Д. Р. Латыпова, Л. И. Власова, Н. З. Байбулатова, А. Н. Лобов, Л. В. Спирихин, В. А. Докичев

СИНТЕЗ НЕПРИРОДНЫХ АМИНОКИСЛОТ, СОДЕРЖАЩИХ 3,7-ДИАЗАБИЦИКЛО[3.3.1]НОНАНОВЫЙ ФРАГМЕНТ

Взаимодействием эфира 3-оксоглутаровой кислоты и бис(метоксикарбонилметил)сульфона с формальдегидом и первичными аминокислотами в условиях реакции Манниха синтезированы в одну стадию неприродные аминокислоты, содержащие 3,7-диазабицикло[3.3.1]нонановый фрагмент.

Ключевые слова: бис(метоксикарбонилметил)сульфон 3,7-диазабицикло[3.3.1]нонан-9-оны, диэтиловый эфир 3-оксоглутаровой кислоты, неприродные аминокислоты, 9-тиа-3,7-диазабицикло[3.3.1]нонан-9,9-диоксид, реакция Манниха.

В настоящее время актуальным направлением в области органической и фармацевтической химии является синтез новых конформационно жестких аналогов природных аминокислот [1]. Проявляя сходство по ряду параметров с природными аналогами – классическими двадцатью аминокислотами, эти соединения обладают высоким потенциалом физиологической активности. Ограничивая конформационную подвижность молекулы, можно достигнуть высокой активности и селективности ее взаимодействия с рецептором.

Синтезировано множество конформационно затрудненных и конформационно жестких аминокислот, а на их основе – пептидомиметиков и синтетических пептидов [1]. Однако данные по конформационно жестким циклическим аминокислотам, содержащим 3,7-диазабицикло[3.3.1]нонановый фрагмент, немногочисленны. Большая часть публикаций посвящена синтезу аминокислот путем функционализации природного алкалоида цитизина по атому N-12 [2–4]. Также необходимо отметить работу [5], в которой на примере взаимодействия глицина и L-аланина с параформом и дибензилкетоном были получены два представителя неприродных аминокислот 3,7-диазабицикло[3.3.1]нонанового ряда.

Высокая физиологическая активность (противоопухолевая [6], антиаритмическая [7], инсектицидная [8] и т. д.) производных 3,7-диазабицикло[3.3.1]нонана предопределяет разработку новых методов и принципов получения аминокислот неприродного происхождения, содержащих 3,7-диазабицикло[3.3.1]нонановый фрагмент и представляющих интерес в в качестве перспективных фармацевтических препаратов. Одним из удобных путей синтеза азотистых гетероциклов является реакция СН-кислот с альдегидами и первичными аминами, на основе которой нами разработаны методы получения производных 1,5-динитро-3,7-диазабицикло[3.3.1]нонана [9, 10] и 9-тиа-3,7-диазабицикло[3.3.1]нонан-9,9-диоксида [11]. В настоящей работе представлен синтез неприродных аминокислот, содержащих 3,7-диазабицикло[3.3.1]нонановую структуру, на основе конденсации эфира 3-оксоглутаровой кислоты (1а) и бис(метоксикарбонилметил)сульфона (1b) с формальдегидом и аминокислотами в условиях реакции Манниха. В качестве аминокислот использовали гидрохлориды этилового эфира глицина (2а), метиловых эфиров α-аланина (L-изомер или рацемат) 2b, L-лейцина 2c и L-тирозина 2d, а также глицин 2e.

Известно [12, 13], что направление реакции Манниха в значительной степени определяется кислотностью среды, строением исходных реагентов и природой растворителя. В ходе предварительных исследований установлено, что аминокислоты 3,7-диазабицикло[3.3.1]нонанового ряда на основе диэтилового эфира 3-оксоглутаровой кислоты (1а) могут быть получены с достаточно высокими выходами при проведении реакции в системе AcONa–AcOH–NaOH при pH 4. Так, взаимодействие эфира 1а с 32% водным раствором формальдегида и гидрохлоридом этилового эфира глицина (2а) (мольное соотношение 1:4:2) при комнатной температуре в течение 24 ч дает 1,5-ди(этоксикарбонил)-3,7-ди(этоксикарбонил)-3,7-диазабицикло[3.3.1]нонан-9-он (3а) с выходом 76%. Следует отметить, что реакция эфира 1а с аминокислотой 2а и формальдегидом в среде MeOH–H₂O, 3:1, при комнатной температуре приводит к образованию эфира аминокислоты **3а** с выходом 5%, а повышение температуры до 60 °C дает трудноразделимую смесь продуктов реакции.

