А. М. Буров, Н. В. Пчелинцева, О. В. Федотова

ЭЛЕКТРОННЫЕ СПЕКТРЫ ПОГЛОЩЕНИЯ СОЛЕЙ ПИРИЛИЯ И БЕНЗОДИГИДРОХРОМЕНИЛИЯ

Впервые рассмотрены электронные спектры поглощения солей бензодигидро,, тетрагидрохроменилия и дихлорпирилия. Отмечено, что внутримолекулярный перенос заряда происходит, главным образом, между заместителем в положении 4 пирилиевого кольца и π -системой катиона в целом, а величина батохромного сдвига существенно зависит от геометрии молекулы. Показано влияние атомов хлора на вид спектров при введении их в кольцо катиона пирилия и в арильные заместители.

Ключевые слова: 1,5-дикетоны, соли бензодигидрохроменилия, хлорзамещенные соли пирилия, внутримолекулярный перенос заряда.

Соли пирилия проявляют исключительно интересные оптические свойства, что обусловлено, главным образом, строением катиона, имеющего в своем составе электроотрицательный атом кислорода. Это открывает широкие возможности по применению солей пирилия в качестве флюоресцентных материалов, фотосенсибилизаторов, органических фотопроводников и полупроводников [1].

Известно, что полосы поглощения в спектрах незамещенного катиона пирилия при λ_{max} 269 и 219 нм соответствуют $\pi \rightarrow \pi^*$ -переходам. Введение арильных заместителей в положения 2,4,6 пирилиевого кольца усложняет картину спектра интенсивными полосами поглощения в его длинноволновой части (λ_{max} 350–450 нм) [2, 3]. При этом считается, что отмеченные полосы соответствуют переходам с внутримолекулярным переносом заряда от арильного заместителя к катиону. Наибольшее влияние на эти переходы оказывает заместитель при атоме C-4 пирилиевого цикла, поскольку по симметрии отсутствуют препятствия для изменения плотности заряда на атомах π -системы и происходит накопление электронной плотности на гетероатоме [4, 5].

С целью выяснения природы указанных полос поглощения и влияния геометрии молекулы (протяженности *π*-системы и ее характера) на их параметры нами были изучены электронные спектры ряда солей пирилия, тетрагидро- и бензодигидрохроменилия.

Фторбораты 2-фенил-4-R-7,8-дигидрохроменилия 3а-с получены нами при взаимодействии пропанонилтетрагидронафталинонов 1а-с с эфиратом трехфтористого бора в различных растворителях (ледяной уксусной кислоте, уксусном ангидриде и толуоле).

1, **3–5 a** Ar = Ph, **b** Ar = 4-MeOC₆H₄; **1**, **3 c** Ar = 4-Me₂NC₆H₄; **3** X = BF₄, **4** X = ClO₄, **5a,b** X = Br; **5c** Ar = C₆H₄-N⁺HMe₂Br⁻, X = Br•5H₂O

Найдено, что в уксусном ангидриде выход фторборатов **3а-с** возрастает до 65–67% (табл. 1), что определяется акцепторными свой- ствами ацетилкатиона, способствующего отрыву гидрид-иона в соот- ветствии с общетеоретическими представлениями [6] из положения 4 гетерокольца 2,4-R-7,8-бензо-5,6-дигидрохромена, как интермедиата, в процессе гетероароматизации до соответствующего фторбората **3**. При температуре 140 °С наряду с солью **3а** образуется 2,4-дифенил-7,8-бензо-5,6-дигидрохромен (**2**) (59%), что, вероятно, связано с конкурентно протекающей легкой дегидратацией продукта полукетализации дикетона **1а** по известному механизму [7]. Выделить бензогексагидрохромен не удается, что позволяет связать солеобразование с окислительной ароматизацией последнего под действием кислорода воздуха по схеме:

Подтверждением возможности такого превращения является образование фторборатов **За,b** (до 55%) в толуоле (табл. 1) в отсутствие акцепторов гидрид-иона.

