Посвящается академику Б. А. Трофимову в связи с его 70-летием

В. Н. Одиноков, И. В. Галяутдинов, А. Ш. Ибрагимова, Н. А. Веськина, Л. М. Халилов, Ф. М. Долгушин^а, З. А. Старикова^а

НОВЫЕ АНАЛОГИ ЭКДИСТЕРОИДОВ С КИСЛОРОДСОДЕРЖАЩИМИ ГЕТЕРОЦИКЛАМИ В СТЕРОИДНОМ ОСТОВЕ

В результате взаимодействия экдистероидов (20-гидроксиэкдизона и его ацетонидов) с литием в жидком аммиаке получены новые аналоги с оксетановым $9\alpha,14\alpha$ -оксациклом в стероидном остове. В водно-спиртовом растворе 9,14-оксаналоги перегруппировываются в более стабильные $9\alpha,13\alpha$ -оксаналоги с 1,2-миграцией группы 18-Ме от C-13 к атому C-14.

Ключевые слова: ацетониды, 20-гидроксиэкдизон, жидкий аммиак, литий, оксааналоги, экдистероиды, синтез.

Широко используемая в химии стероидов [1, 2] для селективного восстановления двойной связи сопряженных енонов реакция со щелочными металлами в жидком аммиаке мало изучена в ряду экдистероидов. Известно лишь, что при взаимодействии диацетонида 20-гидроксиэкдизона с аммиачным раствором лития вместо соответствующего 7,8-дигидроаналога получалось 14α-гидропероксипроизводное [3].

Нами обнаружено, что при действии раствора лития в жидком аммиаке на экдистероиды -20-гидроксиэкдизон (1), его 2,3:20,22-диацетонид (2), 20,22-ацетонид (3) и 2,3-ацетонид (4) – и последующей обработке реакционной смеси NH₄Cl наряду с соответствующими 14α-гидропероксидами 5-8 образуются ранее неизвестные 9α,14α-оксапроизводные 9-12 аналоги экдистероидов с оксетановым циклом в стероидном остове (схема 1). В случае соединения 1 соответствующие оксетан 9 и 14 с-гидропероксид 5 образуются примерно в эквимолярном соотношении, тогда как ацетониды 2 и 3 превращаются преимущественно в соответствующие оксетаны 10 и 11. В случае 2,3-ацетонида 4 образующийся оксетан 12 менее стабилен, чем оксетаны 9-11, и при элюировании продуктов реакции (SiO₂, МеОН/СНСІ₃, 1:50) была выделена смесь оксетана 12 и продукта его изомеризации 19, а также смесь 14α-гидропероксида 12 и исходного соединения 4. После повторного хроматографирования (SiO₂, MeOH/CHCl₃) смеси соединений 12 и 19 получены в индивидуальном виде продукты трансформации оксетана 12 - соединения 15 и 19.

1, 5, 9, 13, 16 $R^1 = R^2 = R^3 = R^4 = H$; 2, 6, 10, 14, 17 $R^1 + R^2 = R^3 + R^4 = CMe_2$; 3, 7, 11, 18 $R^1 = R^2 = H$, $R^3 + R^4 = CMe_2$; 4, 8, 12, 15, 19 $R^1 + R^2 = CMe_2$; $R^3 = R^4 = H$. Реагенты и условия: a (1) Li/жидкий NH₃, ТГФ; (2) NH₄Cl; (3) упаривание NH₃ на воздухе; b (1) Li/жидкий NH₃, ТГФ, (2) NH₄Cl, (3) упаривание NH₃ в токе Ar; c MeOH/H₂O; d EtOH/ТГФ; e MeOH/SiO₂; f Me₂CO/PMA

Таблица 1 Спектры ЯМР ¹³С соединений 1–7

	Химические сдвиги, δ, м. д.							
С	1	2	3	4	5		6	7
C	CD ₃ OD (75 МГц) [6]	CDCl ₃ (75 МГц) [4]	СDCl ₃ (75 МГц) [4]	С₅D₅N (75 МГц)	СD ₃ OD (125 МГц) [8]	CD ₃ OD (75 МГц)	CDCl ₃ (125 МГц)	CDCl ₃ (75 МГц)
1	37.3	37.5	37.7	37.9	37.5	37.4	37.6	36.5
2	68.5	72.0	67.9	72.4	68.7	68.6	72.3	67.5
3	68.7	71.5	67.8	72.0	68.6	68.5	71.7	67.5
4	32.8	31.3	32.2	31.9	32.9	32.8	26.4	30.9
5	51.7	50.7	51.1	51.4	51.9	51.8	50.9	50.2
6	206.6	203.0	203.3	202.2	206.2	206.4	202.2	205.1
7	122.1	121.2	121.5	121.1	125.8	125.7	125.1	124.9
8	168.1	163.7	165.4	165.5	164.0	163.9	158.9	162.1
9	35.0	34.3	34.2	34.9	35.6	35.5	35.7	34.2
10	39.3	37.7	38.4	38.1	39.1	39.0	37.7	38.0
11	21.5	20.4	20.8	21.0	21.9	21.5	21.1	20.8
12	32.5	30.8	31.4	31.5	32.4	32.3	31.1	31.6
13	_*	47.2	47.6	48.3	50.2	_*	49.2	48.8
14	85.2	84.7	85.1	84.0	96.6	96.5	96.8	95.8
15	31.8	26.5	31.5	27.3	25.7	25.7	24.5	24.7
16	21.5	21.1	21.9	21.3	21.6	21.9	21.3	21.4
17	50.5	48.9	49.7	50.0	51.3	51.2	49.9	49.7
18	18.1	16.9	17.1	17.8	18.8	18.9	17.9	17.8
19	24.4	23.4	24.2	23.7	24.6	24.6	23.8	24.1
20	78.0	84.3	83.9	76.7	77.6	77.6	84.1	84.1
21	21.1	21.8	22.2	21.6	21.1	21.1	21.8	21.9
22	78.4	81.9	82.3	77.4	78.3	78.2	82.0	82.1
23	27.3	23.5	24.1	26.9	27.4	27.2	23.8	23.4
24	42.3	41.3	41.9	42.5	42.4	42.2	41.5	41.4
25	71.4	70.3	69.1	69.5	71.26	71.2	70.7	70.7
26	29.0	26.5	29.3	29.9	28.9	29.0	29.5	28.7
27	29.7	26.8	29.3	30.0	29.78	29.8	29.5	29.6
2,3- <u>C</u> (CH ₃) ₂	_	108.2	_	108.0	-	_	108.6	-
2,3- C(<u>C</u> H ₃) ₂	_	28.9 29.3	_	26.6 28.7	_	_	26.6 28.5	-
20,22- <u>C</u> (CH ₃) ₂	_	106.9	106.7	_	_	_	107.5	107.0
20,22- C(<u>C</u> H ₃) ₂	-	28.4 28.4	29.7 29.9	_	_	-	26.6 28.9	26.9 28.9

^{*} Сигнал перекрывается сигналом растворителя (≈ 49 м. д.).

Таблица 2 Спектры ЯМР ¹³С соединений 8–14

	Химические сдвиги, δ, м. д.								
С	8*	8* 9 10 11 12		13		14			
	СDCl ₃ (100 МГц)	CD ₃ OD (75 МГц)	CDCl ₃ (125 МГц)	CDCl ₃ (75 МГц)	СDCl ₃ (100 МГц)	CDCl ₃ (125 МГц)	СD ₃ OD (100 МГц)	CDCl ₃ (75 МГц)	
1	37.5	35.2	29.2	33.4	35.3	33.8	36.0	29.9	
2	72.3	69.1	70.9	67.7	72.9	68.7	70.1	73.0	
3	71.7	69.8	72.7	68.5	71.1	67.7	69.1	71.3	
4	29.1	27.3	24.2	24.6	26.2	24.8	25.5	29.2	
5	50.8	52.8	50.4	51.5	50.7	50.5	51.9	49.8	
6	203.2	199.7	196.7	198.0	196.6	_**	201.7	198.5	
7	124.8	112.4	110.8	111.1	111.1	115.4	116.2	115.4	
8	160.3	171.1	168.3	169.6	168.2	178.2	181.2	177.8	
9	35.3	94.4	92.7	92.6	92.7	89.4	90.8	89.5	
10	37.8	41.5	40.6	40.2	40.6	36.8	38.1	37.0	
11	20.5	28.5	26.4	23.0	26.7	26.6	27.6	23.9	
12	31.1	35.4	33.9	33.8	34.2	29.5	30.6	29.3	
13	49.3	52.2	50.6	50.7	50.6	99.5	101.1	99.4	
14	95.9	108.4	106.7	106.6	106.7	57.5	58.8	56.8	
15	26.2	29.2	28.0	27.2	28.3	34.9	35.9	35.3	
16	21.6	23.3	22.9	23.0	22.4	28.7	29.8	24.5	
17	49.8	54.2	52.7	52.7	53.0	48.9	50.7	47.9	
18	18.3	18.6	17.5	17.7	18.2	19.2	20.1	19.7	
19	23.8	22.8	21.5	22.2	21.6	22.1	22.8	22.2	
20	77.0	77.1	82.9	83.3	76.0	75.8	76.1	82.8	
21	20.7	20.4	21.1	21.2	20.1	21.2	21.4	21.7	
22	76.8	79.5	81.7	81.8	76.7	76.4	77.9	81.7	
23	24.5	25.5	23.5	23.5	24.5	26.5	27.3	27.0	
24	40.8	42.2	41.3	41.3	40.7	40.3	42.2	41.0	
25	71.0	71.3	70.8	70.3	70.7	71.2	71.3	70.4	
26	29.4	29.0	28.8	28.9	29.4	29.0	29.0	29.1	
27	29.6	29.8	29.6	28.9	29.9	30.1	29.9	29.6	
2,3- <u>C</u> (CH ₃) ₂	108.2	_	108.0	-	107.9	-	-	107.8	
2,3- C(<u>C</u> H ₃) ₂	26.5 28.6	_	25.9 28.4	_	25.7 28.5	_	_	26.1 28.6	
20,22- <u>C</u> (CH ₃) ₂	_	_	107.1	107.0	_	_	_	106.8	
20,22- C(<u>C</u> H ₃) ₂	_	_	26.3 28.7	26.6 29.5	_	_	_	27.0 29.6	