2, **3** a R = H, R¹ = Et; **b**-d R¹ = Me, **b** R = Me, **c** R = CH₂CHM **d** R = 4-HOC₆H₄CH₂

В выбранных нами условиях конденсация диэтилового эфира **1a** с формальдегидом и гидрохлоридами эфиров рацемата α-аланина **2b**, L-лейцина **2c** и L-тирозина **2d** приводит к образованию 1,5-ди(этоксикарбонил)-3,7-диазабицикло[3.3.1]нонан-9-онов **3b**–d с двумя асимметрическими центрами с выходами 60, 85 и 79% соответственно. Согласно данным ЯМР ¹H и ¹³C, продукты взаимодействия эфира **1a** с формальдегидом и

Таблица 1

Соеди- нение	Химические сдвиги, δ, м. д. (<i>J</i> , Гц)*									
	H-2		H-4		Н-6		H-8			
	H _{ax}	H _{eq}	H _{ax}	H_{eq}	H _{ax}	H _{eq}	H _{ax}	H _{eq}	другие атомы п	
3a	3.33 (д, J=11.1)	3.42 (д, <i>J</i> = 11.1)	3.33 (д, J=11.1)	3.42 (д J=11.1)	3.33 (д, J=11.1)	3.42 (д <i>J</i> = 11.1)	3.33 (д, J=11.1)	3.42 (д, J=11.1)	1.12, 1.14 (oба по 6H, т, ${}^{3}J = 7.1$, 4CH ₂ C <u>H₃</u>) 3.21 (4H, c, 2NCH ₂ CO ₂); 4.01 (4H, κ , ${}^{3}J = 7.1$, 2OCH ₂); 4.09 (4H, κ , ${}^{3}J = 7.1$, 2NCH ₂ CO ₂ C <u>H₂</u> CH ₃)	
L,L -3b	3.21 (μ . μ , J = 11.1, J = 1.7)	3.61 (π . π , J = 11.1, J = 1.2)	3.34 (д. д, <i>J</i> = 11.2, <i>J</i> = 1.7)	3.47 (μ . μ , J = 11.1, J = 1.2)	3.21 (π . π , J = 11.1, J = 1.7)	3.61 (μ . μ , J = 11.1, J = 1.2)	3.34 (д. д, <i>J</i> = 11.2, <i>J</i> = 1.7)	3.47 (д. д J = 11.1, J = 1.2)	1.29 (6H, r, ${}^{3}J$ = 7.1, 2CH ₂ C <u>H₃</u>); 1.37 (6H, π , ${}^{3}J$ = 7.1, 2CHC <u>H₃</u>); 3.55 (2H, κ , ${}^{3}J$ = 7.1, 2CH); 3.72 (6H, c, 2OCH ₃); 4.23 (4H, κ , ${}^{3}J$ = 7.1, 2OCH ₂)	
D,L -3b	3.59 (д. д, <i>J</i> = 11.1, <i>J</i> = 1.4)	3.22 (Λ . Λ , J = 11.2, J = 1.8)	3.48 (π . π , J = 11.1, J = 1.4)	3.31 (д. д, <i>J</i> = 11.1, <i>J</i> = 1.8)	3.48 (д. д, <i>J</i> = 11.1, <i>J</i> = 1.4)	3.31 (μ . μ , J = 11.1, J = 1.8)	3.59 (д. д, <i>J</i> = 11.1, <i>J</i> = 1.4)	3.22 (д. д. <i>J</i> = 11.2, <i>J</i> = 1.8)	1.288, 1.293 (оба по 3H, т, ${}^{3}J$ = 7.1, 2CH ₂ CH ₃); 1.37 (6H, д, ${}^{3}J$ = 7.1, 2CHC <u>H₃</u>); 3.55 (2H, к, ${}^{3}J$ = 7.5, 2CH); 3.73 (6H, с, 2OCH ₃); 4.23 (2H, к, ${}^{3}J$ = 7.1, CH ₂); 4.24 (2H, к, ${}^{3}J$ = 7.1, CH ₂)	

