И. В. Украинец, А. А. Ткач, Л. А. Гриневич

4-ГИДРОКСИХИНОЛОНЫ-2 148*. СИНТЕЗ И ПРОТИВОТУБЕРКУЛЕЗНАЯ АКТИВНОСТЬ N-R-АМИДОВ 1-ГИДРОКСИ-3-ОКСО-6,7-ДИГИДРО-3H,5H-ПИРИДО-[3,2,1-*ij*]ХИНОЛИН-2-КАРБОНОВОЙ КИСЛОТЫ

Предложен улучшенный метод получения этилового эфира 1-гидрокси-3-оксо-6,7-дигидро-3H,5H-пиридо[3,2,1-*ij*]хинолин-2-карбоновой кислоты, на основе которого осуществлен синтез серии гетариламидов. Проведен сравнительный анализ противотуберкулезных свойств синтезированных соединений с активностью изученных ранее структурных аналогов – 4-гидрокси-2-оксо-1,2-дигидрохинолин-3- и 1-гидрокси-3-оксо-5,6-дигидро-3H-пирроло[3,2,1-*ij*]хинолин-2-карбоксамидов.

Ключевые слова: гетариламиды, 4-гидрокси-2-оксохинолин-3-карбоновые кислоты, амидирование, противотуберкулезная активность, PCA.

Главной проблемой в лечении туберкулеза является быстрое развитие устойчивости возбудителя этого опасного инфекционного заболевания к антимикобактериальным препаратам [2, 3]. Согласно данным Всемирной организации здравоохранения, множественно лекарственно-устойчивый туберкулез сегодня диагностируется в среднем у 7% пациентов, что может вскоре серьезно дестабилизировать эпидемиологическую ситуацию в мире и перерасти в глобальную угрозу человечеству [4]. Помимо совершенствования профилактических и диагностических мероприятий, в настоящее время усиленно развиваются три исследовательских направления, призванные если не снять с повестки дня проблему полирезистентных штаммов, то хотя бы снизить ее остроту. Первое из них предполагает разработку строго контролируемых схем интенсивного лечения короткими курсами химиотерапии с использованием комбинаций уже имеющихся фармацевтических средств, что существенно отдаляет развитие устойчивости к ним [4, 5]. Второе направление объединяет генетические исследования по расшифровке последовательности нуклеотидов в геноме Mycobacterium tuberculosis с тем, чтобы выявить гены, ответственные за проходящие в клетках мутации и, следовательно, задействованные в механизмах выработки сопротивления антибиотикам [6, 7]. В будущем такой подход, несомненно, позволит создавать принципиально новые средства и методы борьбы с туберкулезом. Однако при современном уровне развития науки пока не утратило своего значения и третье направление, базирующееся в основном на эмпирическом отборе структуры-лидера из множества синтезированных, а затем прошедших различные

* Сообщение 147 см. [1].

уровни фармакологических испытаний соединений. Объясняется это, прежде всего, тем, что предсказать *а priori* многие важнейшие характеристики будущего лекарства почти невозможно, им то или иное вещество может стать только лишь после подробного изучения обширного комплекса фактических свойств. Фрагментом именно такого исследования и является данное сообщение.

Соединения с высокой антимикобактериальной активностью были обнаружены нами ранее среди гетериламидов 1-гидрокси-3-оксо-5,6дигидро-3Н-пирроло[3,2,1-*ij*]хинолин-2-карбоновой кислоты [8]. Отсюда интересной представляется замена анеллированного с хинолоновым циклом тригидропиррольного ядра тетрагидропиридиновым. В отличие от совершенно плоской пирролохинолоновой системы [9], формирующие пиридохинолоновый скелет атомы вряд ли будут расположены в одной плоскости. Поэтому такая модификация способна дать чрезвычайно полезную информацию о том, участвует ли подвергающаяся структурному изменению часть молекулы во взаимодействии с биологической мишенью.

3 а R = пиридин-4-ил, b R = пиридин-3-ил, c R = пиридин-2-ил, d R = 3-гидроксипиридин-2-ил, e R = 3-метилпиридин-2-ил, f R = 4-метилпиридин-2-ил, g R = 5-метилпиридин-2-ил, h R = 6-метилпиридин-2-ил, i R = пиримидин-2-ил, j R = тиазол-2-ил, k R = 4-метилтиазол-2-ил, l R = 5-метилтиазол-2-ил, m R = 4-этоксикарбонилметилтиазол-2-ил, n R = 4-(адамантил-1)тиазол-2-ил, o R = 4-фенилтиазол-2-ил, p R = 4-(4-хлорфенил)тиазол-2-ил, q R = 4-(4-бромфенил)тиазол-2-ил, r R = 5-метил-1,3,4-тиадиазол-2-ил, s R = 5-этил-1,3,4-тиадиазол-2-ил, t R = 5-пропил-1,3,4-тиадиазол-2-ил, v R = 6-фторбензтиазол-2-ил, x R = 4-хлорбензтиазол-2-ил, y R = 6-фторбензтиазол-2-ил, x R = 4-хлорбензтиазол-2-ил, y R = 6-фторбензтиазол-2-ил, x R = 5-метил-6-метилбензтиазол-2-ил, z R = 6-метилбензтиазол-2-ил, z R = 6-метилбензтиазол-2-ил, z R = 5-метилбензтиазол-2-ил, z R = 5-метилбензтиазол-

Таблица 1

Соеди-	Брутто-	E BE	Найдено, 9 ычислено,	Т. пл., °С	Вы- ход,	
нение	формула	С	Н	Ν	-	%
1	2	3	4	5	6	7
3 a	$C_{18}H_{15}N_3O_3$	<u>67.37</u> 67.28	<u>4.79</u> 4.71	<u>13.00</u> 13.08	183–185	93
3b	$C_{18}H_{15}N_3O_3$	<u>67.34</u> 67.28	<u>4.76</u> 4.71	<u>13.12</u> 13.08	169–171	94
3c	$C_{18}H_{15}N_3O_3$	<u>67.25</u> 67.28	<u>4.66</u> 4.71	<u>13.02</u> 13.08	196–198	89
3d	$C_{18}H_{15}N_3O_4$	<u>64.01</u> 64.09	<u>4.39</u> 4.48	<u>12.53</u> 12.46	191–193	80
3e	$C_{19}H_{17}N_3O_3$	<u>68.15</u> 68.05	<u>5.17</u> 5.11	<u>12.61</u> 12.53	164–166	81
3f	$C_{19}H_{17}N_3O_3$	<u>68.13</u> 68.05	<u>5.18</u> 5.11	<u>12.64</u> 12.53	215–217	92
3g	$C_{19}H_{17}N_3O_3$	<u>68.04</u> 68.05	<u>5.05</u> 5.11	<u>12.46</u> 12.53	226–228	95
3h	$C_{19}H_{17}N_3O_3$	<u>68.10</u> 68.05	<u>5.15</u> 5.11	<u>12.44</u> 12.53	267–269	95
3i	$C_{17}H_{14}N_4O_3$	<u>63.26</u> 63.35	<u>4.30</u> 4.38	<u>17.29</u> 17.38	217–219	82
3ј	$C_{16}H_{13}N_3O_3S$	<u>58.77</u> 58.70	<u>4.09</u> 4.00	<u>12.95</u> 12.84	203–205	90
3k	$C_{17}H_{15}N_3O_3S$	<u>59.74</u> 59.81	<u>4.48</u> 4.43	<u>12.22</u> 12.31	225–227	88
31	$C_{17}H_{15}N_3O_3S$	<u>59.73</u> 59.81	<u>4.39</u> 4.43	<u>12.36</u> 12.31	230–232	89
3m	$C_{20}H_{19}N_3O_5S$	<u>58.15</u> 58.10	<u>4.70</u> 4.63	<u>10.07</u> 10.16	184–186	85
3n	$C_{26}H_{27}N_3O_3S$	<u>67.58</u> 67.66	<u>5.81</u> 5.90	<u>9.03</u> 9.10	288–290	91
30	$C_{22}H_{17}N_3O_3S$	<u>65.55</u> 65.49	<u>4.20</u> 4.25	<u>10.48</u> 10.41	241–243	94
3р	C ₂₂ H ₁₆ ClN ₃ O ₃ S	<u>60.40</u> 60.34	<u>3.77</u> 3.68	<u>9.52</u> 9.60	267–269	90
3q	C ₂₂ H ₁₆ BrN ₃ O ₃ S	<u>54.71</u> 54.78	<u>3.26</u> 3.34	<u>8.65</u> 8.71	286–288	95
3r	$C_{16}H_{14}N_4O_3S$	<u>56.16</u> 56.13	<u>4.04</u> 4.12	<u>16.30</u> 16.36	210–212	84

