarrow{N} \xrightarrow{N-CH_2Ph} O N$	Ca ²⁺	~5	[53]
36	$R^{1} \leftarrow 0 \qquad N \qquad R^{2} \qquad Me \qquad M$	Ca ²⁺ , Mg ²⁺	3–13	[53]
37	R =	Ca ²⁺	30– 170	[54]

	2	продолже	ние таол	ицы 1
1	2	3	4	5
38		Zn ²⁺	10	[55]
39		Fe ³⁺	15	[56]
40	H-SO ₂ - N -NMe ₂ полимерная матрица $R = $, $-CH_2$ -, $-CH_2$ -, CH_2 -	Mg ²⁺	2	[57]
41	$Me \underbrace{N}_{Ru(bipy)_2} = N \underbrace{N}_{N} N$	Li ⁺	~2	[58]
42	Ru(bipy) ₂	Na ⁺	2.7	[59]

		Продолжен	ние табл	ицы 1
1	2	3	4	5
43	$i-Pr \to 0 \to $	Cs ⁺ K ⁺	4 7	[60]
44	n = 3-5	Cd ²⁺	~25	[61, 62]
45	$(bipy)_2Ru$	Ba ²⁺	~2	[63]
46		\mathbf{K}^{+}	50	[64]
47	R = H $R = Me$ HO	Hg ²⁺ Hg ²⁺	170 44	[65, 66]
48	HO = H, CI	Na ⁺	5	[67]

Окончание таблицы 1

* *I*/*I*₀ – относительное увеличение интенсивности флуоресценции.

затруднительно. Принципиальную схему действия РЕТ-сенсоров можно представить следующим образом: при возбуждении молекулы электрон с высшей занятой молекулярной орбитали (ВЗМО) рецептора переходит на ВЗМО флуорофора, что вызывает тушение флуоресценции последнего. Комплексообразование с ионом металла приводит к тому, что уровень энергии ВЗМО рецептора становится ниже уровня ВЗМО флуорофора, РЕТ-эффект не реализуется и интенсивность флуоресценции возрастает. В табл. 1 приведены структуры некоторых краунсодержащих РЕТ-хемосенсоров.

Среди РЕТ-хемосенсоров также встречаются дитопные системы, например, соединения **53** [72] и **54** [73], способные детектировать в растворах фосфат натрия и фторид калия соответственно.

Реже в аналитических целях используют так называемые CHEQ (Chelation Enhanced Fluorescence Quenching) РЕТ-сенсоры, у которых наблюдается тушение флуоресценции при их комплексообразовании с ионами металлов. Флуоресцентные свойства CHEQ-системы зависят не только от структуры лиганда, но и от электронного строения самого иона металла [74, 75].

Второй обширный класс люминесцентных сенсоров представлен ICT-системами, молекулы которых построены таким образом, чтобы флуорофор или непосредственно взаимодействовал с катионом металла за счет дополнительной координации, или же образовывал с рецептором систему сопряженных связей. Как и в случае хромогенных сенсоров, комплексообразование с катионом приводит к внутримолекулярному переносу заряда и изменению спектрально-люминесцентных свойств молекулы, что проявляется в значительном гипсо- или батохромном смещении полосы флуоресценции и, соответственно, в изменении интенсивности люминесценции на длине волны испускания комплекса (табл. 2).

№	Соединение	M ⁿ⁺	<i>I/I</i> ₀ *	λ _{φл} (Δλ _{φл} **) , HM	Лите- рату- ра
<u>1</u> 55	2 O O O O O O O O O O O O O	3 Ca ²⁺	~12	5 560 (-20)	[76]
56	$R = NMe_2, N = 1, n = 2$	Ca ²⁺ Ba ²⁺	~2 ~2	425–465 (от –25 до +25)	[77]
57	$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	Cs^+	20	526 (+44)	[78]
58		K^+	27	512 (+34)	[79]
59		Mg ²⁺	17	481 (-20)	[80]
60	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & $	Na^+ K^+ Cs^+	20 20 20	537 (+81) 492 (+17) 526 (+44)	[81]
			Продо	олжение таб	лицы 2