Спектры ЯМР ¹Н эфиров аминокислот 3,7-диазабицикло[3.3.1]нонанового ряда 3а-d, 5

1238

3c	3.14 (д. д, J=11.3, J=1.7)	3.59 (д. д, <i>J</i> = 11.3, <i>J</i> = 1.3)	3.34 (д. д, <i>J</i> = 11.3, <i>J</i> = 1.7)	3.43 (д. д. J = 11.3, J = 1.3)	3.14 (д. д. J = 11.3, J = 1.7)	3.59 (д. д, <i>J</i> = 11.3, <i>J</i> = 1.3)	3.34 (д. д, <i>J</i> = 11.3, <i>J</i> = 1.7)	3.43 (д. д, J = 11.3, J = 1.3)	0.90, 0.94 (o6a no 3H, μ , ${}^{3}J = 6.5$, 2CH ₃); 1.28 (6H, r, ${}^{3}J = 7.1$, 2CH ₂ CH ₃); 1.47 (2H _A , μ , μ , ${}^{3}J = 13.9$, ${}^{3}J = 9.1$, ${}^{3}J = 5.9$, 2CH ₂); 1.72 (2H _B , μ , μ , ${}^{3}J = 13.9$, ${}^{3}J = 9.6$, ${}^{3}J = 5.3$, 2CH ₂); 1.82 (2H, μ , μ , τ , τ , ${}^{3}J = 9.1$, ${}^{3}J = 6.5$, ${}^{3}J = 6.5$, ${}^{3}J = 5.3$, 2CH); 3.42 (2H, μ , μ , ${}^{3}J = 9.6$, ${}^{3}J = 5.9$, 2CHN); 3.70 (6H, c, 2OCH ₃); 4.23 (4H, κ , ${}^{3}J = 7.1$, OCH ₂)
3d	3.09 (д. д, <i>J</i> = 11.6 <i>J</i> = 1.5)	3.57 (μ . μ , J = 11.6, J = 15)	3.24 (Λ . Λ , J = 11.1, J = 1.5)	3.44 (д. д, <i>J</i> = 11.1, <i>J</i> = 1.5)	3.09 (д. д, J = 11.6, J = 1.5)	3.57 (μ . μ , J = 11.6, J = 1.5)	3.24 (д. д, J = 11.1, J = 1.5)	3.44 (д. д. <i>J</i> = 11.1, <i>J</i> = 1.5)	1.26 (6H, r, ${}^{3}J = 7.1$, 2CH ₂ C <u>H₃</u>); 2.85 (2H _A , π , π , ${}^{2}J = 13.8$, ${}^{3}J = 6.6$, 2CH ₂ Ar); 3.01 (2H _B , π , π , ${}^{2}J = 13.8$, ${}^{3}J = 8.5$, 2CH ₂ Ar); 3.53 (2H, π , π , ${}^{3}J = 8.5$, ${}^{3}J = 6.6$, 2CHN); 3.63 (6H, c, 2OCH ₃); 4.22 (4H, κ , ${}^{3}J = 7.1$, 2OCH ₂); 6.73 (4H, π , ${}^{3}J = 8.5$, 4CH _{Ar} - <i>m</i>); 7.04 (4H, π , ${}^{3}J = 8.5$, 4CH _{Ar} - <i>o</i>)
5	3.55 (д, J=14.0)	3.33 (д, J=14.0)	3.55 (д J=14.0)	3.33 (д, J=14.0)	3.55 (д, J=14.0)	3.33 (д, J=14.0)	3.55 (д, J=14.0)	3.33 (д, J=14.0)	2.80 (2H, м, CH); 3.68 (6H, с, 2CH ₃ O); 3.83 (4H, с, 2CH ₂ CO ₂)

* Спектры ЯМР¹Н снимали в C_6D_6 (соединение **3a**) и CDCl₃ (соединения **3b–d** и **5**).

рацематом метилового эфира α-аланина **2b** представляют собой смесь трех D,D-, L,L- и D,L-диастереомерных форм 3,7-ди(1-метоксикарбонил-1-этил)-1,5-диэтоксикарбонил-3,7-диазабицикло[3.3.1]нонан-9-она (**3b**) в соотношении 1:1:2. Следует отметить, что мы не обнаружили в реакционных массах пиперидонов – возможных полупродуктов реакции конденсации – даже при соотношении исходных реагентов **1a**–CH₂O–**2a**, 1:2:1 [10].