Характеристики N-R-амидов 1-гидрокси-3-оксо-6,7-дигидро-3H,5H-пиридо[3,2,1-*ij*]хинолин-2-карбоновой кислоты 3–5

Окончание таблицы 1

1191

1	2	3	4	5	6	7
3s	$C_{17}H_{16}N_4O_3S$	<u>57.35</u> 57.29	<u>4.60</u> 4.53	<u>15.79</u> 15.72	177–179	82
3t	$C_{18}H_{18}N_4O_3S$	<u>58.30</u> 58.36	<u>4.97</u> 4.90	<u>15.03</u> 15.12	173–175	86
3u	$C_{18}H_{18}N_4O_3S$	<u>58.45</u> 58.36	<u>4.88</u> 4.90	<u>15.17</u> 15.12	195–197	88
3v	$C_{20}H_{15}N_3O_3S$	<u>63.60</u> 63.65	<u>4.11</u> 4.01	<u>11.09</u> 11.13	294–296	95
3w	$C_{20}H_{14}FN_3O_3S$	<u>60.82</u> 60.75	<u>3.65</u> 3.57	<u>10.71</u> 10.63	329–331	90
3x	$\mathrm{C_{20}H_{14}ClN_{3}O_{3}S}$	<u>58.38</u> 58.32	<u>3.36</u> 3.43	$\frac{10.27}{10.20}$	345–347	89
3у	$\mathrm{C_{20}H_{14}BrN_{3}O_{3}S}$	<u>52.55</u> 52.64	<u>3.03</u> 3.09	<u>9.26</u> 9.21	303-305	96
3z	$C_{21}H_{17}N_3O_3S$	<u>64.40</u> 64.44	<u>4.29</u> 4.38	<u>10.65</u> 10.73	296–298	92
4	$C_{27}H_{21}N_3O_3S$	<u>69.42</u> 69.36	<u>4.60</u> 4.53	<u>9.05</u> 8.99	277–279	90
5a	$\mathrm{C}_{18}\mathrm{H}_{21}\mathrm{N}_{3}\mathrm{O}_{3}\text{\cdot}\mathrm{HCl}$	<u>59.34</u> 59.42	<u>6.00</u> 6.09	<u>11.64</u> 11.55	261–263	80
5b	C ₂₄ H ₂₅ N ₃ O ₃ ·HCl	<u>65.56</u> 65.52	<u>5.90</u> 5.96	<u>9.47</u> 9.55	236–238	77
5c	$C_{30}H_{29}N_3O_3\cdot HCl$	<u>69.76</u> 69.83	<u>5.77</u> 5.86	<u>8.03</u> 8.14	217–219	83

Синтез и очистка исходного этилового эфира 1-гидрокси-3-оксо-6,7дигидро-3H,5H-пиридо[3,2,1-*ij*]хинолин-2-карбоновой кислоты (1) осуществлены взаимодействием 1,2,3,4-тетрагидрохинолина (2) с триэтилметантрикарбоксилатом при эквимолярном соотношении реагентов по известной методике [10]. Благодаря дополнительному метиленовому звену, конформационная подвижность реакционных центров в тетрагидрохинолине безусловно значительно выше, чем в индолине. Значит и стерических препятствий для ацилирования и, особенно, последующей внутримолекулярной циклизации должно быть меньше. Действительно, пиридохинолиновый эфир 1 образуется очень легко и с высоким выходом, причем никаких аномалий, наблюдавшихся в реакции триэтилметантрикарбоксилата с индолином [11], в данном случае не отмечено.

В присутствии небольшого количества ДМФА, обеспечивающего лучшее смешивание реагентов и предотвращающего местные перегревы реакционной смеси, эфир 1 при 160 °С в течение нескольких минут амидируется первичными и вторичными аминами, образуя соответствующие N-R-амиды 1-гидрокси-3-оксо-6,7-дигидро-3H,5H-пиридо[3,2,1-*ij*]-хинолин-2-карбоновой кислоты **3–5** с хорошими выходами (табл. 1).

Все полученные N-R-амиды 3–5 представляют собой бесцветные кристаллические вещества с четкими температурами плавления, за 1192

исключением гидрохлоридов **5а–с**, практически не растворимые в воде. В целом спектры ЯМР ¹Н N-R-амидов **3–5** весьма схожи со спектрами соответствующих производных 1-гидрокси-3-оксо-5,6-дигидро-3H-пирроло[3,2,1-*ij*]хинолин-2-карбоновой кислоты [8]. Наблюдается лишь одно существенное отличие – квинтет интенсивностью 2H в сильном поле (~2.0 м. д.), обусловленный протонами метиленовой группы в положении 6 пиридохинолонового ядра (табл. 2).

Проведенное на примере 4-(адамантил-1)тиазолил-2-амида **3n** рентгеноструктурное исследование (см. рисунок и табл. 3, 4) подтвердило высказанное выше предположение о том, что переход от пирролохинолонов к пиридохинолонам неизбежно вызовет конформационную перестройку молекулы.

Найдено, что в независимой части элементарной ячейки амида 3n находятся две молекулы (А и В), различающиеся некоторыми геометрическими параметрами. Как и в случае первичных амидов 1-гидрокси-3оксо-5,6-дигидро-3Н-пирроло[3,2,1-іј]хинолин-2-карбоновой кислоты [9], хинолоновый фрагмент и атомы O(1), C(10), C(12), O(2), C(13), O(3), N(2) и C(14) в обоих конформерах лежат в одной плоскости с точностью 0.03 Å. Вероятно, это обусловлено наличием двух внутримолекулярных водородных связей: О₍₂₎-H₍₂₀₎...О₍₃₎ (H...О 1.72 в А, 1.53 Å в В, О-H...О 160° в **A**, 150° в **B**) и N₍₂₎-H_(2N)...O₍₁₎ (H...O 1.89 в **A**, 1.91 Å в **B**, N-H...O 140° в А и В). Образование внутримолекулярных водородных связей приводит также к удлинению связей $O_{(1)}$ - $C_{(9)}$ до 1.245(4) в A, 1.254(5) Å в B и O₍₃₎-C₍₁₃₎ до 1.238(5) в A, 1.259(5) Å в B по сравнению с их средним значением 1.210 Å [12]. В молекуле А обнаружен укороченный внутримолекулярный контакт H_(5a)...O₍₂₎ 2.42 Å (сумма ван-дер-ваальсовых радиусов 2.46 Å [13]). В то же время, "дополнительный" атом С(11), как и ожидалось, отклоняется от среднеквадратичной плоскости, проведенной через остальные атомы цикла, на 0.51 в молекуле A и на -0.56 Å в B.