Примеры краунсодержащих ІСТ-хемосенсоров

1	2	3	4	5	6
61	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } } \\ \end{array} } } \\ T } } \\ T } \\ T } \\ T } } } } } } } } } }	Co ²⁺	0.15	~525 (+5)	[82]
62	$ \begin{array}{c} & & & \\ & $	Mg ²⁺ Ca ²⁺	~ 1 ~ 1	~ 500 (+25) ~ 500 (+23)	[83]
63	N N N O	\mathbf{K}^+	~ 35	520 (-45)	[84]
64	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	Zn ²⁺ Cd ²⁺	0.24 0.62	491 (+17) 486 (+12)	[85]
65	Et_2N	Pb ²⁺	40	491 (+15)	[86]
66	r-Bu r -Bu r -Bu- r r -Bu r - r -Bu r - r -Bu r - r - r -Bu r -	Zn ²⁺ Mg ²⁺	870 1035	560 (-75) 553 (-82)	[87]
			проде	лжение таб	лицы Z

1	2	3	4	5	6
67		Mg ²⁺	>100	570	[88]
68	BuO BuO O O O O O O O O O O O O O O O O	$\begin{array}{c} Pr^{3+}\\ Nd^{3+}\\ Eu^{3+}\end{array}$	>100 >100 >100	~ 350 ~ 360 ~ 400	[89]
69	Pr O O O O O O O O O O O O O O O O O O O	Na ⁺	~5	459 (+51)	[90]
70	$O \rightarrow O \\ O \rightarrow O \\ O \rightarrow O \rightarrow O \\ O \rightarrow O \rightarrow O \\ O \rightarrow O \rightarrow$	K^+	40	547	[91, 92]
	$R = -N \qquad N $				
	$-\frac{H}{N} \underbrace{\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		Ок	ончание таб	лицы 2

1	2	3	4	5	6
71		Li ⁺	0.5	~ 405 (-20)	[93]
72	Ru(bipy) ₂	Hg ²⁺	8	620 (+10)	[94]
73	Me_2N Ne_2N Ne_2	Zn ²⁺	~18	420 (+60)	[95]
74		Ag^+ Pb^{2+} $U-^{2+}$	14.5 9.2	335 (+40) 335 (+40)	[96]
	`s″	Hgʻʻ	7.2	335 (+40)	

* *I*/*I*₀ – относительное увеличение интенсивности флуоресценции.
 ** Максимум флуоресценции после комплексообразования (гипсо (–) /бато (+) хромный сдвиг полосы флуоресценции).

К другим типам флуоресцентных хемосенсоров относятся мономерэксимерные системы, например, **75** [97], **76** [98], **77** [99], **78** [100].

В эксимерах ароматические фрагменты молекулы располагаются параллельно, на оптимальном расстоянии, образуя "сэндвичеву" структуру, которая существует только в возбужденном состоянии. Полосы люминесценции не имеют тонкой структуры и располагаются в более длинноволновой области, чем максимумы испускания отдельных компонентов. Принцип действия данного типа сенсоров основан на изменении соотношения эксимерной и мономерной эмиссии в растворе при их комплексообразовании с ионами металлов.

Новым типом флуоресцентных хемосенсоров является разработанная нами таутомерная система на основе бензо-15-краун-6-содержащих иминов ряда бензо[b]фурана [101–103], **79**, **80**, принцип действия которой основан на смещении бензоидно-хиноидного равновесия в сторону бензоидной формы при их комплексообразовании с катионами щелочных и щелочно-земельных металлов, что сопровождается значительным уменьшением интенсивности длинноволновой полосы поглощения и существенным гипсохромным смещением полосы эмиссии.

3. Фотопереключаемые хемосенсоры

Фотохромизм – это обратимая трансформация вещества из одной формы в другую под действием электромагнитного излучения [104, 105]. Обратное превращение может осуществляться как фотохимически, так и термически. При помощи фотореакции можно привести в действие или заблокировать сенсорную систему. Большинство краунсодержащих фотопереключаемых хемосенсоров являются производными спиропиранов, спирооксазинов, хроменов и стириловых красителей (реже встречаются фульгиды [106], дигетарилэтены [107, 108], трифенилметановые красители [109, 110]). Недавно синтезированы спиропираны и спирооксазины индолинового ряда **81а–е**, **82**, **83а**,**b**, содержащие различные краун-эфирные рецепторы [111–118].