В спектрах ЯМР ¹Н и ¹³С (табл. 1, 2) соединения **За** сигналы метиленовых групп бициклононанового скелета проявляются в виде синглета при $\delta_{\rm C}$ 57.5 м. д., а протоны образуют AB систему с КССВ ²J = 11.1 Гц, что указывает на симметричную структуру гетероцикла. Введение ассиметрического центра в заместители при атомах N-3 и N-7 приводит к появлению диастереотопности групп NCH₂. В спектрах ЯМР 13 С соединения 3с появляются удвоенные наборы сигналов атомов углерода при δ_C 55.89 и 57.11 м. д., а соединения **3d** – при δ_C 57.17 и 56.39 м. д. (табл. 1). Наличие в протонных спектрах дальних констант ${}^{4}J_{aa} = 1.8$ и ${}^{4}J_{ee} = 1.3$ Гц между метиленовыми протонами указывает на конформацию 3,7-диазабицикло-[3.3.1]нонан-9-она в виде кресло-кресло и подтверждает, что при атомах N-3 и N-7 находятся заместители с одинаковой конфигурацией хирального центра. Именно в этом случае аксиальные и экваториальные протоны при атомах С-2, С-8 и С-4, С-6 магнитно неэквивалентны и имеют W-расположение. D.D- и L.L-Энантиомеры 3b с одинаковыми D- или L-аминокислотными заместителями при атомах N-3 и N-7 имеют аналогичные спектры, как и в предыдущем случае. В случае D,L-диастереомера, когда при атомах N-3 и N-7 находятся заместители разной конфигурации хирального центра, в спектре ЯМР ¹³С наблюдаются соответствующие 2 сигнала метиленовых атомов углерода групп NCH₂ и соответствующие сигналы пары протонов к каждому атому углерода.

Таблица 2

Соеди-	Химические сдвиги, (CDCl ₃), δ, м. д.*										
нение	C-1	C-5	C-2	C-4	C-6	C-8	Другие атомы С				
3 a	59.80	59.80	57.54	57.54	57.54	57.54	14.36 (CO ₂ CH ₂ C <u>H</u> ₃); 14.51 (NCH ₂ CO ₂ CH ₂ <u>C</u> H ₃); 57.54 (CH ₂ N); 59.39 (<u>C</u> H ₂ CO ₂ CH ₂ CH ₃); 60.26 (NCH ₂ CO ₂ <u>C</u> H ₂ CH ₃); 61.39 (CO ₂ <u>C</u> H ₂ CH ₃); 169.46 (CO ₂); 169.56 (CH ₂ <u>C</u> O ₂); 202.57 (C=O)				
L,L -3b	59.62	59.62	55.64	56.96	55.64	56.96	14.13 (CH ₂ <u>C</u> H ₃); 15.27 (CH <u>C</u> H ₃); 51.42 (OCH ₃); 61.08 (CHN); 61.65 (OCH ₂); 170.11 (C <u>C</u> O ₂); 172.89 (CH <u>C</u> O ₂); 202.88 (C=O)				
D,L -3b	59.65	59.57	55.68	57.05	57.05	55.68	14.16 и 14.10 (CH ₂ <u>C</u> H ₃); 15.27 (CH <u>C</u> H ₃); 51.42 (OCH ₃); 61.06 (CHN); 61.54 и 61.72 (OCH ₂); 170.01 и 170.18 (C <u>C</u> O ₂); 172.84 (CH <u>C</u> O ₂); 202.92 (C=O)				
3c	59.63	59.63	55.79	56.99	55.79	56.99	14.39 (CH ₂ <u>C</u> H ₃); 21.50, 23.10 (оба CH <u>C</u> H ₃); 24.10 (CH); 37.88 (CH ₂); 51.50 (OCH ₃); 61.53 (OCH ₂); 63.94 (CHN); 169.96 (C <u>C</u> O ₂); 172.31 (CH <u>C</u> O ₂); 202.50 (C=O)				
3d	59.64	59.64	57.17	56.39	57.17	56.39	14.04 (CH ₂ <u>C</u> H ₃); 34.67 (<u>C</u> H ₂ Ar); 51.53 (OCH ₃); 61.96 (OCH ₂); 68.35 (CHN); 115.53 (C(Ar)- <i>m</i>), 128.98 (C(Ar)- <i>i</i>); 130.14 (C(Ar)- <i>o</i>); 154.86 (C(Ar)- <i>p</i>); 170.11 (C <u>C</u> O ₂); 171.77 (CH <u>C</u> O ₂); 202.75 (C=O)				
5	54.08	54.08	57.24	57.24	57.24	57.24	51.61 (OCH ₃); 170.86 (CO ₂)				

Спектры ЯМР ¹³С эфиров аминокислот 3,7-диазабицикло[3.3.1]нонанового ряда 3а-d, 5

* Спектры ЯМР ¹³С снимали в C_6D_6 (соединение **3a**) и CDCl₃ (соединения **3b–d** и **5**).