Соответствующие перхлораты **4а,b** выделены при взаимодействии дикетонов **1а,b** с хлорной кислотой в уксусной кислоте.

При действии на пропанонилтетрагидронафталиноны **1а–с** брома в ледяной уксусной кислоте синтезированы бромиды **5а,b** и дибромид 4-(4-диметиламинофенил)-2-фенил-7,8-бензо-5,6-дигидрохроменилия (**5c**). Последний, согласно данным термогравиметрического анализа, получен в виде кристаллогидрата с пятью молекулами воды, которая содержится в количестве 12% и удаляется в интервале температур 60–180 °C. Безводный дибромид **5с** неустойчив в политермическом режиме – на термогравиметрической кривой отсутствует горизонтальная площадка, свидетельствующая о постоянстве состава. В интервале температур 200– 480 °C происходит медленная убыль массы за счет деструкции вещества и удаления газообразных продуктов разложения. В указанном интервале температур на дифференциально-термической кривой отсутствуют какиелибо эффекты. При 480–810 °C на дифференциально-термической кривой отмечается значительный экзоэффект окисления свободного углерода и продуктов разложения исследуемого вещества.

Таблица 1

Дикетон	Раство- ритель	Реагент	Температура реакции, °С	Соли бензогидро- хроменилия 3 , 5	Выход, %
1a	AcOH	Et ₂ O•BF ₃	20	3 a	54
1a	Ac ₂ O	Et ₂ O•BF ₃	20	3 a	67
1a	Ac ₂ O	Et ₂ O•BF ₃	140	3 a	7*
1a	PhMe	Et ₂ O•BF ₃	110	3 a	51*
1 a	AcOH	Br ₂	118	5a	40
1b	AcOH	Et ₂ O•BF ₃	20	3b	57
1b	Ac ₂ O	Et ₂ O•BF ₃	20	3b	65
1b**	PhMe	Et ₂ O•BF ₃	110	3b	55
1b	AcOH	Br ₂	118	5b	47
1c	AcOH	Et ₂ O•BF ₃	20	3c	52
1c**	PhMe	Et ₂ O•BF ₃	110	3c	55
1c	AcOH	Br ₂	20	5c	76

Выходы продуктов взаимодействия дикетонов 1а-с с эфиратом трехфтористого бора и бромом

* Наряду с солью 3a образуется бензодигидрохромен 2 с выходом 59 и 13% соответственно.

** Соответствующие бензодигидрохромены фиксируются хроматографически.

При сравнении спектров поглощения перхлоратов 2,4-дифенил-7,8бензо-5,6-дигидрохроменилия (4а) и 2-фенил-7,8-бензо-5,6-дигидрохроменилия (6) [4], имеющего в длинноволновой части лишь одну полосу с λ_{max} 437 нм, обнаружено, что введение фенильного заместителя в положение 4 существенно не влияет на параметры указанной полосы, но при λ_{max} 356 нм появляется новая. При переходе к электронному спектру перхлората 4-(4-метоксифенил)-2-фенил-7,8-бензо-5,6-дигидрохроменилия (4b) последняя исчезает и интенсивное поглощение отмечается только при λ_{max} 430 нм. Аналогичная картина наблюдается для фторборатов 3а и 3b (табл. 2).

Таким образом, полосы поглощения при λ_{max} 356–358 нм в солях **3a**, **4a** можно интерпретировать как полосы внутримолекулярного переноса заряда от π -системы фенила в положении 4 на катион. Отсутствие таковых в спектрах соединений **3b**, **4b** свидетельствует о некопланарности метоксифенильного фрагмента относительно плоскости кольца катиона. Вид электронных спектров для солей **3a,b**, **4a,b** и **5a,b** с различными анионами указывает на малое влияние противоиона.