Строение молекулы амида 3n с нумерацией атомов

	Химические сдвиги, б, м. д. (Ј, Гц)								
Соеди-	1 ОН	1-OH NH (1H, c) (1H, c)		Пиридохинолиновое ядро			0		
нение	(1H, c)		H-10 (1Н, д)	H-8 (1Н, д)	Н-9 (1Н, т)	5-СН ₂ (2Н, т)	7-СН ₂ (2Н, т)	6-CH ₂ (2Н, кв)	R
3 a	15.91	12.93	7.99	7.50	7.21	4.15	3.01	2.13	8.45 (2Н, д, <i>J</i> = 6.1, Н-2',6'); 7.60 (2Н, д, <i>J</i> = 6.1, Н-3',4')
			(J = 8.0)	(J = 7.4)	(J = 7.9)	(J = 5.8)	(J = 6.0)	(J = 6.0)	
3b	16.12	12.76	7.99	7.42	7.17	4.15	3.00	2.14	8.71 (1H, μ , $J = 2.2$, H-2'); 8.29 (1H, μ , $J = 3.4$, H-6'); 8.20 (1H, μ , $J = 7.9$,
30	16.15	12.00	(J = 0.3)	(J = 7.5)	(J = 7.0)	(J = 5.0)	(J = 0.2)	(J = 3.9)	11-4), 7.27 (111, $1, 5 = 0.5, 11-5$) 2.24 (111 m $I = 4.4$ H G): 2.22 (111 m $I = 2.4$ H 2): 7.75 (111 m $I = 7.7$
50	10.15	12.00	(J = 8.0)	(J = 7.1)	(J = 7.9)	(J = 5.7)	(J = 6.2)	(J = 5.8)	(111, d, J = 4.4, 11-6), (0.22 (111, d, J = 0.4, 11-5)), (111, 1, J = 7.7), (111, 1, J = 7.7), (111, 1, J = 7.7)
3d	15.89	12.87	7.98	7.46	7.19	4.18	3.01	2.14	9.85 (1H, c, OH); 7.90 (1H, \exists , \exists , $J = 4.4 \text{ H} J = 1.8$, H-6'); 7.27 (1H, \exists , $J = 8.1$,
			(J = 8.1)	(J = 7.4)	(J = 7.5)	(J = 5.9)	(J = 6.2)	(J = 5.9)	H-4'); 7.06 (1H, T , $J = 6.6$, H-5')
3e	16.42	12.44	7.97 (J = 7.9)	7.52 (J = 7.0)	7.23 (J = 7.5)	4.16 (J = 5.7)	3.02 (J = 6.3)	2.11 (J = 6.0)	8.28 (1H, д, <i>J</i> = 4.5, H-6'); 7.67 (1H, д, <i>J</i> = 7.5, H-4'); 7.20 (1H, т, <i>J</i> = 6.0, H-5'): 2.34 (3H, с. CH ₃)
3f	16.20	12.81	7.97	7.43	7.16	4.16	3.00	2.13	8.17 (1H, μ , $J = 6.0$, H-6'); 8.05 (1H, c, H-3'); 6.90 (1H, μ , $J = 4.8$, H-5');
			(J = 8.0)	(J = 7.1)	(J = 7.8)	(J = 5.9)	(J = 6.3)	(J = 5.9)	2.42 (3H, c, CH ₃)
3g	16.27	12.78	7.99	7.42	7.16	4.18	3.01	2.14	8.15 (1H, c, H-6'); 8.12 (1H, д, <i>J</i> = 8.5, H-3'); 7.53 (1H, д. д, <i>J</i> = 8.5 и <i>J</i> = 1.8,
			(J = 8.3)	(J = 7.4)	(J = 7.9)	(J = 6.0)	(J = 6.1)	(J = 6.0)	H-4'); 2.33 (3H, c, CH ₃)
3h	16.12	12.88	См. R	7.58 (<i>J</i> = 7.4)	7.27 (<i>J</i> = 7.5)	4.14 (<i>J</i> = 5.7)	2.99 (J = 6.0)	2.08 (J = 5.8)	7.97 (2H, π , J = 8.2, H-3' + H-10); 7.74 (1H, π , J = 8.0, H-4'); 7.06 (1H, π , J = 7.6, H-5'); 2.45 (3H, c, CH ₃)
3i	16.37	13.13	7.99	7.47	7.19	4.17	3.01	2.14	8.68 (2H, д, <i>J</i> = 4.5, H-4',6'); 7.16 (1H, т, <i>J</i> = 4.9, H-5')
			(J = 8.0)	(J = 7.3)	(J = 7.7)	(J = 5.8)	(J = 6.2)	(J = 5.9)	
3ј	15.18	13.65	8.00	См. R	7.20	4.18	3.01	2.14	7.47 (2Н, м, Н-5' + Н-8); 7.11 (1Н, д, <i>J</i> = 3.7, Н-4')
	1504	10.50	(J = 8.3)		(J = 7.5)	(J = 5.7)	(J = 6.2)	(J = 5.8)	
3k	15.24	13.52	(I=8.2)	(J=7.4)	(I = 7.6)	4.18 (I=5.6)	3.01 (I=6.2)	2.14 (I = 5.7)	$6.62 (1H, c, H-5'); 2.35 (3H, c, CH_3)$
31	15.28	13 47	7 99	7 47	7 19	4 18	3.00	2 14	7 10 (1H c H-4'): 2 45 (3H c CH ₂)
51	15.20	15.17	(J = 8.2)	(J = 7.4)	(J = 7.8)	(J = 5.6)	(J = 6.0)	(J = 5.6)	,, (iii, e, ii +), 2e (511, e, e113)
3m	15.12	13.56	7.97	7.45	7.18	См. R	2.99	2.13	6.95 (1H, c, H-5'); 4.15 (4H, м, OCH ₂ + 5-CH ₂); 3.67 (2H, c, CH ₂); 1.30
			(J = 8.0)	(J = 7.1)	(J = 8.0)		(J = 6.0)	(J = 5.7)	$(3H, T, J = 7.1, CH_3)$
3n	15.30	13.53	8.01	7.48	7.20	4.19	3.02	2.15	6.57 (1H, с, H-5'); 2.08 (3H, с, γ-Н-узловые адамантана); 1.95 (6H, м, δ-