В отличие от эфира **1а** взаимодействие бис(метоксикарбонилметил)сульфона **1b** с формальдегидом и глицином **2e** (мольное соотношение 1:4:2) при pH 4 не приводит к ожидаемому 9-тиа-3,7-диазабицикло[3.3.1]нонан-9,9-диоксиду **4**. Из реакционной массы был выделен исходный сульфон **1b**. Целевой продукт **(4)** в виде 3,7-ди(метоксикарбонилметил)-9-тиа-3,7-диазабицикло[3.3.1]нонан-9,9-диоксида **(5)** был получен нами с выходом ~10% при проведении реакции в растворе MeOH–H₂O, 2:1, при 65 °C в течение 4 ч.

Как и в работе [11], образование сульфона **5** сопровождается региоселективным гидролизом эфирных групп в положениях 1 и 5 и последующим декарбоксилированием. Гидролиз и декарбоксилирование карбоксильных групп аминокислотных фрагментов молекулы в этом случае не происходят.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С регистрировали на спектрометре Bruker AM-300 (300 и 75 МГц соответственно), внутренний стандарт Me₄Si. ИК спектры получали на приборе IR Prestige-21 Shimadzu в тонком слое или в вазелиновом масле, массспектры – на спектрометре MX-1300 с температурой баллона напуска 100 °С при ионизирующем напряжении 12 и 70 эВ или на приборе Shimadzu LCMS 2010. Анализ проводили на хроматографических пластинках Silufol (фирма Merck). Препаративное разделение осуществляли с помощью колоночной хроматографии на SiO₂ (фирма Alfa Aesar, 70–230 меш). Температуры плавления определяли на микростолике Boetius. Элементный анализ соединений проводили на CHN-анализаторе HEKAtech GmbH Analysen – Тесhnik's Euro-EA. Углы оптического вращения измеряли на поляриметре Perkin–Elmer 341 (λ 589 нм) при 20 °С.

Синтез соединений За–d (общая методика). К 0.68 г (5 ммоль) AcONa•3H₂O при перемешивании добавляют 0.5 г (2.5 ммоль) диэтилового эфира 3-оксоглутаровой кислоты 1, 5 ммоль гидрохлорида эфира аминокислоты **2а–d**, 1.4 мл ацетатного буфера (pH 4) и 0.93 г (10 ммоль) 32% водного раствора формальдегида. Смесь выдерживают при комнатной температуре 24 ч и прибавляют 20 мл хлороформа. Органический слой отделяют, промывают водой (3 × 10 мл) и сушат над безводным Na₂SO₄. Растворитель удаляют в вакууме.

1,5-Ди(этоксикарбонил)-3,7-ди(этоксикарбонилметил)-3,7-диазабицикло-[3.3.1]нонан-9-он (За) получают с выходом 0.86 г (76%) в виде масла желтого цвета. ИК спектр (тонкий слой), v, см⁻¹: 1195, 1265 (СО), 1716, 1743 (С=О). Масс-спектр (ХИАД*), *m/z* (*I*, %): 457 [М + Н]⁺, 455 [М-Н]⁻. Найдено, %: С 55.28; Н 7.00; N 6.12. С₂₁Н₃₂N₂O₉. Вычислено, %: С 55.25; Н 7.07; N 6.14.

L,L-3,7-Ди(1-метоксикарбонилэтил)-1,5-ди(этоксикарбонил)-3,7-диазабицикло[3.3.1]нонан-9-он (3b) получают с выходом 1.16 г (75%) в виде масла красного цвета. [α]_D²⁰ –23 (*с* 0.0085, CHCl₃). ИК спектр (тонкий слой), v, см⁻¹: 1165, 1195, 1228, 1273 (CO), 1732, 1743 (С=О). Масс-спектр (ХИАД), *m/z*: 457 [М + H]⁺, 455 [М–Н]⁻. Найдено, %: С 55.30; Н 6.98; N 6.15. С₂₁Н₃₂N₂O₉. Вычислено, %: С 55.25; Н 7.07; N 6.14.