 $[\]overline{}$ * Спектры ЯМР 13 С соединений **8** и **12** приведены как разностные из спектров смесей соединений **8** и **4**, и **12** и **19** соответственно.

^{**} Сигналы не определены вследствие низкой растворимости соединения 13 в CDCl₃.

Таблица 3 Спектры ЯМР ¹³С соединений 15–20

	Химические сдвиги, δ, м. д.						
C	15	1	16	17	18	19	20
	CDCl ₃	CDCl ₃	CD ₃ OD	CDCl ₃	CDCl ₃	CDCl ₃	CDCl ₃
	(100 МГц)	(125 МГц)	(75 МГц)	(125 МГц)	(75 МГц)	(100 МГц)	(75 МГц)
1	29.9	36.6	39.1	35.5	36.3	35.4	37.1
2	75.1	68.4	69.7	73.4	68.6	73.4	72.5
3	73.0	68.2	69.7	72.5	68.3	72.5	71.6
4	28.7	35.3	32.1	31.3	29.7	31.2	27.0
5	49.8	49.3	50.9	49.5	49.3	49.5	53.2
6	198.6	202.6	206.3	202.4	203.7	202.5	213.0
7	115.3	122.0	121.3	121.1	120.7	121.2	42.2
8	177.7	-*	157.2	152.3	154.0	152.5	121.6
9	89.5	74.7	75.1	74.0	74.3	73.9	37.4
10	36.9	41.6	42.8	41.1	41.6	40.6	43.9
11	24.5	28.6	29.4	28.4	28.3	28.3	20.2
12	29.1	35.7	36.4	35.2	31.9	35.3	37.3
13	99.5	47.7	_**	47.4	47.4	47.5	38.2
14	57.2	147.2	149.6	147.1	147.6	147.1	145.4
15	35.0	131.6	132.1	131.1	131.0	131.5	25.1
16	26.3	31.2	37.0	32.0	35.1	31.1	22.6
17	48.9	57.7	58.9	57.8	57.5	57.8	55.6
18	19.6	19.0	20.0	18.8	18.9	19.0	19.8
19	21.7	28.5	29.0	28.3	28.9	25.8	23.7
20	77.0	76.1	77.2	83.3	83.2	76.1	84.0
21	21.3	20.1	20.4	21.1	21.2	20.0	22.0
22	76.5	76.5	78.5	81.7	81.8	76.6	81.8
23	26.7	25.9	27.2	23.8	23.6	25.9	24.0
24	40.7	40.3	42.2	41.3	41.1	40.9	41.5
25	71.2	71.2	71.3	70.4	70.6	70.9	70.5
26	29.0	29.5	29.6	29.5	29.9	29.4	29.3
27	30.3	29.5	29.9	29.5	30.9	30.0	29.8
2,3- <u>C(CH₃)</u> ₂	107.8	-	_	107.5	_	107.5	107.9
2,3- C(<u>C</u> H ₃) ₂	26.1 28.6	-	_	25.8 28.0	_	28.1 28.4	26.0 29.1
20,22- <u>C</u> (CH ₃) ₂	_	_	_	107.1	107.1	_	107.1
20,22- C(<u>C</u> H ₃) ₂	-	-	_	26.7 28.8	26.8 29.9	_	26.9 28.2

^{*} Сигналы не определены вследствие низкой растворимости соединения **16** в CDCl₃. ** Сигнал перекрывается сигналом растворителя (≈49 м. д.).

В растворе метанола оксетан 9 претерпевает аналогичное превращение с образованием смеси соединений 13 и 16, которые были разделены хроматографически. В то же время, оксетаны 10 и 11 в спиртовом растворе (МеОН или ЕtOH) изомеризуются преимущественно в соеди- нения 17 и 18 соответственно (схема 1). При этом, в случае диацетонида 10 наряду с соединением 17 выделена смесь соединения 14 и исходного оксетана 10, которую не удалось разделить. Соединение 14 было получено ацетонированием соединения 13 в условиях, приведенных в работе [4].

О превращении экдистероидов 1–4 в оксетаны 5–12 свидетельствует сдвиг в слабое поле сигнала С-9 в спектрах ЯМР 13 С ($\Delta\delta\sim$ 59 м. д.) и его трансформация из дублета в синглет (режим JMOD). Подобный слабопольный сдвиг ($\Delta\delta\sim$ 22 м. д.) наблюдается также для сигнала С-14 (табл. 1,2). В спектрах ЯМР 1 Н оксетанов 9–12 также заметны изменения в сравнении с соответствующими спектрами исходных соединений [4–6]. Так, сигнал H-9 отсутствует в спектрах ЯМР 1 Н, а сигнал H-7 смещается в слабое поле ($\Delta\delta$ 0.1–0.2 м. д.) и трансформируется из дублета ($^{4}J\sim$ 2Гц) в синглет.

Структура соединения **10** подтверждена комбинацией 1D и 2D ЯМР процедур [7]. Доказательство положения 9, 14 оксетанового цикла следует из $^{1}H^{-13}C$ корреляций протонов 19-Ме с C-9 (δ 92.7 м. д.) и 18-Ме с C-14 (δ 106.7 м. д.), наблюдаемых в эксперименте HMBC.

РСА кристаллов соединения **10** (рис. 1) показал, что при трансформации соединения **2** в оксетан **10** инверсии конфигурации хиральных центров не происходит и оксетан **10** имеет структуру 2,3:20,22-диацетонида 9 α ,14 α -эпокси-9-дегидро-14-дезокси-20-гидроксиэкдизона. В кристалле молекулы оксетана **10** образуют H-связанные димеры (водородная связь O(25)–H...O(9,14)A $_{-x+1, y, -z+1}$, расстояние O...O 2.873(4) Å, угол O–H...O 165(5)°) (рис. 2).

Поскольку спектры ЯМР 1 Н и 13 С соединений **9**, **11**, **12** подобны спектрам соединения **10**, они являются 9α , 14α -эпокси-9-дегидро-14-дезокси-20-гидроксиэкдизоном (**9**) и его 20,22- (**11**) и 2,3-ацетонидами (**12**).

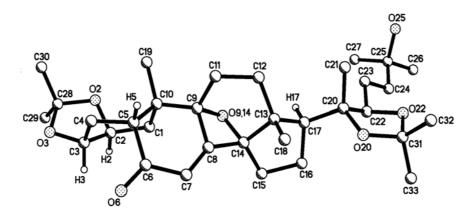


Рис. 1. Структура молекулы 10 в кристалле

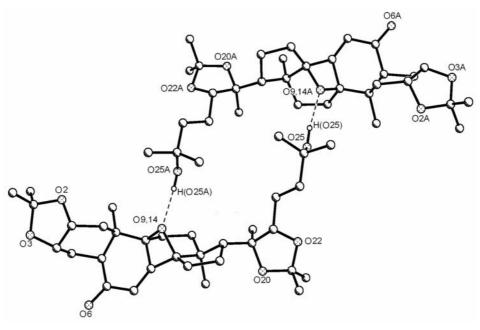


Рис. 2. Н-Связанный димер оксетана 10 в кристалле

Спектр ЯМР 13 С соединения **5** хорошо согласуется со спектром ранее полученного фотохимической трансформацией 20-гидроксиэкдизона 14 α -гидроперокси-20-гидроксиэкдизона [8]. Спектры ЯМР 13 С соединений **6–8** подобны спектру 14 α -гидропероксида **5**. Типичным для спектров ЯМР 13 С соединений **5–8** является смещение сигнала С-14 в слабое поле ($\Delta\delta \sim 11$ м. д.), что характерно для гидропероксидов [3, 8].