 $\begin{array}{c} & \underset{\text{Me}}{\overset{\text{Me}}{\leftarrow} \text{CH}_2}, \\ & \underset{\text{O}}{\overset{\text{O}}{\leftarrow} \text{O}}, \\ & \underset{\text{O}}{\overset{\text{O}}{\leftarrow} \text{O}}, \\ & \underset{\text{O}}{\overset{\text{O}}{\leftarrow} \text{O}}, \\ & \underset{\text{Me}}{\overset{\text{O}}{\leftarrow} \text{Me}}, \\ & \underset{\text{Me}}{\overset{\text{N}}{\leftarrow} \text{Me}}, \\ & \underset{\text{Me}}{\overset{\text{Me}}{\overset{\text{N}}{\leftarrow} \text{Me}}, \\ & \underset{\text{Me}}{\overset{\text{Me}}{\overset} \text{Me}}, \\ & \underset{\text{Me}}{\overset} \text{Me}}, \\ & \underset{\text{Me}}{\overset{\text{Me}}{\overset} \text{Me}}, \\ & \underset{\text{Me}}{\overset{\text{Me}}{\overset} \text{Me}}, \\ & \underset{\text{Me}}{\overset{\text{Me}}{\overset} \text{Me}}, \\ & \underset{\text{Me}}{\overset{\text{Me}}{\overset{\text{Me}}{\overset} \text{Me}}, \\ & \underset{\text{Me}}{\overset{\text{Me}}{\overset} \text{Me}}, \\ &$

Спиропираны **81–83** в присутствии катионов щелочных и щелочноземельных металлов способны превращаться в соответствующую мероцианиновую форму, обладающую поглощением в видимой части спектра ($\lambda_{max} \sim 550$ нм). Этот факт объясняется способностью ионов металла образовывать дополнительную координационную связь с фенолят-анионом, что стабилизирует мероцианиновую форму **B** спиросоединения (например, у молекул **81а**). Эффективность процесса максимальна при оптимальном соотношении размеров краун-эфирной полости и иона металла.

Облучение соединений **81**, **82** в области длинноволновой полосы поглощения мероцианиновой формы приводит к образованию исходной спироформы и высвобождению иона металла, что позволяет контролировать процесс комплексообразования при помощи облучения.

Фотохромная реакция хроменов **84–86** [119–121] представляет собой разрыв связи С–О под действием света с образованием открытой формы **В**. Данная реакция при комнатной температуре обратима.

Облучение растворов этих соединений в присутствии ионов щелочных и щелочноземельных металлов вызывает появление интенсивного максимума поглощения в области 450–500 нм, связанного с образованием открытой формы, но приводит к существенному уменьшению константы скорости обратной термической циклизации в результате стабилизации 1144 формы В за счет дополнительной координации иона металла с карбонильным атомом кислорода.

В цикле работ [122–128] описываются краунсодержащие стириловые красители **87–90**, образующие в присутствии ионов металлов молекулярные димеры. При облучении растворов мономеров протекает стереоспецифическое фотоциклоприсоединение с образованием только лишь

одного или двух производных циклобутана (из 11 возможных). Показано, что в отсутствие ионов металлов соединения **87–90** не вступают в реакцию фотоциклоприсоединения даже в насыщенных растворах. Ион металла участвует в формировании молекулярных димеров, выполняя роль "молекулярного клея", и тем самым способствует протеканию фотореакции. Среди этих систем найдены эффективные хемосенсоры на ионы магния, бария, ртути и свинца.

Синтезированные нами ацилированные краунсодержащие кетоенамины ряда бензо[*b*]тиофена **91** способны к обратимому "включениювыключению" своих сенсорных свойств под действием света [129–131]. Облучение данных соединений в длинноволновом максимуме поглощения светом $\lambda_{oбл}$ 436 нм приводит к *Z/E*-изомеризации по двойной связи C=C с последующим термическим N→O переносом ацильной группы и образованием сенсорноактивных О-ацильных изомеров **92** с высокими квантовыми выходами.

Обратная О—N миграция ацильной группы может быть осуществлена каталитически.

Взаимодействие О-ацильных форм **92** с катионами щелочных и щелочноземельных металлов приводит к значительным изменениям в электронных спектрах поглощения: происходит увеличение молярного коэффициента экстинкции, сопровождаемое гипсохромным эффектом, причем максимальные изменения для бензо-15-краун-5-эфирных производных 1146

наблюдаются в случае ионов Ca²⁺, а для (ди)бензо-18-краун-6-содержащих производных – в случае ионов Ba²⁺.

Таким образом, литературные данные обзора демонстрируют значительные успехи в развитии хемосенсорики, причем наиболее существенные результаты достигнуты в последние 10–15 лет. Тем не менее, очевидно, что создание новых эффективных, селективных и синтетически доступных хемосенсоров на катионы металлов по-прежнему остается актуальной задачей.

Работа выполнена при финансовой поддержке "Фонда содействия отечественной науке", гранта Минобразования/CRDF (REC-004) и Программы развития Южного федерального университета на 2007 г.