Таблица 2. Спектры ЯМР ¹Н синтезированных соединений

1194

			(J = 8.2)	(J = 7.5)	(J = 7.8)	(J = 5.9)	(J = 6.3)	(J = 5.9)	Н адамантана); 1.78 (6Н, с, β-Н адамантана)
30	15.19	13.73	8.01 (<i>J</i> = 8.0)	7.48 (<i>J</i> = 7.3)	7.21 (<i>J</i> = 7.6)	4.20 (<i>J</i> = 5.7)	3.02 (<i>J</i> = 6.2)	2.16 (<i>J</i> = 5.7)	7.90 (2H, д, <i>J</i> = 8.0, H-2,6 Ph); 7.41 (1H, с, H-5 тиазола); 7.36 (2H, т, <i>J</i> = 7.3, H-3,5 Ph); 7.26 (1H, т, <i>J</i> = 7.2, H-4 Ph)
3р	14.94	13.86	7.96 (<i>J</i> = 8.1)	7.58 (<i>J</i> = 7.2)	7.28 (<i>J</i> = 7.7)	4.15 (<i>J</i> = 5.8)	2.98 (<i>J</i> = 6.0)	2.09 (<i>J</i> = 5.5)	7.92 (2H, д, <i>J</i> = 8.8, H-3,5 Ph); 7.78 (1H, с, H-5 тиазола); 7.43 (2H, д, <i>J</i> = 8.8, H-2,6 Ph)
3q	14.92	13.90	8.00 (<i>J</i> = 8.0)	См. R	7.33 $(J = 7.5)$	4.18 (<i>J</i> = 5.7)	3.01 (<i>J</i> = 6.1)	2.10 (<i>J</i> = 5.4)	7.89 (2H, д, <i>J</i> = 8.0, H-3,5 Ph); 7.80 (1H, с, H-5 тиазола); 7.62 (2H, м, H-2,6 Ph + H-8)
3r	14.89	13.92	8.02 (<i>J</i> = 8.3)	7.51 (<i>J</i> = 7.1)	7.22 (<i>J</i> = 7.5)	4.21 (<i>J</i> = 5.8)	3.03 (<i>J</i> = 6.2)	2.16 (<i>J</i> = 5.9)	2.71 (3H, c, CH ₃)
3s	14.84	13.87	7.97 (<i>J</i> = 8.0)	7.48 (<i>J</i> = 7.1)	7.20 (<i>J</i> = 7.5)	4.18 (<i>J</i> = 5.9)	2.98 (<i>J</i> = 6.3)	2.15 (<i>J</i> = 5.8)	3.06 (2H, к, <i>J</i> = 7.8, CH ₂); 1.43 (3H, т, <i>J</i> = 7.6, CH ₃)
3t	14.87	13.92	8.01 (<i>J</i> = 8.1)	7.51 (<i>J</i> = 7.2)	7.22 (<i>J</i> = 7.5)	4.21 (<i>J</i> = 5.9)	См. R	2.16 (<i>J</i> = 5.8)	3.00 (4H, м, C <u>H</u> ₂ CH ₂ Me + CH ₂ -7); 1.84 (2H, м, C <u>H</u> ₂ Me); 1.07 (3H, т, <i>J</i> = 7.0, CH ₃)
3u	14.91	13.91	8.00 (J = 8.1)	7.52 (J = 7.0)	7.23 (J = 7.5)	4.22 (<i>J</i> = 5.9)	3.03 (J = 6.2)	2.16 (<i>J</i> = 5.6)	3.39 (1H, м, CH); 1.45 (6H, д, <i>J</i> = 7.2, 2CH ₃)
3v	14.87	14.02	См. R	7.62 (J = 6.8)	См. R	4.19 (J = 5.6)	3.02 (J = 6.1)	2.11 (<i>J</i> = 5.4)	8.01 (2H, м, H-7' + H-10); 7.83 (1H, д, <i>J</i> = 7.9, H-4'); 7.49 (1H, т, <i>J</i> = 7.7, H-6'); 7.35 (2H, м, H-5' + H-9)
3w	14.92	14.00	8.04 (<i>J</i> = 8.2)	7.61 (J = 7.0)	См. R	4.21 (J = 5.8)	3.00 (J = 6.3)	2.14 (J = 5.5)	7.80 (2Н, м, Н-7',5'); 7.27 (2Н, м, Н-4' + Н-9)
3x	14.83	13.95	См. R	7.57 (<i>J</i> = 7.1)	См. R	4.18 (<i>J</i> = 5.8)	3.03 (J = 6.2)	2.12 (J = 5.6)	8.03 (2H, м, H-7' + H-10); 7.66 (1H, д, <i>J</i> = 7.8, H-5'); 7.33 (2H, м, H-6'+H -9)
3у	14.98	14.09	8.03 (<i>J</i> = 8.0)	См. R	7.33 $(J = 7.5)$	4.18 (<i>J</i> = 5.8)	3.02 (J = 6.3)	2.11 (<i>J</i> = 6.0)	8.26 (1H, c, H-7',); 7.76 (1H, д, <i>J</i> = 8.7, H-4'); 7.62 (2H, м, H-5' + H-8)
3z	15.11	13.86	8.02 (<i>J</i> = 8.1)	7.63 (<i>J</i> = 7.0)	7.34 (<i>J</i> = 7.7)	4.22 (<i>J</i> = 5.9)	3.01 (<i>J</i> = 6.2)	2.10 (<i>J</i> = 5.8)	7.80 (1H, c, H-7'); 7.72 (1H, д, <i>J</i> = 8.3, H-4'); 7.29 (1H, д, <i>J</i> = 8.2, H-5'); 2.42 (3H, c, CH ₃)
4	16.05	12.89	8.01 (<i>J</i> = 7.9)	7.60 (<i>J</i> = 7.4)	7.31 (<i>J</i> = 7.6)	4.19 (<i>J</i> = 5.8)	3.02 (<i>J</i> = 6.2)	2.11 (<i>J</i> = 6.0)	8.10 (2H, д, <i>J</i> = 8.2, H-2,6 Ph); 7.91 (1H, д, <i>J</i> = 7.9, H-4"); 7.87 (3H, м, H- 3,5 Ph + H-7"); 7.35 (1H, д, <i>J</i> = 8.2, H-5"); 2.44 (3H, с, CH ₃)
5a	См. К	-	7.86 (<i>J</i> = 8.2)	7.31 (<i>J</i> = 7.0)	7.08 (<i>J</i> = 7.5)	4.04 (<i>J</i> = 5.7)	2.97 (<i>J</i> = 6.0)	2.08 (<i>J</i> = 5.3)	11.10 (2H, уш. с, OH + HN ⁺); 3.23 (8H, уш. с, 4CH ₂ пиперазина); 2.82 (3H, с, CH ₃)
5b	См. R	-	7.85 (<i>J</i> = 8.0)	7.32 (<i>J</i> = 7.2)	7.07 (<i>J</i> = 7.7)	4.05 (<i>J</i> = 5.9)	2.97 (<i>J</i> = 6.1)	2.07 (<i>J</i> = 6.0)	11.56 (2H, уш. с, OH + HN ⁺); 7.74 (2H, д, $J = 7.0$, H-2,6 Ph); 7.40 (3H, м, H-3,4,5 Ph); 4.33 (2H, с, C <u>H</u> ₂ Ph); 3.28 (8H, уш. с, 4CH ₂ пиперазина)
5c	12.50	11.14 (HN ⁺)	См. R	См. R	7.15 (<i>J</i> = 7.6)	4.00 (<i>J</i> = 5.8)	2.93 (<i>J</i> = 6.2)	1.98 (<i>J</i> = 5.9)	7.94–7.28 (12H, м, H-10,8 + 2Ph); 5.61 (1H, с, С <u>Н</u> Рh ₂); 3.24 (8H, уш. с, 4CH ₂ пиперазина)