Структура соединения **13** подтверждена данными спектров ЯМР ¹Н и ¹³С путем комбинации 1D и 2D процедур ЯМР. Из НМВС ¹Н—¹³С экспериментов видно, что из пяти наблюдаемых метильных сигналов 4 отвечают легко идентифицируемым 26-Ме, 27-Ме (присутствуют их аутокорреляционные кросс-пики), 21-Ме (корреляции с сигналами С-22 и С-17) и 19-Ме (корреляции с сигналами С-1 и С-5), т. е. все эти метильные группы имеют свойственные им химические сдвиги. С другой стороны, у сигнала группы 18-Ме (δ 19.2 м. д.) корреляция с сигналом С-17 отсутствует, но наблюдается корреляция с сигналом С-8 (б 178.2 м. д.), что свидетельствует о 1,2-миграции 18-Ме от С-13 к атому С-14. Такое изменение местоположения группы 18-Ме подтверждается также корреляцией его сигнала с сигналами С-14, С-15 и С-13. Положение оксацикла между атомами С-9 и С-13 следует из корреляции сигналов 19-Ме и Н-7 с сигналом δ 89.4 м. д. (С-9), а сигналов 18-Ме и Н-17 с сигналом δ 99.5 м. д. (С-13).

Для соединения **15** удалось получить кристаллы (из $EtOAc/n-C_6H_{12}$, 1:1), как показывает PCA (рис. 3), синтезированный 9,13-оксааналог имеет структуру 2,3-ацетонида 9α ,13 α -эпокси-9-дегидро-13-деметил-14-дезокси-14 β -метил-20-гидроксиэкдизона, что свидетельствует о миграции группы 18-Ме к атому C-14 с β -стороны. Сходство спектров ЯМР 1 Н и 13 С соединений **13–15** между собой свидетельствует, что все они являются производными 9α ,13 α -эпокси-9-дегидро-13-деметил-14-дезокси-14 β -метил-20-гидроксиэкдизона.

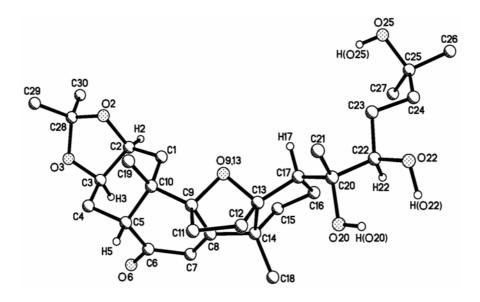


Рис. 3. Структура молекулы 15 в кристалле

Таблица 4 Длины связей (I) в соединениях 10 и 15

Связь	l, Å		Связь	l, Å		
Связь	10	15	Связь	10	15	
O(9,13)–C(9)	_	1.447(3)	C(8)–C(14)	1.493(5)	1.515(4)	
O(9,13)-C(13)	_	1.467(3)	C(9)-C(10)	1.527(5)	1.534(4)	
O(9,14)-C(9)	1.510(4)		C(9)-C(11)	1.534(5)	1.565(4)	
O(9,14)-C(14)	1.506(4)	_	C(10)-C(19)	1.531(5)	1.531(5)	
O(2)-C(2)	1.434(4)	1.442(4)	C(11)-C(12)	1.552(5)	1.565(4)	
O(2)-C(28)	1.434(4)	1.430(3)	C(12)-C(13)	1.537(5)	1.541(4)	
O(3)-C(3)	1.436(4)	1.434(4)	C(13)-C(14)	1.549(5)	1.568(4)	
O(3)-C(28)	1.444(4)	1.465(4)	C(13)-C(17)	1.555(5)	1.549(4)	
O(6)-C(6)	1.231(4)	1.221(4)	C(13)-C(18)	1.516(5)	-	
O(20)-C(20)	1.448(4)	1.438(4)	C(14)-C(15)	1.503(5)	1.543(4)	
O(20)-C(31)	1.459(4)	_	C(14)-C(18)	_	1.526(5)	
O(22)-C(22)	1.430(4)	1.431(3)	C(15)-C(16)	1.542(5)	1.539(4)	
O(22)-C(31)	1.423(4)	_	C(16)-C(17)	1.545(5)	1.554(4)	
O(25)-C(25)	1.431(5)	1.462(4)	C(17)-C(20)	1.536(5)	1.542(4)	
O(25)-H(O25)	0.92(5)	0.83(4)	C(20)-C(21)	1.517(5)	1.539(5)	
C(1)-C(2)	1.516(5)	1.518(4)	C(20)-C(22)	1.540(5)	1.550(4)	
C(1)-C(10)	1.544(5)	1.544(4)	C(22)-C(23)	1.512(5)	1.523(4)	
C(2)-C(3)	1.523(5)	1.530(4)	C(23)–C(24)	1.528(5)	1.540(4)	
C(3)-C(4)	1.517(5)	1.522(4)	C(24)-C(25)	1.535(5)	1.532(4)	
C(4)-C(5)	1.536(5)	1.533(4)	C(25)-C(26)	1.511(5)	1.530(4)	
C(5)-C(6)	1.535(5)	1.533(5)	C(25)-C(27)	1.518(6)	1.519(4)	
C(5)-C(10)	1.569(5)	1.560(4)	C(28)-C(29)	1.505(6)	1.503(5)	
C(6)-C(7)	1.467(5)	1.464(4)	C(28)-C(30)	1.513(5)	1.519(4)	
C(7)-C(8)	1.320(5)	1.333(4)	C(31)-C(32)	1.513(6)	_	
C(8)-C(9)	1.490(5)	1.505(5)	C(31)-C(33)	1.511(6)	_	