СПИСОК ЛИТЕРАТУРЫ

- 1. С. П. Громов, С. Н. Дмитриева, М. В. Чуракова, *Усп. химии*, 74, 503 (2005).
- 2. L. Prodi, F. Bolletta, M. Montalti, N. Zaccheroni, *Coord. Chem. Rev.*, 205, 59 (2000).
- 3. M. Montalti, L. Prodi, N. Zaccheroni, *Handbook of Photochemistry and Photobiology*, H. S. Nalwa (Ed.), American Scientific Publishers, 2003, vol. 3, p. 271.
- 4. В. А. Брень, *Усп. химии*, **70**, 1152 (2001).
- 5. J. F. Callan, A. P. de Silva, D. C. Magri, *Tetrahedron*, **61**, 8551 (2005).
- 6. G. W. Gokel, W. M. Leevy, M. E. Weber, Chem. Rev., 104, 2723 (2004).
- 7. K. Rurack, U. Resch-Genger, Chem. Soc. Rev., 31, 116 (2002).
- 8. A. P. de Silva, D. B. Fox, T. S. Moody, S. M. Weir, *Pure Appl. Chem.*, **73**, 503 (2001).
- 9. P. D. Beer, E. J. Hayes, Coord. Chem. Rev., 240, 167 (2003).
- L. Fabrizzi, M. Licchelli, G. Rabaioli, A. Taglietti. Coord. Chem. Rev., 205, 85 (2000).
- 11. О. А. Федорова, С. П. Громов, М. В. Алфимов, Изв. АН, Сер. хим, 1882 (2001).
- 12. K. Kimura, H. Sakamoto, M. Nakamura, Bull. Chem. Soc. Jpn., 76, 225 (2003).
- M. V. Alfimov, O. A. Fedorova, S. P. Gromov, J. Photochem. Photobiol, A, 158, 183 (2003).
- 14. *Macrocyclic Chemistry: Current Trends and Future Perspectives*, K. Gloe (Ed.), Springer, Berlin, New York, 2005, 450 p.
- 15. I. H. Hartley, T. D. James, C. J. Ward, J. Chem. Soc., Perkin Trans. 1, 3155 (2000).
- 16. N. Uehara, H. Honzawa, T. Shimizu, Anal. Sci., 17, 199 (2001).
- 17. M. Nakamura, H. Yokono, K. Tomita, M. Ouchi, M. Miki, R. Dohno, J. Org. Chem., 67, 3533 (2002).
- 18. I. Nemcova, S. Cihelnik, P. Rychlovsky, L. Antalova, Anal. Lett., 37, 2721 (2004).
- 19. D. Citterio, M. Omagari, T. Kawada, S. Sasaki, Y. Suzuki, K. Suzuki, *Anal. Chim. Acta*, **504**, 227 (2004).
- 20. H. Mu, R. Gong, Q. Ma, Y. Sun, E. Fu, Tetrahedron Lett., 48, 5525 (2007).
- 21. T. Gunnlaugsson, M. Nieuwenhuyzen, L. Richard, V. Thoss, J. Chem. Soc., Perkin Trans. 2, 141 (2002).
- 22. T. Gunnlaugsson, J. P. Leonard, J. Chem. Soc., Perkin Trans. 2, 1980 (2002).
- 23. T. Gunnlaugsson, M. Nieuwenhuyzen, L. Richard, V. Thoss, *Tetrahedron Lett.*, **42**, 4725 (2001).
- 24. D. Citterio, S. Sasaki, K. Suzuki, Chem. Lett., 30, 552 (2001).
- 25. N. Marcotte, P. Plaza, D. Lavabre, S. Fery-Forgues, M. Martin, J. Phys. Chem. A.,

107, 2394 (2003).