Длины связей (*l*) в структуре амида 3n

Связь	l, Å	Связь	l, \AA
S _(1A) -C _(14A)	1.706(5)	S _(1A) -C _(16A)	1.727(5)
$N_{(1A)}-C_{(1A)}$	1.370(4)	N _(1A) -C _(9A)	1.391(4)
N _(1A) -C _(10A)	1.462(5)	N _(2A) -C _(13A)	1.367(5)
N _(2A) -C _(14A)	1.392(5)	N _(3A) -C _(14A)	1.285(5)
N _(3A) -C _(15A)	1.386(5)	O _(1A) –C _(9A)	1.246(4)
O _(2A) -C _(7A)	1.327(5)	O _(3A) -C _(13A)	1.238(5)
$C_{(1A)} - C_{(6A)}$	1.393(5)	C _(1A) -C _(2A)	1.396(5)
C _(2A) -C _(3A)	1.372(6)	$C_{(2A)} - C_{(12A)}$	1.492(6)
C _(3A) -C _(4A)	1.402(7)	C _(4A) -C _(5A)	1.346(6)
C(5A)-C(6A)	1.410(5)	C _(6A) -C _(7A)	1.437(5)
C _(7A) -C _(8A)	1.403(5)	C _(8A) -C _(9A)	1.458(5)
$C_{(8A)} - C_{(13A)}$	1.487(6)	$C_{(10A)} - C_{(11A)}$	1.482(7)
C _(11A) -C _(12A)	1.514(7)	$C_{(15A)} - C_{(16A)}$	1.381(6)
C _(15A) -C _(17A)	1.512(5)	$C_{(17A)} - C_{(18A)}$	1.510(6)
C _(17A) -C _(24A)	1.536(6)	C _(17A) -C _(22A)	1.556(5)
C _(18A) -C _(19A)	1.517(6)	C _(19A) -C _(20A)	1.520(7)
C(19A)-C(26A)	1.543(7)	C _(20A) -C _(21A)	1.525(6)
C _(21A) -C _(23A)	1.513(6)	C _(21A) -C _(22A)	1.535(6)
C(23A)-C(25A)	1.527(6)	C _(24A) -C _(25A)	1.532(6)
C(25A)-C(26A)	1.521(7)	$S_{(1B)} - C_{(16B)}$	1.710(4)
$S_{(1B)} - C_{(14B)}$	1.726(4)	N _(1B) -C _(9B)	1.369(6)
N _(1B) -C _(1B)	1.423(5)	N _(1B) -C _(10B)	1.491(5)
N _(2B) -C _(13B)	1.319(5)	N _(2B) -C _(14B)	1.389(5)
N _(3B) -C _(14B)	1.298(5)	N _(3B) -C _(15B)	1.397(5)
O _(1B) -C _(9B)	1.254(5)	O _(2B) –C _(7B)	1.323(5)
O _(3B) -C _(13B)	1.260(5)	C _(1B) -C _(6B)	1.400(6)
C _(1B) -C _(2B)	1.428(6)	C _(2B) -C _(3B)	1.398(6)
C _(2B) -C _(12B)	1.476(6)	C _(3B) -C _(4B)	1.364(6)
C _(4B) -C _(5B)	1.370(6)	C _(5B) -C _(6B)	1.408(6)
C _(6B) -C _(7B)	1.416(6)	C _(7B) -C _(8B)	1.376(5)
C _(8B) -C _(9B)	1.435(6)	C _(8B) -C _(13B)	1.465(6)
$C_{(10B)} - C_{(11B)}$	1.466(7)	$C_{(11B)} - C_{(12B)}$	1.455(7)
$C_{(15B)} - C_{(16B)}$	1.347(6)	$C_{(15B)} - C_{(17B)}$	1.492(6)
C _(17B) -C _(22B)	1.525(5)	C _(17B) -C _(24B)	1.542(6)
C _(17B) -C _(18B)	1.558(5)	C _(18B) -C _(19B)	1.525(6)
C _(19B) -C _(20B)	1.517(6)	C _(19B) -C _(26B)	1.522(7)
C _(20B) -C _(21B)	1.519(6)	C _(21B) -C _(23B)	1.540(6)
C _(21B) -C _(22B)	1.543(5)	C _(23B) -C _(25B)	1.496(6)
C _(24B) -C _(25B)	1.568(6)	C _(25B) -C _(26B)	1.515(8)

В результате аннелированное с хинолоновым циклом тетрагидропиридиновое кольцо приобретает конформацию *софы* (параметры складчатости [14]: S = 0.58, $\theta = 39.6^{\circ}$, $\Psi = 7.3^{\circ}$ для **A** и S = 0.68, $\theta = 36.1^{\circ}$, $\Psi = 1.9^{\circ}$ для **B**). При этом возникает укороченный внутримолекулярный Таблица 4