Теоретические расчеты полос поглощения полуэмпирическим методом AM1 для исследуемых соединений подтверждают обнаруженные нами закономерности. Отмечено, что разрешенная полоса при λ_{max} 374 нм (интенсивность 0.671) в газовой фазе для соединения **3b** в AcOH и CH₂Cl₂ исчезает, видимо, в силу влияния растворителя.

Отличительной особенностью спектров поглощения дифторбората **3с** и дибромида **5с** является наличие двух полос поглощения в длинноволновой области (569 и 416 нм соответственно), которые принадлежат к полосам переноса заряда и отражают, на наш взгляд, их строение как бикатионов.

Известно, что перхлорат 2,6-дифенилпирилия имеет в длинноволновой области спектра лишь одну полосу при λ_{max} 398 нм [1]. Сравнение спектров солей бензодигидрохроменилия **3а,b**, **4а,b** с таковыми для 2,4,6-трифенилпирилия **7а** (λ_{max} 416, 362 нм) и 4-(4-метоксифенил)-2,6-дифенилпирилия (**7b**) [1] позволяет проследить аналогичное стерическое влияние метоксифенильного заместителя при атоме C-4 (λ_{max} 422 нм).

В записанных нами спектрах перхлоратов 2,4-дифенил- (8а) и 4-(4метоксифенил)-2-фенил-5,6,7,8-тетрагидрохроменилия (8b) длинноволновые полосы наблюдаются при 365–370 нм, но в спектре последнего появляется новая полоса при 416 нм. Принимая во внимание, что в спектре перхлората 2-фенил-5,6,7,8-тетрагидрохроменилия имеется лишь одна полоса при 376 нм [8], полосу в низкочастотной части спектра соли 8b можно отнести к внутримолекулярному переносу заряда заместителя при атоме С-4, отсутствие таковой в спектре 8a предполагает некопланарность фенильного заместителя в положении 4. Таким образом, введение в гетеросистему алициклического фрагмента изменяет геометрию молекулы и оказывает существенное влияние на вид спектров.

Таблица 2

	•	•				
Соеди-	CH_2Cl_2		АсОН		Квантово-химический расчет	
нение	λ, нм	ОП, А	λ, нм	ОП, А	λ, нм	ОП, А
3a	437 358 291	1.458 1.001 0.897	430 347 287	1.001 0.599 0.560	402 344 288	0.634 0.653 0.292
3b	233 443 287 236	1.120 1.776 0.990 1.229	235 425 285 238	1.083 0.455 1.068	239 397 374 285	0.109 0.657 0.671 0.350
3c	566 413 293 247	1.019 0.495 0.662 1.503	_	_	429 306 257	0.169 0.663 0.503 0.123
4a	434 356	0.695 1.200	431 355	0.725	434 356	0.695 1.200
40 5a	430 438	2.525 0.905	427	2.130	- 438	- 0.905
	356 292 232	0.687 0.978 1.755	_	_	356 292 232	0.687 0.978 1.755
5b	435 288 236	1.031 0.479 0.555	_	_	435 288 236	1.031 0.479 0.555
5c	569 416 295 240	1.020 0.557 0.756 1.480	554 412 287 236	1.017 0.705 0.930 1.615	569 416 295 240	1.020 0.557 0.756 1.480
6	437 269 219	1.625	_	_	405 296 250	0.675 0.477 0.237
8a	365 256	1.738 0.845	360 250	1.913 1.088	372 333 266	0.816 0.359 0.314
8b	416 370 258	1.413 1.423 1.206	395 365 252	1.137 1.286 0.964	392 344 262	0.876 0.394 0.296
10a	409	0.226	397	0.255	408 377	0.532 0.429
10b	467 374 320	0.478 0.280 0.495	453 359 305	0.323 0.289 0.474	415 376 327	0.515 0.540 0.179
10c	430 380 300	0.517 0.429 0.366	422 360	0.202 0.233	422 382 332	0.607 0.456 0.230
10d	420 347	0.111 0.188	357	0.342	428 399	0.648 0.423

Электронные спектры поглощения* солей За-с, 4a,b, 5а-с, 6, 8a,b, 10а-d

* λ – длина волны, ОП – оптическая плотность.