- 26. E. Yamamoto, K. Kubo, A. Mori, Bull. Chem. Soc. Jpn., 76, 627 (2003).
- 27. D. Lewis, J. N. Moore, Dalton Trans., 1376 (2004).
- 28. S. H. Mashraqui, S. Sundaram, A. C. Bhasikuttan, Tetrahedron, 63, 1680 (2007).
- 29. X. Poteau, G. Saroja, C. Spies, R. G. Brown, *J. Photochem. Photobiol.*, *A*, **162**, 431 (2004).
- 30. M.-T. Alonso, E. Brunet, O. Juanes, J.-C. Rodrigues-Ubis, J. Photochem. Photobiol., A, 147, 113 (2002).
- 31. D. Ataman, E. U. Akkaya, Tetrahedron Lett., 43, 3981 (2002).
- G. G. Talanova, H.-S. Hwang, V. S. Talanov, R. Bartsch, Anal. Chem., 73, 5260 (2001).
- 33. T. Hayashita, A. Murakami, N. Teramae, Chem. Lett., 33, 568 (2004).
- 34. V.W.-W. Yam, Y.-L. Pui, K.-K. Cheung, Inorg. Chim. Acta, 335, 77 (2002).
- 35. X.-X. Lu, S.-Y. Qin, Z.-Y. Zhou, V. W.-W. Yam, *Inorg. Chim. Acta*, **346**, 49 (2003).
- 36. C. Sousa, P. Gameiro, C. Freire, B. de Castro, Polyhedron, 23, 1401 (2004).
- 37. Y.-H. Kim, J.-I. Hong, Chem. Commun., 512 (2002).
- H. Liu, X.-B. Shao, M.-X. Jia, X.-K. Jiang, Z.-T. Li, G.-J. Chen, *Tetrahedron*, 61, 8095 (2005).
- 39. H. Miyaji, S. R. Collinson, I. Prokes, J. H. R. Tucker, Chem. Commun., 64 (2003).
- 40. B. Garcia-Acosta, R. Martinez-Manez, F. Sancenon, J. Soto, K. Rurack, M. Spieles, E. Garcia-Breijo, L. Gil, *Inorg. Chem.*, 46, 3123 (2007).
- 41. S. Kondo, T. Kinjo, Y. Yano, Tetrahedron Lett., 46, 3183 (2005).
- 42. S. A. McFarland, N. S. Finney, J. Am. Chem. Soc., 123, 1260 (2001).
- 43. W. Liu, J.-H. Lu, Y. Ji, J.-L. Zuo, X.-Z. You, Tetrahedron Lett., 47, 3431 (2006).
- 44. L. Prodi, F. Boletta, M. Montalti, N. Zaccheroni, P. B. Savage, J. S. Bradshaw, R. M. Izatt, *Tetrahedron Lett.*, **39**, 5451 (1998).
- 45. L. Prodi, C. Bargossi, M. Montalti, N. Zaccheroni, N. Su, J. S. Bradshaw, R. M. Izatt, P. B. Savage, *J. Am. Chem. Soc.*, **122**, 6769 (2000).
- R. T. Bronson, M. Montalti, L. Prodi, N. Zaccheroni, R. D. Lamb, N. K. Dalley, R. M. Izatt, J. S. Bradshaw, P. B. Savage, *Tetrahedron.*, 60, 11139 (2004).
- R. T. Bronson, J. S. Bradshaw, P. B. Savage, S. Fuangswasdi, S. C. Lee, K. E. Krakowiak, R. M. Izatt, *J. Org. Chem.*, 66, 4752 (2001).
- 48. L. Prodi, M. Montalti, J. S. Bradshaw, R. M. Izatt, P. B. Savage, J. Incl. Phen. Macrocyclic Chem., 41, 123 (2001).
- H. He, M. A. Mortellaro, M. J. P. Leiner, S. T. Young, R. J. Fraatz, J. K. Tusa, Anal. Chem., 75, 549 (2003).
- 50. M. B. Roy, S. Samanta, G. Chattopadhyay, S. Ghosh, J. Lumin., 106, 141 (2004).
- 51. S. Samanta, P. S. Sardar, S. S. Maity, A. Pal, M. B. Roy, S. Ghosh, *J. Chem. Sci.*, **119**, 175 (2007).
- 52. T. Gunnlaugsson, B. Bichell, C. Nolan, Tetrahedron Lett., 43, 4989 (2002).
- 53. A. J. Pearson, W. Xiao, J. Org. Chem., 68, 5361 (2003).
- 54. A. J. Pearson, W. Xiao, J. Org. Chem., 68, 5369 (2003).
- 55. L. H. Jia, X. F. Guo, Y. Y. Liu, X. H. Qian, Chin. Chem. Lett., 15, 118 (2004).
- 56. J. Hua, Y.-G. Wang, Chem. Lett., 34, 98 (2005).
- 57. I. A. Rivero, T. Gonzalez, G. Pina-Luis, M. E. Diaz-Garcia, *J. Comb. Chem.*, 7, 46 (2005).
- L. J. Charbonniere, R. F. Ziessel, C. A. Sams, A. Harriman, *Inorg. Chem.*, 42, 3466 (2003).
- 59. M. Chiba, K. Ogawa, K. Tsuge, M. Abe, H.-B. Kim, Y. Sasaki, N. Kitamura, *Chem. Lett.*, **30**, 692 (2001).
- 60. H.-F. Ji, R. Dabestani, G. M. Brown, J. Am. Chem. Soc., 122, 9306 (2000).