Угол	ω, град.	Угол	ω, град.
1	2	3	4
$C_{(14A)}$ - $S_{(1A)}$ - $C_{(16A)}$	89.3(2)	C _(1A) -N _(1A) -C _(9A)	123.4(3)
C _(1A) -N _(1A) -C _(10A)	120.2(3)	C _(9A) -N _(1A) -C _(10A)	116.4(3)
$C_{(13A)} - N_{(2A)} - C_{(14A)}$	122.8(4)	$C_{(14A)} - N_{(3A)} - C_{(15A)}$	110.5(3)
$N_{(1A)} - C_{(1A)} - C_{(6A)}$	120.7(3)	$N_{(1A)}-C_{(1A)}-C_{(2A)}$	122.9(3)
$C_{(6A)} - C_{(1A)} - C_{(2A)}$	116.4(3)	$C_{(3A)} - C_{(2A)} - C_{(1A)}$	120.2(4)
$C_{(3A)} - C_{(2A)} - C_{(12A)}$	119.3(4)	$C_{(1A)} - C_{(2A)} - C_{(12A)}$	120.5(4)
$C_{(2A)} - C_{(3A)} - C_{(4A)}$	122.1(4)	$C_{(5A)} - C_{(4A)} - C_{(3A)}$	119.1(4)
$C_{(4A)}$ - $C_{(5A)}$ - $C_{(6A)}$	118.9(4)	$C_{(1A)}$ - $C_{(6A)}$ - $C_{(5A)}$	123.1(4)
$C_{(1A)} - C_{(6A)} - C_{(7A)}$	118.6(3)	C _(5A) -C _(6A) -C _(7A)	118.3(4)
$O_{(2A)} - C_{(7A)} - C_{(8A)}$	120.8(4)	$O_{(2A)} - C_{(7A)} - C_{(6A)}$	118.4(4)
$C_{(8A)} - C_{(7A)} - C_{(6A)}$	120.8(4)	$C_{(7A)}$ - $C_{(8A)}$ - $C_{(9A)}$	119.1(4)
$C_{(7A)} - C_{(8A)} - C_{(13A)}$	119.1(4)	$C_{(9A)} - C_{(8A)} - C_{(13A)}$	121.8(4)
$O_{(1A)} - C_{(9A)} - N_{(1A)}$	118.4(3)	$O_{(1A)} - C_{(9A)} - C_{(8A)}$	124.2(3)
$N_{(1A)} - C_{(9A)} - C_{(8A)}$	117.4(3)	$N_{(1A)}-C_{(10A)}-C_{(11A)}$	115.0(4)
$C_{(10A)} - C_{(11A)} - C_{(12A)}$	114.7(4)	$C_{(2A)}-C_{(12A)}-C_{(11A)}$	111.2(4)
$O_{(3A)} - C_{(13A)} - N_{(2A)}$	123.6(4)	$O_{(3A)} - C_{(13A)} - C_{(8A)}$	121.1(4)
$N_{(2A)} - C_{(13A)} - C_{(8A)}$	115.3(4)	$N_{(3A)} - C_{(14A)} - N_{(2A)}$	119.0(4)
$N_{(3A)} - C_{(14A)} - S_{(1A)}$	116.4(3)	$N_{(2A)} - C_{(14A)} - S_{(1A)}$	124.6(3)
$C_{(16A)} - C_{(15A)} - N_{(3A)}$	114.7(4)	$C_{(16A)} - C_{(15A)} - C_{(17A)}$	126.8(4)
$N_{(3A)}-C_{(15A)}-C_{(17A)}$	118.2(4)	$C_{(15A)} - C_{(16A)} - S_{(1A)}$	109.1(4)
$C_{(18A)} - C_{(17A)} - C_{(15A)}$	112.1(4)	$C_{(18A)} - C_{(17A)} - C_{(24A)}$	108.5(4)
$C_{(15A)} - C_{(17A)} - C_{(24A)}$	111.4(3)	$C_{(18A)}-C_{(17A)}-C_{(22A)}$	106.9(4)
$C_{(15A)} - C_{(17A)} - C_{(22A)}$	108.5(3)	$C_{(24A)} - C_{(17A)} - C_{(22A)}$	109.3(3)
$C_{(17A)} - C_{(18A)} - C_{(19A)}$	112.4(4)	$C_{(18A)} - C_{(19A)} - C_{(20A)}$	110.6(4)
$C_{(18A)} - C_{(19A)} - C_{(26A)}$	106.7(4)	$C_{(20A)} - C_{(19A)} - C_{(26A)}$	110.3(5)
$C_{(19A)} - C_{(20A)} - C_{(21A)}$	108.8(4)	$C_{(23A)} - C_{(21A)} - C_{(20A)}$	108.2(4)
$C_{(23A)} - C_{(21A)} - C_{(22A)}$	110.4(4)	$C_{(20A)} - C_{(21A)} - C_{(22A)}$	109.7(4)
$C_{(21A)} - C_{(22A)} - C_{(17A)}$	110.3(3)	$C_{(21A)} - C_{(23A)} - C_{(25A)}$	110.9(4)
$C_{(25A)} - C_{(24A)} - C_{(17A)}$	109.9(3)	$C_{(26A)} - C_{(25A)} - C_{(23A)}$	108.1(4)
$C_{(264)} - C_{(254)} - C_{(244)}$	108.1(4)	$C_{(23A)} - C_{(25A)} - C_{(24A)}$	111.2(4)
$C_{(25A)} - C_{(26A)} - C_{(19A)}$	109.9(4)	$C_{(16B)} - S_{(1B)} - C_{(14B)}$	87.3(2)
$C_{(9B)} - N_{(1B)} - C_{(1B)}$	122.1(4)	$C_{(9B)} - N_{(1B)} - C_{(10B)}$	115.6(4)
$C_{(1B)} - N_{(1B)} - C_{(10B)}$	122.1(4)	$C_{(13B)} - N_{(2B)} - C_{(14B)}$	128.1(4)
$C_{(14B)} - N_{(3B)} - C_{(15B)}$	111.0(4)	$C_{(6B)} - C_{(1B)} - N_{(1B)}$	118.5(4)
$C_{(6B)} - C_{(1B)} - C_{(2B)}$	123.9(4)	$N_{(1B)}-C_{(1B)}-C_{(2B)}$	117.6(4)
$C_{(3B)} - C_{(2B)} - C_{(1B)}$	115.9(4)	$C_{(3B)}-C_{(2B)}-C_{(12B)}$	123.1(4)
$C_{(1B)} - C_{(2B)} - C_{(12B)}$	121.0(4)	$C_{(4B)}-C_{(3B)}-C_{(2B)}$	122.0(4)
$C_{(3B)} - C_{(4B)} - C_{(5B)}$	120.4(4)	$C_{(4B)} - C_{(5B)} - C_{(6B)}$	122.6(4)
$C_{(1B)} - C_{(6B)} - C_{(5B)}$	115.2(4)	$C_{(1B)} - C_{(6B)} - C_{(7B)}$	119.6(4)
$C_{(5B)} - C_{(6B)} - C_{(7D)}$	125.1(4)	$O_{(2B)} - C_{(7D)} - C_{(9D)}$	124.9(4)
- (JD) - (UD) - (/D)	(-)		120 ((4)
$O_{(2B)} - C_{(7B)} - C_{(6D)}$	114.5(4)	$C_{(8B)} - C_{(7D)} - C_{(6D)}$	120.0(4)

Валентные углы (ω) в структуре амида 3n

1197

1	2	3	4
C _(9B) -C _(8B) -C _(13B)	123.0(4)	$O_{(1B)}$ - $C_{(9B)}$ - $N_{(1B)}$	120.2(4)
$O_{(1B)} - C_{(9B)} - C_{(8B)}$	121.2(4)	N _(1B) -C _(9B) -C _(8B)	118.6(4)
C _(11B) -C _(10B) -N _(1B)	111.0(4)	$C_{(12B)}$ - $C_{(11B)}$ - $C_{(10B)}$	114.7(5)
$C_{(11B)} - C_{(12B)} - C_{(2B)}$	112.5(4)	O _(3B) -C _(13B) -N _(2B)	118.6(4)
O _(3B) -C _(13B) -C _(8B)	122.6(4)	N _(2B) -C _(13B) -C _(8B)	118.8(4)
N _(3B) -C _(14B) -N _(2B)	120.9(4)	$N_{(3B)}$ - $C_{(14B)}$ - $S_{(1B)}$	115.8(3)
$N_{(2B)}$ - $C_{(14B)}$ - $S_{(1B)}$	123.3(3)	C _(16B) -C _(15B) -N _(3B)	112.1(4)
$C_{(16B)}$ - $C_{(15B)}$ - $C_{(17B)}$	128.0(4)	N _(3B) -C _(15B) -C _(17B)	119.9(3)
$C_{(15B)}$ - $C_{(16B)}$ - $S_{(1B)}$	113.5(3)	$C_{(15B)}$ - $C_{(17B)}$ - $C_{(22B)}$	108.6(3)
$C_{(15B)}$ - $C_{(17B)}$ - $C_{(24B)}$	110.0(3)	$C_{(22B)}$ - $C_{(17B)}$ - $C_{(24B)}$	107.9(3)
$C_{(15B)} - C_{(17B)} - C_{(18B)}$	112.1(3)	$C_{(22B)}$ - $C_{(17B)}$ - $C_{(18B)}$	109.4(3)
$C_{(24B)}$ - $C_{(17B)}$ - $C_{(18B)}$	108.7(4)	$C_{(19B)}$ - $C_{(18B)}$ - $C_{(17B)}$	108.8(4)
$C_{(20B)}$ - $C_{(19B)}$ - $C_{(26B)}$	108.4(4)	$C_{(20B)}$ - $C_{(19B)}$ - $C_{(18B)}$	108.5(4)
$C_{(26B)}$ - $C_{(19B)}$ - $C_{(18B)}$	112.9(4)	$C_{(19B)}$ - $C_{(20B)}$ - $C_{(21B)}$	110.5(4)
$C_{(20B)}$ - $C_{(21B)}$ - $C_{(23B)}$	110.7(4)	$C_{(20B)}$ - $C_{(21B)}$ - $C_{(22B)}$	108.3(4)
$C_{(23B)}$ - $C_{(21B)}$ - $C_{(22B)}$	107.8(4)	$C_{(17B)}$ - $C_{(22B)}$ - $C_{(21B)}$	110.9(3)
C _(25B) -C _(23B) -C _(21B)	109.3(4)	$C_{(17B)}$ - $C_{(24B)}$ - $C_{(25B)}$	109.5(3)
$C_{(23B)}$ - $C_{(25B)}$ - $C_{(26B)}$	110.5(4)	$C_{(23B)}$ - $C_{(25B)}$ - $C_{(24B)}$	109.2(4)
$C_{(26B)}$ - $C_{(25B)}$ - $C_{(24B)}$	109.9(5)	$C_{(25B)}$ - $C_{(26B)}$ - $C_{(19B)}$	109.1(4)