** Для соединений **4а,b** и **5а-с** рассчитанные квантово-химическим методом длины волн солей с различными анионами одинаковы.

При действии хлорной кислоты на дихлорпентендионы **9а–d** [9] в смеси уксусной кислоты и уксусного ангидрида (1:1) выделены хлорзамещенные соли пирилия **10а–d** с выходом 74–77%:

9,10 a Ar = Ar¹ = Ph, b Ar = Ph, Ar¹ = 4-ClC₆H₄, c Ar = 4-ClC₆H₄, Ar¹ = Ph, d Ar = Ph, Ar¹ = 4-MeOC₆H₄

Показано, что введение хлора в пирилиевый цикл изменяет характер спектра. Длинноволновая полоса при 409 нм в перхлорате 3,5-дихлор-2,4,6-трифенилпирилия (**10a**) сохраняет свое положение, но исчезает характерная для незамещенного аналога **7a** полоса при 362 нм. Наличие ее в газовой фазе, согласно квантово-химическим расчетам (377 нм), свидетельствует о некопланарности фенильного заместителя при атоме C-4 относительно плоскости катиона вследствие стерического влияния атомов хлора, что исключает внутримолекулярный перенос заряда с заместителя на катион.

Обратная картина наблюдается в спектрах перхлоратов 4-(4-метоксифенил)-2,6-дифенилпирилия (7b) и 3,5-дихлор-4-(4-метоксифенил)-2,6дифенилпирилия (10d). Сохранение длинноволновой полосы (420 нм) и появление новой при 347 нм в спектре соли 10d свидетельствуют в пользу существования внутримолекулярного переноса заряда с заместителя при атоме C-4 на катион. При этом стоит отметить вклад атомов хлора в сопряжение, так как при использовании в качестве растворителя ледяной уксусной кислоты в спектре исчезает наблюдаемая в хлористом метилене длинноволновая полоса, относящаяся к $n \rightarrow \pi$ -переходу.

Введение атома хлора в заместители в положениях 2, 6 или 4 в солях **10b,c** усложняет спектр появлением новых полос в их длинноволновых частях (табл. 2). При этом, в случае соединения **10c**, при переходе к уксусной кислоте также можно наблюдать низкоэнергетический переход $n \rightarrow \pi$ -типа (исчезновение полосы при 300 нм).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Электронные спектры поглощения соединений регистрировали на спектрометре АКВИЛОН СФ 201, $c = 5 \cdot 10^{-4}$ моль/л. ИК спектры получали на спектрофотометре Specord M-80 в таблетках КВг, спектры ЯМР ¹Н – на приборе Bruker AM 300 (300 МГц) в CDCl₃, внутренний стандарт ТМС. Контроль за ходом реакций и индивидуальностью соединений осуществляли методом TCX на пластинках Silufol UV-254, элюент гексан–эфир–ацетон, 3:1:1. В качестве стандарта при выполнении расчетных задач полуэмпирическим методом AM1 использовали данные PCA диэдральных углов поворота заместителей к плоскости катиона в перхлорате 2,4,6-трифенилпирилия: α (C-2)=10.4, γ (C-4)=18, α '(C-6) = 2.3°

[10]. Дифференциально-термическую кривую записывали на приборе Derivatograph system: F. Paulik, J. Paulik, L. Erdey.

Исходные дикетоны **1а–с** получены по известной методике [11], дихлорпентендионы **9а–с** по способу [12], **9d** – по [13]. Фторбораты **3а–с** и бромиды **5а,b** синтезированы в АсОН по методике [11, 14], перхлораты **4а,b**, **8а,b**, **10а–с** – по [8, 9, 15].