- 61. S. Charles, S. Yunus, F. Dubois, E. V. Donckt, Anal. Chim. Acta, 440, 37 (2001).
- S. Yunus, S. Charles, F. Dubois, E. V. Donckt, J. Fluoresc., DOI 10.1007/s10895-007-0291-0 (2007).
- 63. S. Encinas, K. L. Bushell, S. M. Couchman, J. C. Jeffery, M. D. Ward, L. Flamigni, F. Barigelletti, *J. Chem. Soc., Dalton Trans.*, 1783 (2000).
- 64. J. S. Benco, H. A. Nienaber, K. Dennen, W. G. McGimpsey, J. Photochem. Photobiol., A, 152, 33 (2002).
- 65. S. Yoon, A. Albers, A. P. Wong, C. J. Chang, J. Am. Chem. Soc., 127, 16030 (2005).
- 66. S. Yoon, E. W. Miller, Q. He, P. H. Do, C. J. Chang, Angew. Chem., Int. Ed., 46, 6658 (2007).
- 67. S. Kenmoku, Y. Urano, K. Kanda, H. Kojima, K. Kikuchi, T. Nagano, *Tetrahedron*, **60**, 11067 (2004).
- S. A. de Silva, B. Amorelli, D. C. Isidor, K. C. Loo, K. E. Crooker, Y. E. Pena, *Chem. Commun.*, 1360 (2002).
- N. C. Lim, L. Yao, H. C. Freake, C. Brückner, *Bioorg. Med. Chem. Lett.*, 13, 2251 (2003).
- S. H. Mashraqui, S. Sundaram, A. C. Bhasikuttan, S. Kapoor, A. V. Sapre, Sens. Actuators, B, 122, 347 (2007).
- 71. K. S. Kim, E. J. Jun, S. K. Kim, H. J. Choi, J. Yoo, C.-H. Lee, M. H. Hyun, J. Yoon, *Tetrahedron Lett.*, **48**, 2481 (2007).
- 72. A. P. de Silva, G. D. McClean, S. Pagliari, Chem. Commun., 2010 (2003).
- 73. S. J. M. Koskela, T. M. Fyles, T. D. James, Chem. Commun., 945 (2005).
- 74. J. H. Chang, Y. Jeong, Y. K. Shin, Bull. Korean Chem. Soc., 24, 119 (2003).
- S. H. Kim, K. C. Song, S. Ahn, Y. S. Kang, S.-K. Chang, *Tetrahedron*, 47, 497 (2006).
- 76. K.-C. Wu, Y.-S. Lin, Y.-S. Yeh, C.-Y. Chen, M. O. Ahmed, P.-T. Chou, Y.-S. Hon, *Tetrahedron*, **60**, 11861 (2004).
- 77. J.-S. Yang, C.-Y. Hwang, C.-C. Hsieh, S.-Y. Chiou, J. Org. Chem., 69, 719 (2004).
- 78. W.-S. Xia, R. H. Schmehl, C.-J. Li, Chem. Commun., 695 (2000).
- 79. Y.-P. Yen, T.-P. Huang, J. Chin. Chem. Soc., 51, 377 (2004).
- 80. E. J. Shin, Chem. Lett., 31, 686 (2002).
- W.-S. Xia, R. H. Schmehl, C.-J. Li, J. T. Mague, C.-P. Luo, D. M. Guldi, J. Phys. Chem. B, 106, 833 (2002).
- 82. H. Sulowska, W. Wiczk, J. Mlodzianowski, M. Przyborowska, T. Ossowski, *J. Photochem. Photobiol.*, *A*, **150**, 249 (2002).
- D. Taziaux, J.-P. Soumillion, J.-L. H. Jiwan, J. Photochem. Photobiol., A, 162, 599 (2004).
- M. Baruah, W. Qin, R. A. L. Vallee, D. Beljonne, T. Rohand, W. Dehaen, N. Boens, Org. Lett., 7, 4377 (2005).
- 85. A. M. Costero, S. Gil, J. Sanchis, S. Peransi, V. Sanz, J. A. G. Williams, *Tetrahedron*, **60**, 6327 (2004).
- 86. C.-T. Chen, W.-P. Huang, J. Am. Chem. Soc., 124, 6246 (2002).
- 87. K. M. Siu, L.-W. Lai, N. Zhu, C.-M. Che, Eur. J. Inorg. Chem., 2749 (2003).
- Q.-Z. Yang, L.-Z. Wu, H. Zhang, B. Chen, Z.-X. Wu, L.-P. Zhang, C.-H. Tung, *Inorg. Chem.*, 43, 5195 (2004).
- 89. V. Bekiari, P. Judeinstein, P. Lianos, J. Lumin., 104, 13 (2003).
- T. Hayashita, S. Taniguchi, Y. Tanamura, T. Uchida, S. Nishizawa, N. Teramae, Y. S. Jin, J. C. Lee, R. A. Bartsch, J. Chem. Soc., Perkin Trans. 2, 1003 (2000).
- 91. T. Gunnlaugsson, J. P. Leonard, Chem. Commun., 2424 (2003).
- 92. C. Li, G.-L. Law, W.-T. Wong, Org. Lett., 6, 4841 (2004).
- 93. D. Citterio, J. Takeda, M. Kosugi, H. Hisamoto, S. Sasaki, H. Komatsu, K. Suzuki, 1149