контакт $H_{(10b)}...O_{(1)}$ 2.35 в A, 2.36 Å в B (2.46 Å). Пятичленный тиазольный гетероцикл несколько некопланарен плоскому фрагменту (торсионный угол $C_{(13)}$ – $N_{(2)}$ – $C_{(14)}$ – $S_{(1)}$ –11.0(6) в A, 11.0(6)° в B), что, вероятно, можно объяснить отталкиванием между атомом кислорода карбонильной группы и атомом серы [укороченный внутримолекулярный контакт $S_{(1)}...O_{(3)}$ 2.77 в A и B (3.13 Å)]. Адамантановый заместитель расположен таким образом, что связь $C_{(18)}$ – $C_{(17)}$ – $D_{(15)}$ – $C_{(16)}$ –11.1(6)° в A и 10.0(6)° в B).

Все синтезированные амиды **3–5** подвергнуты микробиологическому скринингу, проведенному радиометрическим методом [15, 16] по отношению к *Mycobacterium tuberculosis* H37Rv ATCC 27294. При этом установлено, что некоторые из исследованных веществ в концентрации 6.25 мкг/мл проявляют *in vitro* высокую противотуберкулезную активность, угнетая рост микобактерий туберкулеза на 99–100% (табл. 5).

Сравнительный анализ антимикобактериальных свойств амидов 3–5 и их структурных аналогов – соответствующих гетариламидов 1-гидрокси-3-оксо-5,6-дигидро-3Н-пирроло[3,2,1-*ij*]хинолин-2- и 1-R-4-гидрокси-2оксо-1,2-дигидрохинолин-3-карбоновых кислот с низшими $N_{(1)}$ -алкильными заместителями в хинолоновом ядре – обнаруживает одну и ту же зависимость проявляемого антимикробного действия от химического строения гетероцикла в амидном фрагменте молекулы. Так, например, пиридил-4-амиды всегда активнее своих 3-аналогов, а те, в свою очередь, существенно превосходят по силе противотуберкулезного эффекта 2-изомеры.

В ряду 3-гидрокси- и некоторых монометилзамещенных пиридил-2-

амидов переход к производным пиридохинолин-2-карбоновой кислоты 3d-g неожиданно привел к усилению активности, однако, в общем эффект оказался незначительным. А вот влияние метильной группы в положении 6 пиридил-2-амидного остатка во всех случаях одинаково – она полностью дезактивирует молекулу независимо от строения хинолоновой части. Нецелесообразно также и амидирование гидроксихинолинкарбоновых кислот 2-аминопиримидином, поскольку специфическое действие получаемых при этом соединений никогда не превышало 20-25%. Напротив, тиазолил-2-амиды демонстрируют намного более высокие и стабильные результаты. Выявлено, что заместители в положении 4 или 5 тиазола, как правило, повышают активность, но они не должны быть пространственно объемными. Еще более благоприятно на силу противотуберкулезного действия влияет введение второго атома азота в ароматический пятичленный 1,3,4-тиадиазолил-2-амиды цикл _ практически всегла сохраняют способность блокировать рост микобактерий туберкулеза на 90-100% при низкой минимальной ингибирующей концентрации (МИК). В то же время, на активность производных бензтиазола структура хинолонового фрагмента оказывает более выраженное влияние. Если абсолютное отсутствие антимикобактериальных свойств у 4-(6-метилбензтиазолил-2)анилида 4 было заведомо прогнозируемым, то сравнительно низкая активность бензтиазолил-2амида 3v, а также его галоген- (3w-y) и метил- (3z) замещенных аналогов оказалась несколько неожиданной.

Таблица 5

Соеди- нение	Задержка роста <i>M. tuberculosis</i> , %	МИК,* мкг/мл	Соеди- нение	Задержка роста <i>M. tuberculosis</i> , %	МИК,* мкг/мл
3 a	100	6.25	3p	73	_
3 b	57	-	3q	63	-
3c	14	-	3r	100	3.13
3d	17	-	3s	100	0.78
3e	58	-	3t	100	1.56
3f	13	-	3u	100	3.13
3g	15	-	3v	9	-
3h	0	-	3w	39	-
3i	20	-	3x	25	-
3ј	99	6.25	3у	100	6.25
3k	100	3.13	3z	20	-
31	100	3.13	4	0	-
3m	100	6.25	5a	0	-
3n	18	_	5b	0	-
30	32	-	5c	0	_

Противотуберкулезная активность соединений 3-5

* Согласно принятым в TAACF (Tuberculosis Antimicrobial Acquisition & Coordinating Facility) критериям, истинная МИК определяется только для веществ, показавших на первом этапе активность не ниже 90%.

Подводя итог проведенному исследованию, отметим, что в целом

аннелирование хинолонового ядра с тетрагидропиридиновым циклом в большинстве случаев кардинально не сказывается на противотуберкулезных свойствах. Данное обстоятельство позволяет сделать вывод о том, что N₍₁₎-алкильные заместители в гетариламидах 1-R-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот, равно как и тригидропиррольный или тетрагидропиридиновый фрагменты в соответствующих производных 1-гидрокси-3-оксо-5,6-дигидро-3H-пирроло[3,2,1-*ij*]хинолин-2и 1-гидрокси-3-оксо-6,7-дигидро-3H,5H-пиридо[3,2,1-*ij*]хинолин-2-карбоновых кислот, не принимают прямого участия в связывании с биологической мишенью. Скорее всего, они лишь в той или иной мере влияют на способность взаимодействовать с рецепторами действительно одной из ключевых функциональных групп – карбонила в положении 2 хинолонового ядра. Вторым таким центром, очевидно, является группировка NH в амидном фрагменте. Подтверждением этого служит уже неоднократно наблюдающаяся полная потеря активности у вторичных амидов типа **5**.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В синтезе эфира 1 использованы коммерческие 1,2,3,4-тетрагидрохинолин и триэтил- метантрикарбоксилат фирмы Fluka. Спектры ЯМР ¹Н синтезированных соединений записаны на приборе Bruker WM-360 (360 МГц) в растворе ДМСО-d₆, внутренний стандарт ТМС.