 $T\ a\ б\ \pi\ u\ ц\ a\ 5$ Валентные углы (ω) в соединениях 10 и 15

V	ω, град.		V-	ω, град.	
Угол	10	15	Угол	10	15
C(9)–O(9,13)–C(13)	-	98.2(2)	C(14)–C(13)–C(17)	99.5(3)	107.8(2)
C(9)-O(9,14)-C(14)	87.5(2)		O(9,13)–C(13)–C(12)		100.9(2)
C(2)-O(2)-C(28)	107.4(2)	105.6(2)	O(9,13)–C(13)–C(17)	_	107.9(2)
C(3)-O(3)-C(28)	108.6(2)	108.7(2)	O(9,13)-C(13)-C(14)	_	100.8(2)
C(20)-O(20)-C(31)	108.7(2)	_ ` `	C(8)–C(14)–C(15)	123.9(3)	114.4(2)
C(31)–O(22)–C(22)	106.5(2)	_	C(8)–C(14)–O(9,14)	86.0(2)	_
C(25)-O(25)-H(O25)	103(4)	106(3)	C(15)-C(14)-O(9,14)	114.6(3)	_
C(2)-C(1)-C(10)	114.7(3)	116.7(2)	C(8)–C(14)–C(13)	113.9(3)	100.6(3)
O(2)-C(2)-C(1)	111.4(3)	112.9(2)	C(15)-C(14)-C(13)	107.9(3)	101.1(2)
O(2)-C(2)-C(3)	101.4(3)	101.1(2)	O(9,14)-C(14)-C(13)	108.2(3)	_
C(1)-C(2)-C(3)	117.3(3)	116.9(2)	C(8)–C(14)–C(18)	_	112.6(3)
O(3)-C(3)-C(4)	111.6(3)	110.9(2)	C(18)-C(14)-C(15)	_	111.1(3)
O(3)-C(3)-C(2)	102.3(3)	102.8(2)	C(18)-C(14)-C(13)	_	116.2(2)
C(4)-C(3)-C(2)	113.4(3)	113.1(2)	C(14)–C(15)–C(16)	106.2(3)	102.2(2)
C(3)-C(4)-C(5)	112.8(3)	110.1(2)	C(15)-C(16)-C(17)	104.7(3)	105.1(2)
C(6)-C(5)-C(4)	110.4(3)	110.3(2)	C(20)-C(17)-C(16)	114.8(3)	113.8(2)
C(6)-C(5)-C(10)	114.2(3)	114.1(2)	C(20)-C(17)-C(13)	118.7(3)	118.1(2)
C(4)-C(5)-C(10)	109.6(3)	110.5(3)	C(16)-C(17)-C(13)	104.1(3)	103.8(2)
O(6)-C(6)-C(7)	120.9(3)	121.1(3)	O(20)-C(20)-C(21)	109.1(3)	110.1(2)
O(6)-C(6)-C(5)	120.9(3)	120.3(3)	O(20)-C(20)-C(17)	110.1(3)	105.8(2)
C(7)-C(6)-C(5)	118.2(3)	118.6(3)	C(21)–C(20)–C(17)	112.8(3)	111.9(3)
C(8)-C(7)-C(6)	117.2(3)	119.6(3)	O(20)–C(20)–C(22)	100.4(3)	108.0(2)
C(7)-C(8)-C(9)	127.2(3)	124.3(3)	C(21)–C(20)–C(22)	110.9(3)	109.7(2)
C(7)-C(8)-C(14)	141.8(3)	130.4(3)	C(17)–C(20)–C(22)	112.8(3)	111.2(2)
C(9)-C(8)-C(14)	88.7(3)	105.3(3)	O(22)–C(22)–C(23)	109.1(3)	107.6(2)
C(8)-C(9)-O(9,13)	_	101.5(2)	O(22)–C(22)–C(20)	101.7(3)	109.8(2)
C(8)-C(9)-O(9,14)	86.0(2)	_	C(23)–C(22)–C(20)	118.4(3)	115.0(2)
C(8)-C(9)-C(10)	115.1(3)	114.3(2)	C(22)–C(23)–C(24)	111.5(3)	111.8(2)
O(9,13)-C(9)-C(10)	_	112.7(2)	C(23)– $C(24)$ – $C(25)$	114.5(3)	115.5(2)
O(9,14)-C(9)-C(10)	117.2(3)	_	O(25)–C(25)–C(26)	110.1(3)	106.1(3)
C(8)-C(9)-C(11)	109.1(3)	105.2(3)	O(25)–C(25)–C(27)	108.9(4)	109.0(2)
O(9,13)-C(9)-C(11)	_	102.3(2)	C(26)–C(25)–C(27)	110.4(4)	110.0(3)
O(9,14)-C(9)-C(11)	107.2(3)	_	O(25)–C(25)–C(24)	106.3(3)	109.8(3)
C(10)-C(9)-C(11)	117.8(3)	118.9(2)	C(26)–C(25)–C(24)	109.0(3)	109.5(2)
C(9)-C(10)-C(19)	111.2(3)	110.9(2)	C(27)–C(25)–C(24)	112.1(3)	112.3(3)
C(9)-C(10)-C(1)	110.2(3)	108.2(2)	O(2)-C(28)-O(3)	105.5(3)	104.8(2)
C(19)-C(10)-C(1)	110.6(3)	109.7(3)	O(2)–C(28)–C(29)	110.4(3)	109.1(2)
C(9)-C(10)-C(5)	104.9(3)	107.0(3)	O(3)–C(28)–C(29)	109.3(3)	110.0(2)
C(19)-C(10)-C(5)	111.1(3)	112.0(2)	O(2)-C(28)-C(30)	107.9(3)	111.6(2)
C(1)-C(10)-C(5)	108.7(3)	108.9(2)	O(3)–C(28)–C(30)	110.6(3)	108.4(2)
C(9)-C(11)-C(12)	109.9(3)	102.0(2)	C(29)–C(28)–C(30)	112.9(3)	112.7(3)
C(13)-C(12)-C(11)	113.4(3)	101.5(2)	O(22)- $C(31)$ - $O(20)$	105.5(3)	_
C(18)-C(13)-C(12)	111.9(3)	_	O(22)–C(31)–C(33)	110.4(3)	_
C(18)-C(13)-C(14)	108.3(3)	_	O(20)–C(31)–C(33)	108.8(3)	_
C(12)-C(13)-C(14)	107.0(3)	110.2(3)	O(22)–C(31)–C(32)	108.5(3)	_
C(18)-C(13)-C(17)	113.8(3)	_	O(20)–C(31)–C(32)	110.0(3)	_
C(12)-C(13)-C(17)	115.1(3)	126.1(2)	C(33)-C(31)-C(32)	113.3(3)	_

Спектры ЯМР 1 Н и 13 С соединений **16–19** близки спектрам описанных ранее [4] стахистерона В и его ацетонидов. Основное отличие в спектрах обусловлено присутствием 9-гидроксигруппы в соединениях **16–19**, что приводит к сдвигу сигнала С-9 в слабое поле ($\Delta \delta \sim 35$ м. д.) и трансформацией его из дублета в синглет (ЯМР 13 С, режим ЈМОД, табл. 1). Сигнал Н-9 в спектре ЯМР 1 Н соединений **16–19** отсутствует, а сигнал Н-7 становится синглетным. Такая же картина наблюдается в спектрах ЯМР 1 Н и 13 С недавно выделенного из растения вида *Silene italica ssp. nemoralis* 9 α ,20-гидроксиэкдизона [9]. Близость химических сдвигов протонов Н-1– Н-5 в спектрах ЯМР 1 Н этого экдистероида и соединений **16–19** свидетельствует об α -конфигурации 9-гидроксильной группы в синтезированных стахистеронах.

Для наблюдаемого превращения экдистероидов, очевидно, требуется участие кислорода, которое имеет место, по-видимому, в процессе испарения аммиака из реакционной смеси на открытом воздухе. Действительно, если упаривание аммиака после обработки реакционной смеси с диацетонидом 2 провести в токе аргона, то удается выделить соединение **20** – $\Delta^{8(14)}$ -аналог диацетонида **2**. Его образование обусловлено легкостью элиминирования 14α-гидроксильной группы, находящейся в у-положении Δ^7 -6-кетогруппировки [3, 10]. Сообщалось, что соединение, аналогичное соединению 20, но со свободными гидроксильными группами, образуется при фотолизе 20-гидроксиэкдизона [3]. Однако затем было установлено, что это стабильное на воздухе соединение было димером $\Delta^{8(14)}$ -аналога [8]. Структура соединения **20** установлена на основании 1D и 2D спектров ЯМР ¹H и ¹³C (HHCOSY, HSQC, HMBC и NOESY). Тетразамещенной двойной связи в спектре ЯМР ¹³С соединения **20** отвечают синглеты (режим JMOD) 121.6 (C-8) и 145.4 (C-14), ее $\Delta^{8(14)}$ -положение подтверждается в эксперименте НМВС кросс-пиками протонов 7- CH_2 и 18- CH_3 с sp^2 атомами C-8 и C-14 соответственно.

Соединение **20** постепенно окисляется на воздухе, превращаясь в 14α -гидропероксид **10**. По-видимому, можно считать, что $\Delta^{8(14)}$ -аналог **20** является промежуточным соединением, по крайней мере, для 14α -гидропероксида **6**.

Превращение оксетана **9** (и остальных оксетанов **10–12**) в протонодонорной среде (ROH), вероятно, обусловлено образованием оксониевого иона **A**, изомеризующегося в C-14-карбениевый ион **B**. Его стабилизация происходит либо в результате отщепления протона от C-15 с образованием 9-гидроксистахистерона **16**, либо вследствие 1,2-миграции группы 18-Ме с образованием карбениевого иона **C** с последующим образованием 9,13-оксацикла и, после депротонирования оксониевого иона **D**, соединения **13** (схема 2).

Таким образом, экдистероиды в растворе лития в жидком аммиаке вместо характерного для α,β-ненасыщенных кетонов превращения в соответствующие насыщенные кетоны претерпевают необычную трансформацию с образованием 9,14-оксагетероаналогов, для которых характерна перегруппировка в изомерные 9,13-оксагетероаналоги, происходящая с 1,2-миграцией группы 18-Ме из положения 13 в положение 14.

5
$$\stackrel{\text{H}^+}{\longrightarrow}$$
 $\stackrel{\text{H}^+}{\longrightarrow}$ $\stackrel{$

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на приборе Specord IR-75, таблетки КВг. УФ спектры зарегистрированы на спектрометре Specord M-40. Спектры ЯМР ¹Н и ¹³С получены на приборах Bruker AM-300 (300 и 75 МГц соответственно), Bruker Avance-400 (400 и 100 МГц соответственно) и Bruker Avance-500 (500 и 125 МГц соответственно). Химические сдвиги приведены относительно внутреннего стандарта ТМС. Масс-спектры высокого разрешения сняты на приборах VG ZAB-Е и Finnigan MAT 8200 Е. Углы вращения измерены на поляриметре Perkin–Elmer-141. Элементный анализ осуществлен на анализаторе Carlo Erba, model 1106. Температуры плавления определены на приборе Boetius hot stage. Колоночная хроматография и ТСХ проводились с использованием силикагеля (<0.06 мм) и пластин Silufol UV-254 соответственно.