^{*} ХИАД – химическая ионизация при атмосферном давлении.

D,L-3,7-Ди(1-метоксикарбонилэтил)-1,5-ди(этоксикарбонил)-3,7-диазаби-1242

цикло[3.3.1]нонан-9-он (3b) получают с выходом 0.7 г (60%) в виде масла желтого цвета. $[\alpha]_D^{20}$ +2.9 (*c* 0.46, CHCl₃). ИК спектр (тонкий слой), v, см⁻¹: 1165, 1195, 1228, 1273 (CO), 1732, 1743 (C=O). Масс-спектр (ХИАД), *m/z*: 457 [M +H]⁺, 455 [M H]⁻ Цейтерие 2(: C 55 20: H 6 08: N 6 15 C H N O. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H N O. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H N O. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H N O. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H N O. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H N O. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H N O. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H N O. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H N O. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H N O. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H N O. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H N O. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H N O. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H N 0. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H N 0. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H 8 N 0. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H 8 N 0. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H 8 N 0. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H 8 N 0. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H 8 N 0. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H 8 N 0. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H 8 N 0. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H 8 N 0. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H 8 N 0. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H 8 N 0. Развидетерие 2(: C 55 20: H 6 15 C H 8 N 0. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H 8 N 0. Развидетерие 2(: C 55 20: H 6 08: N 6 15 C H 8 N 0. Развидетерие 2(: C 55 20: H 6 15 C H 8 N 0. Развидетерие 2(: C 55 20: H 6 15 C H 8 N 0. Развидетерие 2(: C 55 20: H 6 15 C H 8 N 0. Развидетерие 2(: C 55 20: H 6 15 C H 8 N 0. Развидетерие 2(: C 55 20: H 6 15 C H 8 N 0. Развидетерие 2(: C 55 20: H 6 15 C H 8 N 0. Развидетерие 2(: C 55 20: H 6 15 C H 8 N 0. Развидетерие 2(: C 55 20: H 6 15 C H 8 N 0. Развидетерие

455 [М-Н]⁻. Найдено, %: С 55.30; Н 6.98; N 6.15. С₂₁Н₃₂N₂O₉. Вычислено, %: С 55.25; Н 7.07; N 6.14.

L,L-3,7-Ди(3-метил-1-метоксикарбонилбутил)-1,5-ди(этоксикарбонил)-3,7диазабицикло[3.3.1]нонан-9-он (3с) получают 0.9 г с выходом (85%) в виде масла желтого цвета. $[\alpha]_D^{20}$ –46 ± 1 (*c* 0.038, CHCl₃). ИК спектр (тонкий слой), v, см⁻¹: 1165, 1192, 1222, 1269 (CO), 1735 (С=О). Масс-спектр (ХИАД), *m/z*: 541 $[M + H]^+$. Найдено, %: C 60.02; H 8.18; N 5.16. C₂₇H₄₄N₂O₉. Вычислено, %: C 59.98; H 8.20; N 5.18.

L,L-3,7-Ди(2-(4-гидроксифенил)-1-метоксикарбонилэтил)-1,5-ди(этоксикарбонил)-3,7-диазабицикло[3.3.1]нонан-9-он (3d) получают с выходом 1.57 г (79%) в виде кристаллов желтого цвета с т. пл. 65–67 °С. $[\alpha]_D^{20}$ –16 ± 1 (*c* 0.015, CHCl₃). ИК спектр (в вазелиновом масле), v, см⁻¹: 827, 1375, 1516, 1595, 1614 (Ar), 1172, 1201 (CO), 1734 (C=O), 3398 (OH). Масс-спектр (ХИАД), *m/z*: 641 [M + H]⁺, 639 [M–H]⁻. Найдено, %: C 61.90; H 6.31; N 4.35. C₃₃H₄₀N₂O₁₁. Вычислено, %: C 61.86; H 6.29; N 4.37.