Фторбораты 4-Ar-2-фенил-7,8-бензо-5,6-дигидрохроменилия 3а-с. А. Получают в АсОН. Соединение 3а, выход 54%, т. пл. 265–267 °С (переосаждение в *i*-Pr₂O из Me₂CO) [14], соединение 3b, выход 57%, т. пл. 246–248 °С (переосаждение в *i*-Pr₂O из Me₂CO) [11].

Соединение 3с, выход 52%, т. пл. 222–223 °С (переосаждение в *i*-Pr₂O из Me₂CO). Спектр ЯМР ¹H, δ , м. д.: 2.1 (4H, c, 2CH₂); 2.8 (6H, c, N(CH₃)₂); 6.6 (1H, c, H-3); 7.0–7.9 (13H, м, H-2',3',4',5',6' + H-2",3",5",6" + H-11,12,13,14). Найдено, %: С 59.02; H 4.76; N 2.48. С₂₇H₂₄BF₄NO. Вычислено, %: С 58.63; H 4.56; N 2.53.

Б. К раствору 28 ммоль дикетонов **1а,b** в 40 мл Ac₂O при перемешивании добавляют по каплям 42 ммоль (5.4 мл) Et_2O ·BF₃. Через 2 сут осадок отфильтровывают, промывают *i*-Pr₂O, сушат. Получают 8.04 г (67%) соединения **3а**, т. пл. 265–267 °C (переосаждение в *i*-Pr₂O из Me₂CO) [14], и 8.00 г (65%) соединения **3b**, т. пл. 246–248 °C (переосаждение в *i*-Pr₂O из Me₂CO) [11].

В. К раствору 2.8 ммоль дикетонов **1а–с** в 10 мл толуола добавляют по каплям 4.2 ммоль (0.5 мл) Et₂O·BF₃ и кипятят 3 ч. Соли осаждают эфиром, отфильтровывают, промывают эфиром, сушат. Из эфирного маточного раствора выделяют 0.12 г (13%) соединения **2**, т. пл. 103–104 °С (из спирта). ИК спектр (тонкий слой), v, см⁻¹: 1247 (С–О–С). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 2.22 (2H, м, H-5); 2.69 (2H, м, H-6); 4.16 (1H, д, $J_{3,4} = 13.2$, H-4); 5.48 (1H, д, $J_{3,4} = 13.2$, H-3); 7.25–7.90 (14H, м, H–Аг). Найдено, %: С 88.07; Н 6.21. С₂₅Н₂₀О. Вычислено, %: С 88.29; Н 5.95. Соль **За**, выход 0.6 г (51%), **3b** 0.48 г (40%); **3c** 0.64 г (55%).

Дибромид 4-(4-N,N-диметиламинофенил)-2-фенил-7,8-бензо-5,6-дигидрохроменилия (5с). К кипящему раствору 7.58 г (191 ммоль) дикетона 1с в 40 мл АсОН добавляют по каплям в течение 30 мин раствор 4.5 г (28 ммоль, 1.5 мл) Br_2 в 20 мл АсОН. Растворитель отгоняют, смесь обрабатывают кипящим этанолом, упаривают, кристаллы отфильтровывают, сушат. Получают 8.3 г (76%) дибромида 5с, т. пл. 239–240 °С (переосаждение эфиром из хлороформа). По данным термогравиметрического анализа, соединение выделяют из реакционной смеси в виде пентагидрата. ИК спектр (тонкий слой), v, см⁻¹: 1570 (катион пирилия), 1590 (Ar), 3400 (H₂O). Найдено, %: C 51.75; H 5.56; Br 25.03; N 2.25. $C_{27}H_{24}Br_2NO_6$. Вычислено, %: C 51.51; H 5.56; Br 25.43; N 2.23.