Anal. Chem., 79, 1237 (2007).

- 94. M.-J. Li, B. W.-K. Chu, N. Zhu, V. W.-W. Yam, Inorg. Chem., 46, 720 (2007).
- Y. Q. Li, J. L. Bricks, U. Resch-Genger, M. Spieles, W. Rettig, J. Fluoresc., 16, 337 (2006).
- 96. O.-S. Kwon, H.-S. Kim, Supramol. Chem., 19, 277 (2007).
- 97. Y. Nakahara, T. Kida, Y. Nakatsuji, M. Akashi, J. Org. Chem., 69, 4403 (2004).
- A. Yamauchi, T. Hayashita, A. Kato, N. Teramae, Bull. Chem. Soc. Jpn., 75, 1527 (2002).
- C. Saudan, V. Balzani, M. Gorka, S.-K. Lee, M. Maestri, V. Vicinelli, F. Vogtle, J. Am. Chem. Soc., 125, 4424 (2003).
- 100. J. Xie, M. Menand, S. Maisonneuve, R. Metivier, J. Org. Chem., 72, 5980 (2007).
- 101. Е. Н. Шепеленко, А. В. Цуканов, Ю. В. Ревинский, А. Д. Дубоносов, В. А. Брень, В. И. Минкин, *ЖОрХ*, **43**, 561 (2007).
- 102. В. А. Брень, А. Д. Дубоносов, Н. И. Макарова, В. И. Минкин, Л. Л. Попова, В. П. Рыбалкин, Е. Н. Шепеленко, А. В. Цуканов, *ЖОрХ*, **38**, 145 (2002).
- 103. В. И. Минкин, Т. Н. Грибанова, А. Д. Дубоносов, В. А. Брень, Р. М. Миняев, Е. Н. Шепеленко, А. В. Цуканов, Рос. хим. журн. (ЖРХО им. Д. И. Менделеева), 48, 30 (2004).
- 104. Handbook of Organic Photochemistry and Photobiology, 2nd ed., W. M. Horspool, F. Lenci (Eds.), CRC Press, Boca Raton, FL., 2004, 137 ch.
- 105. Photochromism (Revised Ed.), H. Dürr, H. Bouas-Laurent (Eds.), Elsevier Science B. V., Amsterdam, Neth., 2003, 1044 p.
- 106. Z. Guo, G. Wang, Y. Tang, X. Song, Liebigs Ann. Recueil, 941 (1997).
- 107. M. Takeshita, C. F. Soong, M. Irie, Tetrahedron Lett., 39, 7717 (1998).
- 108. J.-P. Malval, I. Gosse, J.-P. Morand, R. Lapouyade, J. Am. Chem. Soc., 124, 904 (2002).
- 109. R. M. Uda, M. Oue, K. Kimura, J. Supramol. Chem., 311 (2002).
- 110. R. M. Uda, M. Yokoyama, K. Kimura, Mol. Cryst. Liq. Cryst., 334, 133 (2000).
- 111. M. Nakamura, T. Fujioka, H. Sakamoto, K. Kimura, New. J. Chem., 26, 554 (2002).
- 112. K. Kimura, H. Sakamoto, S. Kado, R. Arakawa, M. Yokoyama, *Analyst*, **125**, 1091 (2000).
- 113. H. Sakamoto, T. Yokohata, T. Yamamura, K. Kimura, *Anal. Chem.*, **74**, 2522 (2002).
- 114. A. M. A. Salhin, M. Tanaka, K. Kamada, H. Ando, T. Ikeda, Y. Shibutani, S. Yajima, M. Nakamura, K. Kimura, *Eur. J. Org. Chem.*, 655 (2002).
- 115. M. Tanaka, K. Kamada, K. Kimura, Mol. Cryst. Liq. Cryst., 334, 319 (2000).
- 116. A. Abdullah, C. J. Roxburgh, P. G. Sammes, Dyes and Pigm., 76, 319 (2008).
- 117. K. Kimura, H. Sakamoto, R. M. Uda, Macromolecules, 37, 1871 (2004).
- 118. O. A. Fedorova, Y. P. Strokach, S. P. Gromov, A. V. Koshkin, T. M. Valova, M. V. Alfimov, A. F. Feofanov, I. S. Alaverdian, V. A. Lokshin, A. Samat, R. Guglielmetti, R. B. Girling, J. N. Moore, R. E. Hester, *New J. Chem.*, 26, 1137 (2002).
- 119. S. A. Ahmed, M. Tanaka, H. Ando, H. Iwamoto, K. Kimura, *Tetrahedron*, **60**, 3211 (2004).
- 120. O. A. Fedorova, F. Maurel, E. N. Ushakov, V. B. Nazarov, S. P. Gromov, A. V. Chebunkova, A. V. Feofanov, I. S. Alaverdian, M. V. Alfimov, F. Barigelletti, *New J. Chem.*, 27, 1720 (2003).
- 121. S. A. Ahmed, M. Tanaka, H. Ando, H. Iwamoto, K. Kimura, *Eur. J. Org. Chem.*, 2437 (2003).