РСА соединений **10** и **15** выполнен на дифрактометре Bruker SMART APEX II [11] (графитовый монохроматор, $\lambda = 0.71073$ Å, ω -сканирование, $2\theta = 52^{\circ}$). Структура расшифрована прямыми методами и уточнена полноматричным МНК по F^2_{hkl} с анизотропными тепловыми параметрами для всех неводородных атомов. Атомы водорода групп O(25)H выявлены из разностного синтеза и уточнялись в изотропном приближении; остальные атомы водорода помещены в геометрически рассчитанные положения и уточнены в модели "наездника". Окончательные факторы сходимости $wR_2 = 0.0962$ и GooF = 1.016 для всех независимых отражений ($R_1 = 0.0477$ рассчитан по F_{hkl} для 2272 наблюдаемых отражений с $I > 2\sigma(I)$). Все расчеты выполнены на персональном компьютере с исполь- зованием комплекса программ SHELXTL [12].

Кристаллы соединений **10** ($C_{33}H_{50}O_7$, M 558.73) выращены в диэтиловом эфире и **15** ($C_{30}H_{46}O_7$, M 518.67), моноклинные, пространственная группа C(2) (для кристаллов **10** при 100 К: a=25.754(4), b=6.6209(11), c=20.260(3) Å, $\beta=114.991(3)^\circ$, V=3131.1(9) ų, Z=4, $\rho_{\rm pacq}=1.185$ г/см³, $\mu({\rm Mo}K\alpha)$ 0.82 см⁻¹; для кристаллов **15** при 120 К: a=21.469(3), b=8.9918(14), c=15.286(2) Å, $\beta=109.933(2)^\circ$, V=10.20

= 2774.1(7) Å³, Z = 4, $\rho_{\text{расч}} = 1.242 \text{ г/см}^3$, $\mu(\text{Мо}K\alpha) 0.87 \text{ см}^{-1}$). Основные длины связей и валентные углы для кристаллов соединений **10** и **15** даны в табл. 4 и 5 (нумерация атомов соответствует нумерации на рис. 1 и 3). Полные таблицы координат атомов, длин связей, валентных и торсионных углов, анизотропных тепловых параметров депонированы в Кембриджском центре кристаллографических данных (для соединения **10** − № CCDC 661563; для соединения **15** − № CCDC 688592).

Спектры ЯМР ¹³С соединений приведены в табл. 1–3.

 9α ,14 α -Эпокси-9-дегидро-14-дезокси-20-гидроксиэкдизон, или (20R,22R)- 9α ,14 α -эпокси-2 β ,3 β ,20,22,25-пентагидрокси-5 β -холест-7-ен-6-он (9) и 14 α -гидроперокси-14-дезокси-20-гидроксиэкдизон, или 14 α -гидроперокси-2 β ,3 β ,20,22, 25-пентагидрокси-5 β -холест-7-ен-6-он (5). В 10 мл безводного ТГФ растворяют 2 г (4.17 ммоль) соединения 1 (полученного согласно [6], т. пл. 246 °C), добавляют к раствору 0.35 г (50 ммоль) Li в 50 мл аммиака (перегнанного над Nа). Смесь перемешивают 0.5 ч при -33 °C, затем добавляют 4.0 г NH₄Cl и реакционную смесь оставляют для испарения аммиака на воздухе. Из остатка экстрагируют этилацетатом (3 × 50 мл), растворитель упаривают и получают твердый остаток, который хроматографируют на колонке с силикагелем (100 г SiO₂, элюент CHCl₃-МеOH, 10:1) и выделяют 1.02 г соединения 9 (выход 50%), R_f 0.36 (CHCl₃-МеOH, 5:1), и 0.9 г соединения 5 (выход 45%), R_f 0.42 (CHCl₃-МеOH, 5:1).

Соединение 9. Т. пл. 148–150 °С, $[\alpha]_D^{20}$ +48.9° (c 0.92, MeOH). ИК спектр, v, см $^{-1}$: 3380, 2900, 1640. УФ спектр (MeOH), λ_{max} , нм: 241. Спектр ЯМР 1 Н (300 МГц, CD₃OD), δ , м. д. (J, Гц): 1.07 (3H, c, 18-CH₃); 1.17 (3H, c, 21-CH₃); 1.19 (3H, c, 26-CH₃); 1.20 (3H, c, 27-CH₃); 1.38 (3H, c, 19-CH₃); 2.33 (1H, м, H-17); 2.54 (1H, м, H-5); 3.28 (1H, м, H-3); 3.32 (1H, м, H-22); 3.94 (1H, м, H-2); 5.70 (1H, c, H-7). Найдено: m/z 479.3006 [М+H] $^+$. С₂₇Н₄₂О₇+ H. Вычислено: [М + H] 479.3009.

Соединение 5. Т. пл. 150–152 °C (т. пл. 158 °C [3]), $[\alpha]_D^{20}$ +49.3° (c 0.56, MeOH). ИК спектр, ν , см⁻¹: 3400, 2900, 1700, 1450. УФ спектр (MeOH), λ_{max} , нм: 242. Спектр ЯМР ¹H (300 МГц, CD₃OD), δ , м. д. (J, Гц): 1.11 (3H, c, 18-CH₃); 1.13 (3H, c, 19-CH₃); 1.32 (3H, c, 21-CH₃); 1.34 (3H, c, 26-CH₃); 1.36 (3H, c, 27-CH₃); 2.44 (1H, м, H-17); 2.55 (1H, д. д, J = 12.5 и J = 3.5, H-5); 3.22 (1H, м, H-9); 3.46 (1H, м, H-22); 4.05 (1H, м, H-2); 4.11 (1H, м, H-3); 5.94 (1H, уш. c, H-7). Найдено: m/z 481.3156 [М+H–O] ⁺. С₂₇H₄₄O₈+H–O. Вычислено: [М+H–O] 481.3165.

2,3:20,22-Диацетонид 9 α ,14 α -эпокси-9-дегидро-14-дезокси-20-гидроксиэкдизона, или (20R,22R)-9 α ,14 α -эпокси-2 β ,3 β :20,22-бис[(диметилметилен)-диокси]-25-гидрокси-5 β -холест-7-ен-6-он (10) и 2,3:20,22-диацетонид 14 α -гидроперокси-14-дезокси-20-гидроксиэкдизона, или (20R,22R)-14 α -гидроперокси-2 β ,3 β :20,22-бис[(диметилметилен)диокси]-25-гидрокси-5 β -холест-7-ен-6-он (6). В 10 мл безводного ТГФ растворяют 2 г (3.6 ммоль) соединения 2 (полученного согласно [4], т. пл. 234–235 °C) и добавляют к раствору 0.3 г (43 ммоль) Li в 50 мл аммиака (перегнанного над Na). Смесь перемешивают 0.5 ч при –33 °C, затем добавляют 4.0 г NH₄Cl и далее обрабатывают, как описано в предыдущем опыте. Получают твердый остаток, который хроматографируют на колонке с силикагелем (60 г SiO₂, элюент CHCl₃–МеОН, 100:1) и выделяют 1.5 г соединения 10 (выход 75%), R_f 0.60 (CHCl₃–МеОН, 8:1), и 0.4 г соединения 6 (выход 19%), R_f 0.49 (CHCl₃–МеОН, 8:1).

Соединение 10. Т. пл. 232–233 °С, $[\alpha]_D^{18}$ +75° (c 1.0, CHCl₃). ИК спектр, v, см⁻¹: 3400, 2900, 1650, 1450, 1370. УФ спектр (MeOH), λ_{max} , нм: 242. Спектр ЯМР ¹H (500 МГц, CDCl₃), δ , м. д. (J, Гц): 0.97 (3H, c, 18-CH₃); 1.16 (3H, c, 21-CH₃); 1.21 (3H, c, 26-CH₃); 1.22 (3H, c, 27-CH₃); 1.26 и 1.28 (6H, два с, 2,3-C(CH₃)₂); 1.33 (3H, c, 19-CH₃); 1.41 и 1.48 (6H, два с, 20,22-C(CH₃)₂); 1.46 и 1.55 (2H, два м, H-23); 1.52 и 1.69 (2H, два м, H-24); 1.56 (1H, м, H_a-4); 1.76 и 1.98 (2H, два м, H-16); 1.89 и 2.10

(2H, два м, H-15); 1.89 и 2.47 (2H, два м, H-11); 1.90 и 1.99 (2H, два м, H-12); 1.92 и 2.12 (2H, два м, H-1); 2.08 (1H, м, H-17); 2.19 (1H, м, H-5); 2.54 (1H, м, H_e-4); 3.71 (1H, д, J=9.4, H-22); 4.01 (1H, м, $w_{1/2}=25$, H-3), 4.20 (1H, м, H-2), 5.61 (1H, с, H-7). Найдено: m/z 559.3641 [M+H]⁺. $C_{33}H_{50}O_7$ +H. Вычислено: [M+H] 559.3635.