эфир 1-гидрокси-3-оксо-6,7-дигидро-3Н,5Н-пиридо[3,2,1-*ij*]-Этиловый хинолин-2-карбоновой кислоты (1). В 21.1 мл (0.1 моль) триэтилметантрикарбоксилата, нагретого до 215 °C, при перемешивании по каплям прибавляют 12.5 мл (0.1 моль) 1,2,3,4-тетрагидрохинолина (2) таким образом, чтобы температура реакционной смеси поддерживалась в пределах ±5 °C от начальной. Выделяющемуся в процессе реакции этанолу дают возможность свободно отгоняться через подходящий дефлегматор без увеличения исходных реагентов. После прибавления всего 1,2,3,4-тетрагидрохинолина реакционную смесь выдерживают 10–15 мин при той же температуре, а затем дают остыть до ≈ 100 °С. Прибавляют 300 мл 10% водного раствора Na₂CO₃ и нагревают до 70-80 °С. Полученный раствор 1-О-натриевой соли эфира 1 чистят углем, фильтруют. После охлаждения фильтрат подкисляют разбавленной (1:1) HCl до pH 4.5-5. Осадок эфира 1 отфильтровывают, промывают водой, сушат. Выход 26.23 г (96%). Бесцветные иглы с т. пл. 102–104 °С (из гексана). По данным работы [17], желтые иглы с т. пл. 101 °С. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 13.10 (1H, с, OH); 7.88 (1Н, д, J = 8.0, Н-10); 7.49 (1Н, д, J = 7.3, Н-8); 7.18 (1Н, т, J = 7.5, Н-9); 4.33 (2H, к, J = 7.0, OCH₂); 3.99 (2H, т, J = 5.6, NCH₂); 2.94 (2H, т, J = 6.1, 7-CH₂); 2.00 (2H, кв, *J* = 6.0, 6-CH₂); 1.32 (3H, т, *J* = 7.0, OCH₂CH₃).

N-R-Амиды 1-гидрокси-3-оксо-6,7-дигидро-3H,5H-пиридо[3,2,1*ij*]хинолин-2-карбоновой кислоты 3а–z, 4 (общая методика). Смесь 2.73 г (0.01 моль) эфира 1, 0.01 моль соответствующего первичного амина и 1 мл ДМФА перемешивают и выдерживают 3–5 мин при 160 °С. Исходные реагенты при этом вначале растворяются, а затем после бурного выделения этанола начинает выкристал- лизовываться конечный амид. К еще не остывшей реакционной смеси осторожно, опасаясь резкого вскипания, прибавляют 10–15 мл этанола и тщательно растирают. Осадок гетариламида 3 или анилида 4 отфильтровывают, промывают спиртом, сушат. Кристаллизуют из ДМФА.

Гидрохлориды 4-R-пиперазин-1-иламидов 1-гидрокси-3-оксо-6,7-дигидро-

3H,5H-пиридо[3,2,1-*ij*]хинолин-2-карбоновой кислоты **5а–с.** Полученные по методике предыдущего опыта основания 4-R-пиперазин-1-иламидов (загрузка 0.01 моль) суспендируют в 10 мл этанола, затем прибавляют раствор газообразного HCl в этаноле до pH 3 (осадок при этом растворяется), после чего оставляют на несколько часов в морозильном шкафу. Выделившиеся кристаллы гидрохлоридов 4-R-пиперазин-1-иламидов **5а–с** отфильтровывают, промывают эфиром, сушат.

Рентгеноструктурное исследование. Кристаллы амида 3n триклинные (из ДМФА), при 20 °C: a = 7.293(1), b = 11.298(1), c = 26.995(3) Å, $\alpha = 91.20(1)^{\circ}$, $\beta = 91.74(1)^{\circ}$, $\gamma = 90.06(1)^{\circ}$, V = 2222.8(4) Å³, $M_{\rm r} = 462.57$, Z = 4, пространственная группа $P\bar{1}$, $d_{\rm выч} = 1.382$ г/см³, μ (Мо $K\alpha$) = 0.181 мм⁻¹, F(000) = 980. Параметры элементарной ячейки и интенсивности 18142 отражений (7800 независимых, $R_{\rm int} = 0.057$) измерены на дифрактометре Xcalibur-3 (Мо $K\alpha$ -излучение, CCD-детектор, графитовый монохроматор, ω -сканирование, $2\theta_{\rm max} = 50^{\circ}$).

Структура расшифрована прямым методом по комплексу программ SHELXTL [18]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с $U_{iso} = nU_{eq}$ неводородного атома, связанного с данным водородным (n = 1.5 для гидроксильной группы и n = 1.2 для всех остальных атомов водорода). Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.215$ по 7609 отражениям ($R_1 = 0.082$ по 3121 отражениям с $F > 4\sigma(F)$, S = 1.080). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных – депонент № ССDC631476. Межатомные расстояния и валентные углы представлены в табл. 3 и 4.

Авторы выражают благодарность Национальному институту аллергиии инфекционных заболевании США за проведенное в соответствии с программой ТААСF изучение противотуберкулезных свойств синтезированных нами соединений (контракт № 01-АІ-45246).

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Украинец, Н. Л. Березнякова, А. В. Туров, ХГС, 1039 (2008).
- N. Frimodt-Moller, A. M. Hammerum, L. Bagger-Skjot, J. H. Hessler, C. T. Brandt, R. L. Skov, D. L. Monnet, Ugeskr. Laeger., 168, 3039 (2006).
- 3. R. Johnson, E. M. Streicher, G. E. Louw, R. M. Warren, P. D. van Helden, T. C. Victor, *Curr. Issues Mol. Biol.*, **8**, 97 (2006).
- 4. S. K. Sharma, A. Mohan, Chest, 130, 261 (2006).
- 5. A. D. Harries, C. Dye, Ann. Trop. Med. Parasitol., 100, 415 (2006).
- 6. A. I. De La Iglesia, H. R. Morbidoni, Rev. Argent. Microbiol., 38, 97 (2006).
- 7. A. J. Steyn, J. Chan, V. Mehra, Curr. Opin. Infect. Dis., 12, 415 (1999).
- 8. И. В. Украинец, Е. В. Моспанова, Л. В. Сидоренко, *XIC*, 1023 (2007). [*Chem. Heterocycl. Comp.*, **43**, 863 (2007)].
- 9. И. В.Украинец, Н. Л. Березнякова, Е. В. Моспанова, *XTC*, 1015 (2007). [*Chem. Heterocycl. Comp.*, **43**, 863 (2007)].
- И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, Е. В. Моспанова, О. В. Шишкин, XГС, 718 (2006). [Chem. Heterocycl. Comp., 43, 856 (2007)].
- 11. И. В. Украинец, О. В. Горохова, Л. В. Сидоренко, Н. Л. Березнякова, *XTC*, 1191 (2006). [*Chem. Heterocycl. Comp.*, **42**, 1032 (2006)].
- 12. H.-B. Burgi, J. D. Dunitz, Struct. Correl., VCH, Weinheim, 1994, vol. 2, p. 741.

- 13. Ю. В. Зефиров, Кристаллография, 42, 936 (1997).
- 14. N. S. Zefirov, V. A. Palyulin, E. E. Dashevskaya, J. Phys. Org. Chem., 3, 147 (1990).
- 15. L. B. Heifets, in: *Drug Susceptibility in the Chemotherapy of Mycobacterial Infections*, L. B. Heifets (Ed.), CRC Press, Boca Raton, 1991, p. 89.
- 16. C. B. Inderleid, K. A. Nash, in: *Antibiotics in Laboratory Medicine*, V. Lorian (Ed.), Williams and Wilkins, Baltimore, 1996, p. 127.
- 17. A. Kutyrev, T. Kappe, J. Heterocycl. Chem., 34, 969 (1997).
- G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev. 5.1 (1998).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило 30.11.2006