Перхлорат 4-(4-метоксифенил)-2,6-дифенил-3,5-дихлорпирилия (10d). Раствор 1.06 г (2.5 ммоль) дикетона 9d в 15 мл ледяной AcOH, 5 мл Ac₂O и 0.5 мл (7.5 ммоль, 0.75 г) 70% хлорной кислоты нагревают 1 ч при 100 °C, охлаждают, разбавляют 150 мл эфира. Кристаллический осадок отфильтровывают, промывают эфиром, сушат. Получают 0.89 г (70%) перхлората 10d, т. пл. 230–232 °C (из AcOH). ИК спектр (тонкий слой), v, см⁻¹: 1610 (катион пирилия), 1590 (Ar), 1150 (С–О–С), 1070 (ClO₄), 650 (С–Сl). Для анализа перхлорат 10d превращают в соответствующий тетрахлорферрат. Найдено, %: С 48.10; Н 2.61; Cl 35.09. С₂₄H₁₇Cl₆FeO₂. Вычислено, %: С 47.61; H 2.76; Cl 35.14.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 06-03-32667а).

СПИСОК ЛИТЕРАТУРЫ

- A. Mistr, M. Vavra, J. Skoupy, R. Zahradnik, Collect. Czech. Chem. Commun., 37, 1520 (1972).
- 2. J. R. Wilt, J. A. Reynolds, J. A. Van Allan, Tetrahedron, 29, 795 (1973).
- 3. Z. Joshida, T. Sugimoto, S. Toneda, Tetrahedron, 28, 5873 (1972).
- 4. М. И. Княжанский, В. П. Карамзин, Е. П. Олехнович, Г. Н. Дорофеенко, *Журн. прикл. спектроскопии*, **23**, 328 (1975).
- 5. В. П. Карамзин, М. И. Княжанский, Е. П. Олехнович, Г. Н. Дорофеенко, *Журн. прикл. спектроскопии*, **22**, 234 (1975).
- 6. H. Burton, P. F. G. Praill, J. Chem. Soc., 120 (1960).
- В. Г. Харченко, С. Н. Чалая, Л. Г. Чиченкова, А. С. Татаринов, ЖОрХ, 11, 444 (1975).
- 8. C. F. H. Allen, H. R. Sallans, Canad. J. Res., 9, 574 (1933).
- 9. Н. В. Пчелинцева, С. Н. Чалая, В. Г. Харченко, *ЖОрХ*, 26, 1904 (1990).
- 10. T. Tamamura, T. Yamare, N. Yasuoka, N. Kasai, Bull. Chem. Soc. Jpn., 47, 832 (1974).
- 11. Л. К. Куликова, В. Г. Харченко, А. П. Кривенько, О. В. Федотова, Г. К. Кравцова, *Хим.-фарм. журн.*, **16**, 545 (1982).
- 12. Н. В. Пчелинцева, С. Н. Чалая, В. Г. Харченко, ЖОрХ, 26, 1854 (1990).
- 13. Н. В. Пчелинцева, Д. А. Цимбаленко, О. В. Федотова, ЖОрХ, 43, 1292 (2007).
- 14. О. В. Федотова, Л. К. Куликова, Б. А. Шендеров, А. П. Кривенько, В. Г. Харченко, Г. М. Шуб, *Хим.-фарм. журн.*, **11**, № 10, 72 (1977).
- 15. Н. В. Пчелинцева, Я. Г. Колеватова, О. В. Федотова, *Тез. докл. XVIII* Менделеевского съезда по общей и прикладной химии, 2007, т. 5, с. 216.
- 16. Д. А. Цимбаленко, О. В. Федотова, В. Г. Харченко, *ЖОрХ*, **35**, 1705 (1999).

Саратовский государственный университет им. Н. Г. Чернышевского, Саратов 410012, Россия e-mail: Burov_AM@rambler.ru Поступило 16.05.2008