Соединение 6. Т. пл. 139–141 °C (аморфное вещество [3]), $[\alpha]_D^{18}$ +17.2° (c 5.2, CHCl₃). ИК спектр, ν , см⁻¹: 3400, 2965, 1650. УФ спектр (CH₃OH), λ_{max} , нм: 242. Спектр ЯМР ¹H (500 МГц, CDCl₃), δ , м. д. (J, Гц): 0.85 (3H, с, 18-CH₃); 1.02 (3H, с, 19-CH₃); 1.12 (3H, с, 21-CH₃); 1.24 (3H, с, 26-CH₃); 1.25 (3H, с, 27-CH₃); 1.29 и 1.98 (2H, два м, H-1); 1.33 (6H, с, 2,3-C(CH₃)₂); 1.41 и 1.49 (6H, два с, 20,22-C(CH₃)₂); 1.48 и 1.59 (2H, два м, H-23); 1.58 и 1.72 (2H, два м, H-24); 1.64 и 1.76 (2H, два м, H-11); 1.77 и 1.94 (2H, два м, H-12); 1.78 и 2.05 (2H, два м, H-16); 1.81 и 2.06 (2H, два м, H-15); 1.99 (1H, м, H_a-4); 2.05 (1H, м, H_e-4); 2.12 (1H, м, H-17); 2.36 (1H, д. д. J = 10.0 и J = 7.0, H-5); 2.73 (1H, м, $w_{1/2}$ = 23, H-9); 3.64 (1H, м, $w_{1/2}$ = 15, H-22); 4.25 (1H, м, $w_{1/2}$ = 21, H-2); 4.28 (1H, м, $w_{1/2}$ = 12, H-3); 5.83 (1H, д. J = 2.6, H-7). Найдено: m/z 561.3795 [М+H-O]⁺. С₃₃H₅₂O₈+H-O. Вычислено: [М+H-O] 561.3791.

20,22-Ацетонид 9 α ,14 α -эпокси-9-дегидро-14-дезокси-20-гидроксиэкдизона, или (20R,22R)-9 α ,14 α -эпокси-20,22-[(диметилметилен)диокси]-2 β ,3 β ,25-тригидрокси-5 β -холест-7-ен-6-он (11) и 20,22-ацетонид 14 α -гидроперокси-14-дезокси-20-гидроксиэкдизона, или (20R,22R)-14 α -гидроперокси-20,22-[(диметилметилен)диокси]-2 β ,3 β ,25-тригидрокси-5 β -холест-7-ен-6-он (7). В 5 мл безводного ТГФ растворяют 1 г (1.9 ммоль) соединения 3 (полученного согласно [4], т. пл. 223–224 °C) и добавляют к раствору 0.16 г (23 ммоль) Li в 30 мл аммиака (перегнанного над Na). Смесь перемешивают 20 мин при –33 °C, затем добавляют 2.0 г NH₄Cl и далее обрабатывают, как описано выше. Получают твердый остаток, который хроматографируют на колонке с силикагелем (40 г SiO₂, элюент CHCl₃—МеOH, 20:1) и выделяют 0.6 г соединения 7 (выход 60%), R_f 0.55 (CHCl₃—МеOH, 4:1) и 0.15 г соединения 11 (выход 15%), R_f 0.44 (CHCl₃—МеOH, 4:1).

Соединение 11. Т. пл. 134–136 °C; $[\alpha]_D^{18}$ +61.1° (c 2.49, CHCl₃). ИК спектр, ν , см⁻¹: 3400, 2900, 1650, 1450, 1350. УФ спектр (CH₃OH), λ_{max} , нм: 242. Спектр ЯМР ¹H (300 МГц, CDCl₃), δ , м. д. (J, Гц): 0.94 (3H, c, 18-CH₃); 1.14 (3H, c, 21-CH₃); 1.19 (3H, c, 26-CH₃); 1.19 (3H, c, 27-CH₃); 1.25 (3H, c, 19-CH₃); 1.36 и 1.39 (6H, два c, 20,22-C(CH₃)₂); 3.40 (1H, м, H-3); 3.96 (1H, д, J = 8.5, H-22); 3.99 (1H, м, H-2); 5.63 (1H, c, H-7). Найдено: m/z 518.3256 [М]⁺. C_{30} H₄₆O₇. Вычислено: M = 518.3243.

Соединение 7. Т. пл. 120–123 °С; $[\alpha]_D^{20}$ +52.6° (c 4.27, CHCl₃). ИК спектр, v, см⁻¹: 3400, 2950, 1660. УФ спектр (CH₃OH), λ_{max} , нм: 242. Спектр ЯМР ¹Н (300 МГц, CDCl₃), δ , м. д. (J, Гц): 0.83 (3H, c, 18-CH₃); 0.96 (3H, c, 19-CH₃); 1.12 (3H, c, 21-CH₃); 1.22 (3H, c, 26-CH₃); 1.25 (3H, c, 27-CH₃); 1.31 и 1.40 (6H, два c, 20,22-C(CH₃)₂); 2.14 (1H, м, H-17); 2.39 (1H, м, H-5); 2.93 (1H, м, H-9); 3.61 (1H, м, H-22); 3.88 (1H, м, H-2); 4.01 (1H, м, H-3); 5.85 (1H, уш. c, H-7). Найдено, %: C 67.52; H 9.07. $C_{30}H_{48}O_8$. Вычислено, %: C 67.14; H 9.01.

 9α , 13α -эпокси-9-дегидро-14-дезокси-13-деметил- 14β -метил-20-гидрокси-экдизон, или (20R, 22R)- 9α , 13α -эпокси-13-деметил- 14β -метил- 2β , 3β , 20, 22, 25-пентагидрокси- 5β -холест-7-ен-6-он (13) и 9α -гидроксистахистерон B, или (20R, 22R)- 2β , 3β , 9α , 20, 22, 25-гексагидрокси- 5β -холест-7, 14-диен-6-он (16). В 10 мл MeOH и 1 мл воды растворяют 0.1 г (0.21 ммоль) соединения 9 и перемешивают 24 ч при комнатной температуре. Реакционную смесь упаривают, получают твердый остаток, который хроматографируют на колонке с силикагелем (10 г SiO_2 , элюент CHCl₃-MeOH, 9:1) и выделяют 0.04 г соединения 13 (выход 40%), R_f 0.37 (CHCl₃-MeOH, 5:1), и 0.05 г соединения 16 (выход 50%), R_f 0.27 (CHCl₃-MeOH, 5:1).

Соединение 13. Т. пл. 122–124 °С, $[\alpha]_D^{21}$ +40.3° (c 1.1, CH₃OH). ИК спектр, v, см $^{-1}$: 3400, 2900, 1650, 1450, 1370. УФ спектр (MeOH), λ_{max} , нм: 242. Спектр ЯМР 1 H (500 МГц, CDCl₃), δ , м. д.: 1.20 (3H, c, 18-CH₃); 1.25 (3H, c, 26-CH₃); 1.26 (3H, c, 27-CH₃); 1.31 (3H, c, 21-CH₃); 1.39 и 1.71 (2H, два м, H-15); 1.41 и 1.65 (2H, два м, H-23); 1.45 и 2.17 (2H, два м, H-12); 1.49 (3H, c, 19-CH₃); 1.58 и 1.70 (2H, два м, H-24); 1.69 и 1.95 (2H, два м, H-1); 1.85 и 2.08 (2H, два м, H-16); 1.92 (1H, м, H_a-4); 2.10 (2H, м, H-11); 2.22 (1H, м, H-5); 2.39 (1H, м, H_e-4); 2.45 (1H, м, H-17); 3.49 (1H, м, H-3); 3.52 (1H, м, H-22); 3.98 (1H, м, H-2); 5.63 (1H, c, H-7). Спектр ЯМР 1 H (400 МГц, CD₃OD), δ , м. д.: 1.18 (3H, c, 26-CH₃); 1.20 (3H, c, 27-CH₃); 1.24 (3H, c, 18-CH₃); 1.28 (3H, c, 21-CH₃); 1.38 и 1.60 (2H, два м, H-23); 1.42 и 1.81 (2H, два м, H-24); 1.43 и 1.73 (2H, два м, H-15); 1.46 и 2.18 (2H, два м, H-12); 1.49 (3H, c, 19-CH₃); 1.73 и 1.87 (2H, м, H-1); 1.87 и 2.11 (2H, два м, H-16); 1.94 (1H, м, H_a-4); 2.16 (2H, м, H-11); 2.29 (1H, м, H-5); 2.37 (1H, м, H_e-4); 2.52 (1H, м, H-17); 3.43 (1H, м, H-22); 3.94 (1H, м, H-2); 3.94 (1H, м, H-3); 5.67 (1H, c, H-7). Найдено: m/z 479.3002 [М+Н] $^+$. C_{27} H₄₂O₇+H. Вычислено: [М+Н] 479.3009.