3,7-Ди(1-метоксикарбонилметил)-9-тиа-3,7-диазабицикло[3.3.1]-нонан-9,9диоксид (5). К раствору 0.72 г (9.6 ммоль) глицина **2e** в 15 мл H₂O и 30 мл МеOH при перемешивании добавляют 1.75 г (19.2 ммоль) 33% водного раствора формальдегида, 1.01 г (4.8 ммоль) бис(метоксикарбонилметил)сульфона **1b** и 20% водного раствора NaOH до pH 7.5–8.0 и кипятят 4 ч. Растворитель удаляют в вакууме. Остаток растворяют в 15 мл водного метанола (1 : 1) и обрабатывают эфирным раствором диазометана по методике [14]. После отгонки растворителя в вакууме добавляют к остатку 1 н. HCl до pH 1 и промывают хлороформом (3 × 25 мл). Кислый водный раствор после экстракции нейтрализуют 20% водным раствором NaOH, экстрагируют хлороформом (3 × 25 мл) и сушат над безводным Na₂SO₄. Растворитель удаляют в вакууме. Остаток хроматографируют на SiO₂ (CHCl₃–*i*-PrOH, 9 : 1). Получают 0.15 г (10%) соединения **5** в виде масла желтого цвета. ИК спектр (тонкий слой), v, см⁻¹: 1110, 1292 (SO₂). Масс-спектр (ЭУ, 70 эВ), *m/z*: 320 [M]⁺. Найдено, %: C 44.95; H 6.26; N 8.66; S 10.03. C₁₂H₂₀N₂O₆S. Bычислено, %: C 44.99; H 6.29; N 8.74; S 10.01.

Работа выполнена при финансовой поддержке Программы фундаментальных исследований Президиума РАН "Направленный синтез органических веществ с заданными свойствами и создание функциональных материалов на их основе".

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Комаров, А. О. Григоренко, А. В. Туров, В. П. Хиля, *Успехи химии*, **73**, 849 (2004).
- 2. А. С. Садыков, Х. А. Асланов, Ю. К. Кушмурадов, Алкалоиды хинолизидинового ряда, Наука, Москва, 1975, с. 54.
- 3. C. C. Boido, B. Tasso, V. Boido, F. Sparatore, Farmaco, 58, 265 (2003).
- О. А. Пухлякова, Н. З. Байбулатова, И. О. Майданова, Т. В. Хакимова, В. А. Докичев, М. С. Юнусов, *ЖОрХ*, **36**, 1404 (2000).
- 5. Н. С. Зефиров, Н. В. Зык, С. З. Вацадзе, В. С. Тюрин, Изв. АН, Сер. хим., 158 (1992).

- Г. Л. Арутюнян, А. А. Чажоян, В. А. Шкулев, Г. Г. Адамян, Ц. Е. Адеджанян, Б. Т. Гарибджанян, *Хим.-фарм. журн.*, 29, № 1, 33 (1995).
- K. D. Berlin, G. L. Garrison, S. Sangiah, G. R. Clarke, C. Chen, R. Jazzara, B. J. Scherlag, E. S. Patterson, G. E. Burrows, Пат. США № 5468858; РЖХим, 18070П (1997).
- 8. K. Y. Blackhall, D. Hendry, R. Y. Pryce, S. M. Roberts, J. Chem. Soc., Perkin Trans. 1, 21, 2767 (1995).
- 9. Н. Н. Ярмухамедов, Н. З. Байбулатова, В. А. Докичев, Ю. В. Томилов, М. С. Юнусов, Изв. АН, Сер. хим., 721 (2001).
- Н. Н. Ярмухамедов, Н. З. Байбулатова, В. А. Докичев, Т. В. Хакимова, Л. В. Спирихин, Ю. В. Томилов, М. С. Юнусов, Изв. АН, Сер. хим., 405 (2005).
- 11. Л. И. Власова Н. З. Байбулатова, Д. Р. Латыпова, М. С. Юнусов, В. А. Докичев, Ю. В. Томилов, *Изв. АН, Сер. хим.*, 469 (2005).
- 12. *Органические реакции*, под ред. Р. Адамса, Изд-во иностр. лит., Москва, 1948, т. 1, с. 399.
- 13. M. Framontini, L. Angiolini, Tetrahedron, 46, 1791 (1990).
- Г. Беккер, В. Бергер, Г. Домшке, Э. Фангхенель, Ю. Фауст, М. Фишер, Ф. Гентц, К. Гевальд, Р. Глух, Р. Майер, К. Мюллер, Д. Павель, Г. Шмидт, К. Шольберг, К. Шветлик, Э. Зейлер, Г. Цеппенфельд, Органикум, Мир, Москва, 1979, т. 2, с. 249.

Институт органической химии Уфимского научного центра РАН, Уфа 450054 e-mail: dokichev@anrb.ru Поступило 18.03.2008