122. O. A. Fedorova, Y. V. Fedorov, E. N. Andrjukhina, S. P. Gromov, M. V. Alfimov, 1150

Pure Appl. Chem., 75, 1077 (2003).

- 123. S. P. Gromov, E. N. Ushakov, O. A. Fedorova, I. I. Baskin, A. V. Buevich, E. N. Andryukhina, M. V. Alfimov, D. Johnels, U. G. Edlund, J. K. Whitesell, M. A. Fox, J. Org. Chem., 68, 6115 (2003).
- 124. O. A. Fedorova, Y. V. Fedorov, A. I. Vedernikov, S. P. Gromov, O. V. Yescheuva, M. V. Alfimov, J. Phys. Chem. A., 106, 6213 (2002).
- 125. С. П. Громов, А. И. Ведерников, Ю. В. Федоров, О. А. Федорова, Е. Н. Андрюхина, Н. Э. Шепель, Ю. А. Стреленко, Д. Джонелс, У. Эдлунд, Дж. Салтиел, М. В. Алфимов, *Изв. АН, Сер. хим.*, 1524 (2005).
- 126. Y. V. Fedorov, O. Fedorova, N. Schepel, M. Alfimov, A. M. Turek, J. Saltiel, J. Phys. Chem. A., 109, 8653 (2005).
- 127. Ю. В. Федоров, О. А. Федорова, Н. Э. Шепель, С. П. Громов, М. В. Алфимов, Л. Г. Кузьмина, Дж. Ховард, Дж. Салтиел, *Изв. АН, Сер. хим.*, 2056 (2005).
- 128. Yu. Fedorov, O. Fedorova, N. Schepel, M. Alfimov, A. M. Turek, J. Saltiel, *Photochem. Photobiol.*, 82, 1108 (2006).
- 129. V. A. Bren, A. D. Dubonosov, V. I. Minkin, T. N. Gribanova, V. P. Rybalkin, E. N. Shepelenko, A. V. Tsukanov, R. N. Borisenko, *Mol. Cryst. Liq. Cryst.*, 431, 417 (2005).
- 130. A. D. Dubonosov, V. I. Minkin, V. A. Bren, L. L. Popova, V. P. Rybalkin, E. N. Shepelenko, N. N. Tkalina, A. V. Tsukanov, *ARKIVOC*, **13**, 12 (2003).
- 131. V. A. Bren, A. D. Dubonosov, V. I. Minkin, A. V. Tsukanov, T. N. Gribanova, E. N. Shepelenko, Y. V. Revinsky, V. P. Rybalkin, J. Phys. Org. Chem., 20, 917 (2007).

Южный научный центр РАН, Ростов-на-Дону 344090 e-mail: aled@ipoc.rsu.ru Поступило 19.02.2008

^аНаучно-исследовательский институт физической и органической химии Южного федерального университета, Ростов-на-Дону 344090, Россия e-mail: dubon@ipoc.rsu.ru