Соединение 16. Т. пл. 147–148 °С, $[\alpha]_D^{21}$ –166° (c 1.0, CH₃OH). ИК спектр, v, см⁻¹: 3400, 2900, 1650, 1450, 1360. УФ спектр (CH₃OH), λ_{max} , нм: 298. Спектр ЯМР ¹H (500 МГц, CDCl₃), δ , м. д. (J, Гц): 1.07 (3H, c, 19-CH₃); 1.14 (3H, c, 18-CH₃); 1.27 (6H, два c, 26-CH₃, 27-CH₃); 1.28 (3H, c, 21-CH₃); 1.43 и 1.61 (2H, два м, H-23); 1.44 и 2.12 (2H, два м, H-1); 1.62 и 1.75 (2H, два м, H-24); 1.75 и 2.12 (2H, два м, H-12); 1.94 (1H, м, H_a-4); 1.98 и 2.05 (2H, м, H-11); 2.16 (1H, м, H-17); 2.23 (1H, м, H_e-4); 2.26 (1H, д. д. д. д. J = 17.0, J = 7.8 и J = 3.8, H_a-16); 2.63 (1H, д. д. д. J = 13.6 и J = 4.7, H-5); 2.65 (1H, д. д. д. д. J = 17.0, J = 11.0 и J = 2.2, H_e-16); 3.07 (1H, м, $w_{1/2}$ = 8.9, H-3); 3.47 (1H, д. J = 9.6, H-22); 4.42 (1H, м, $w_{1/2}$ = 22.0, H-2); 6.03 (1H, c, H-7); 6.12 (1H, д. д. J = 3.4 и J = 2.2, H-15). Спектр ЯМР ¹H (300 МГц, CD₃OD) δ , м. д. (J, Гц): 1.02 (3H, c, 19-CH₃); 1.12 (3H, c, 18-CH₃); 1.18 (3H, c, 26-CH₃); 1.20 (3H, c, 27-CH₃); 1.24 (3H, c, 21-CH₃); 3.32 (1H, м, H-22); 3.95 (1H, м, $w_{1/2}$ = 7, H-3); 4.38 (1H, м, $w_{1/2}$ = 20, H-2); 5.99 (1H, c, H-7); 6.14 (1H, уш. c, H-15). Найдено: m/z 479.3006 [M+H]⁺. C₂₇H₄₂O₇+H. Вычислено: [M+H] 479.3009.

2,3:20,22-Диацетонид 9α,13α-эпокси-9-дегидро-14-дезокси-13-деметил-14βметил-20-гидроксиэкдизона, или (20R,22R)- 9α , 13α -эпокси-13-деметил-14 β метил-2β,3β:20,22-бис[(диметилметилен)диокси]-25-гидрокси-5β-холест-7-ен-**6-он (14).** К раствору 0.12 г (0.25 ммоль) соединения **13** в 7 мл ацетона добавляют 40 мг (0.02 ммоль) фосфорно-молибденовой кислоты (ФМК). Смесь перемешивают 15 мин при комнатной температуре (контроль ТСХ). реакционную массу упаривают, добавляют 3 мл воды и 3 мл насыщенного раствора NaHCO₃. Смесь экстрагируют этилацетатом (3 × 100 мл), растворитель упаривают, получают твердый остаток, который хроматографируют на колонке с силикагелем (10 г SiO₂, элюент CHCl₃-MeOH, 50:1) и выделяют 0.073 г соединения **14** (выход 52%), R_f 0.76 (CHCl₃–MeOH, 5:1). Т. пл. 192–194 °C, $[\alpha]_D^{20}$ +110° (c 1.0, CHCl₃). ИК спектр, v, см⁻¹: 3400, 2900, 1650, 1450, 1380. УФ спектр (CH₃OH), λ_{max} , нм: 242. Спектр ЯМР ¹H (300 МГц, CDCl₃), δ, м. д. (*J*, Гц): 1.19 (3H, c, 18-CH₃); 1.25 (6H, с, 26-СН₃ и 27-СН₃); 1.29 (3H, с, 21-СН₃); 1.31 и 1.42 (6H, два с, 20,22-С(СН₃)₂); 1.35 и 1.46 (6H, два с, 2,3-С(СН₃)₂); 1.52 (3H, с, 19-СН₃); 2.26 (1H, м, H-5); 2.38 (1H, м, H-17); 3.38 (1H, д. д, J = 8.6 и J = 2.7, H-22); 4.06 (1H, м, H-2); 4.17 (1H, м, H-3); 5.63 (1H, с, H-7). Найдено, %: С 70.54; Н 9.09. С₃₃Н₅₀О₇. Вычислено, %: C 70.94; H 9.02.

2,3-Ацетонид 9 α ,13 α -эпокси-9-дегидро-14-дезокси-13-деметил-14 β -метил-20-гидроксиэкдизона, или (20R,22R)-9 α ,13 α -эпокси-13-деметил-14 β -метил-2 β ,3 β -[(диметилметилен)диокси]-20,22,25-тригидрокси-5 β -холест-7-ен-6-он (15) и 2,3-ацетонид 9 α -гидроксистахистерона B, или (20R,22R)-2,3-[(диметилметилен)диокси]-20,22,9 α ,25-тетрагидрокси-5 β -холест-7,14-диен-6-он (19). В 5 мл безводного ТГ Φ растворяют 1 г (1.9 ммоль) соединения 4 (полученного

согласно [13]) и добавляют к раствору 0.16 г (23 ммоль) Li в 30 мл аммиака (перегнанного над Na). Смесь перемешивают 20 мин при -33 °C, затем добавляют 2.0 г NH₄Cl и далее обрабатывают, как описано в опыте с диацетонидом 2. Получают твердый остаток, который хроматографируют на колонке с силикагелем (40 г SiO₂, элюент CHCl₃–MeOH, 40:1) и выделяют 0.30 г смеси соединений 12 и 19 (данные ЯМР ¹Н и ¹³C), R_f 0.42 (CHCl₃–MeOH, 7:1); соотношение 12–19 \sim 2.4:1, из относительной интенсивности синглетов H-7 с δ 5.62 и 6.05 м. д. соответственно) и 0.41 г смеси соединений 4 и 8 (данные ЯМР ¹Н и ¹³C), R_f 0.40 (CHCl₃–MeOH, 7:1). После повторного хроматографирования смеси 12 и 19 (10 г SiO₂, элюент CHCl₃–MeOH, 40:1) и получают 0.12 г соединения 15 (выход 12%), R_f 0.55 (CHCl₃–MeOH, 7:1), и 0.13 г соединения 19 (выход 13%), R_f 0.42 (CHCl₃–MeOH, 7:1).

Соединение 15. Т. пл. 198–200 °С, $[\alpha]_D^{20}$ +72.1° (c 0.24, CHCl₃). ИК спектр, v, см $^{-1}$: 3400, 2900, 1650, 1450, 1380. УФ спектр (CH₃OH), λ_{max} , нм: 242. Спектр ЯМР 1 Н (400 МГц, CDCl₃), δ , м. д.: 1.22 (3H, c, 18-CH₃); 1.26 (3H, c, 26-CH₃); 1.27 (3H, c, 27-CH₃); 1.29 (3H, c, 21-CH₃); 1.33 и 1.45 (6H, два c, 2,3-C(CH₃)₂); 1.52 (3H, c, 19-CH₃); 2.26 (1H, м, H-5); 2.45 (1H, м, H-17); 3.52 (1H, м, H-22); 4.05 (1H, м, H-2); 4.16 (1H, м, H-3); 5.62 (1H, c, H-7). Найдено, %: С 69.56; H 8.87. C_{30} H₄₆O₇. Вычислено, %: С 69.47; H 8.94.

Соединение 19. Т. пл. 116–118 °C, $[\alpha]_D^{25}$ –179.5° (c 1.77, CHCl₃). ИК спектр, v, см⁻¹: 3400, 2900, 1650, 1450, 1370. УФ спектр (CH₃OH), λ_{max} , нм: 298. Спектр ЯМР ¹H (400 МГц, CDCl₃), δ , м. д. (J, Гц): 1.12 (3H, c, 18-CH₃); 1.14 (3H, c, 19-CH₃); 1.27 (9H, c, 21-CH₃, 26-CH₃, 27-CH₃); 1.34 и 1.58 (6H, два c, 2,3-C(CH₃)₂); 2.52 (1H, д. д, J = 13.2 и J = 4.4, H-5); 3.46 (1H, м, H-22); 4.30 (1H, м, H-3); 4.54 (1H, д. д, J = 12.8 и J = 6.4, H-2); 6.06 (1H, c, H-7); 6.14 (1H, уш. c, H-15). Найдено, %: C 69.63; H 8.77. C_{30} H₄₆O₇. Вычислено, %: C 69.47; H 8.94.

2,3:20,22-Диацетонид 9 α -гидроксистахистерона **B**, или (20*R*,22*R*)-2**β**,3**β:20,22-бис**[(диметилметилен)диокси]-9 α ,25-дигидрокси-5 β -холест-7,14-диен-6-он (17). В 15 мл ЕtOH и 15 мл ТГФ растворяют 0.3 г (0.54 ммоль) соединения **10** и перемешивают 240 ч при комнатной температуре. Реакционную смесь упаривают. Твердый остаток хроматографируют на колонке с силикагелем (10 г SiO₂, элюент CHCl₃–МеOH, 30:1), выделяя 0.1 г смеси соединений **10** и **14** (данные ЯМР ¹H и ¹³C), R_f 0.60 (CHCl₃–МеOH, 8:1) и 0.2 г соединения **17** (выход 67%), R_f 0.40 (CHCl₃–МеOH, 8:10).

Соединение 17. Т. пл. 228–230 °С, $[\alpha]_D^{18}$ –222° (c 1.0, CHCl₃). ИК спектр, v, см⁻¹: 3400, 2900, 1650, 1450, 1370. УФ спектр (CH₃OH), λ_{max} , нм: 298. Спектр ЯМР ¹H (500 МГц, CDCl₃), δ , м. д. (J, Гц): 1.07 (3H, с, 18-CH₃); 1.11 (3H, с, 19-CH₃); 1.22 (3H, с, 21-CH₃); 1.24 (3H, с, 26-CH₃); 1.25 (3H, с, 27-CH₃); 1.31 и 1.33 (6H, два с, 2,3-C(CH₃)₂); 1.39 и 2.24 (2H, два м, 1-CH₂); 1.43 и 1.50 (6H, два с, 20,22-C(CH₃)₂); 1.48 и 1.64 (2H, два м, H-23); 1.57 и 1.73 (2H, два м, H-24); 1.68 и 2.04 (2H, два м, H-12); 1.80 и 2.02 (2H, два м, H-11); 2.03 (1H, м, H-17); 2.09 (1H, м, H_a-4); 2.21 (1H, м, H_e-4); 2.37 (1H, д. д. д. J = 16.8, J = 7.6 и J = 3.8, H_a-16); 2.52 (1H, д. д. д. J = 13.3 и J = 4.6, H-5); 2.67 (1H, д. д. д. д. J = 16.6, J = 10.8 и J = 1.7, H_e-16); 3.73 (1H, д. д. J = 9.5 и J = 2.3, H-22); 4.30 (1H, м, $w_{1/2}$ = 12.0, H-3); 4.52 (1H, м, $w_{1/2}$ = 21.0, H-2); 6.04 (1H, с, H-7); 6.12 (1H, д. д. J = 3.4 и J = 2.3, H-15). Найдено, %: С 71.07; H 8.91. С₃₃H₅₀O₇. Вычислено, %: С 70.94; H 9.02.

20,22-Ацетонид 9 α -гидроксистахистерона В, или (20R,22R)-20,22-[(диметил-метилен)диокси]-2 β ,3 β ,9 α ,25-тетрагидрокси-5 β -холест-7,14-диен-6-он (18). В 15 мл смеси МеОН и 1 мл H₂O растворяют 0.29 г (0.6 ммоль) соединения 11, перемешивают 120 ч при комнатной температуре. Реакционную смесь упаривают, твердый остаток хроматографируют на колонке с силикагелем (10 г SiO₂, элюент CHCl₃–МеОН, 15:1), выделяя 0.5 г исходного соединения 11 (выход 15%), R_f 0.32 (CHCl₃–МеОН, 8:1), и 0.23 г соединения 18 (выход 80%), R_f 0.21 (CHCl₃–МеОН,

Соединение 18. Т. пл. 113–115 °С, $[\alpha]_D^{24}$ –133.5° (c 2.4, CHCl₃). ИК спектр, v, см⁻¹: 3400, 2900, 1650, 1450, 1370. УФ спектр (CH₃OH), λ_{max} , нм: 298. Спектр ЯМР ¹H (300 МГц, CDCl₃), δ , м. д. (J, Гц): 1.03 (3H, c, 19-CH₃); 1.05 (3H, c, 18-CH₃); 1.22 (3H, c, 26-CH₃); 1.25 (3H, c, 21-CH₃); 1.25 (3H, c, 27-CH₃); 1.31 и 1.43 (6H, два c, 20,22-C(CH₃)₂); 2.25–2.69 (1H, м, H-17); 2.25–2.69 (1H, м, H-5); 3.72 (1H, м, H-22); 4.01 (1H, м, $w_{1/2}$ = 12.0, H-3); 4.37 (1H, м, $w_{1/2}$ = 23.0, H-2); 6.00 (1H, c, H-7); 6.08 (1H, уш. с, H-15). Найдено, %: С 69.55; H 8.85. $C_{30}H_{46}O_7$. Вычислено, %: С 69.47; H 8.94.

 $\Lambda^{8(14)}$ -Аналог диацетонида 20-гидроксиэкдизона, или (20R,22R)-2,3:20,22-бис[(диметилметилен)диокси]-25-гидрокси-5 β -холест-8(14)-ен-6-он (20). В 10 мл безводного ТГФ растворяют 1.5 г (2.7 ммоль) соединения 2 и добавляют к раствору 0.22 г (31 ммоль) Li в 50 мл аммиака (перегнанного над Na). Смесь перемешивают 0.5 ч при -33 °C, затем добавляют 3.0 г NH₄Cl и упаривают аммиак в токе аргона. Из остатка экстрагируют серным эфиром (3 \times 50 мл); растворитель упаривают, получают твердый остаток, который хроматографируют на колонке с силикагелем (40 г SiO₂, элюент CHCl₃–МеОН, 100:1) и выделяют 0.85 г соединения 20 (выход 58%), R_f 0.38 (CHCl₃–МеОН, 6:1), и 0.6 г соединения 10 (выход 38.5%), R_f 0.3 (CHCl₃–МеОН, 6:1).

Соединение 20. Т. пл. 107–110 °C, $[\alpha]_D^{20}$ +0.7° (c 1.6, CHCl₃). Спектр ЯМР 1 Н (400 МГц, CDCl₃), δ , м. д. (J, Гц): 0.77 (3H, c, 19-CH₃); 0.93 (3H, c, 18-CH₃); 1.12 (3H, c, 21-CH₃); 1.18 (6H, c, 26,27-CH₃); 1.23 и 1.75 (2H, два м, H-12); 1.24 и 1.27 (6H, два с, 2,3-C(CH₃)₂); 1.29 (1H, м, H_a-1); 1.36 и 1.43 (6H, два с, 20,22-C(CH₃)₂); 1.37 и 1.55 (2H, два м, H-23); 1.38 (1H, м, H-17); 1.49 и 1.66 (2H, два м, H-24); 1.59 (2H, м, H-11); 1.65 и 1.98 (2H, два м, H-16); 1.78 (1H, м, H_e-1); 1.99 (1H, м, H_e-4); 2.02 и 2.23 (2H, два м, H-15); 2.09 (1H, м, H_a-4); 2.25 (1H, м, H-9); 2.35 (1H, д. д, J = 12.4 и J = 4.4, H-5); 2.91 и 2.93 (2H, два д, 2J = 14.0, H-7); 3.71 (1H, м, H-22); 4.19 (1H, м, H-2); 4.22 (1H, м, H-3). Найдено, %: C 72.18; H 9.47. C₃₃H₅₂O₆. Вычислено, %: C 72.76; H 9.62.

Авторы благодарят Жан-Пьер Жиро, Лоренс Динан и Рёне Лафон за получение и интерпретацию спектров 1D и 2D ЯМР 1 Н и 13 С и масс-спектров высокого разрешения.

Работа выполнена при финансовой поддержке АН Республики Башкортостан, Фонда содействия отечественной науке и гранта Президента РФ (НШ-6079.2008.3).

СПИСОК ЛИТЕРАТУРЫ

- 1. D. Caine, in *Organic Reactions*, W. G. Dauben (Ed.), Wiley, New York, 1976, vol. 23, p. 1.
- 2. H. L. Dryden, Jr., in: *Organic Reactions in Steroid Chemistry*, J. Fried, J. A. Edwards (Eds.), Van Nostrand Reinhold Co., New York, 1972, vol. 1, p. 27.
- 3. L. Canonica, B. Danieli, G. Lesma, G. Palmisano, A. Mugnoli, *Helv. Chim. Acta*, **70**, 701 (1987).
- 4. В. Н. Одиноков, И. В. Галяутдинов, Д. В. Недопекин, Л. М. Халилов, *Изв. АН*, *Сер. хим.*, 220 (2003).
- 5. R. Lafont, J. Harmatha, F. Marion-Poll, L. Dinan, I. D. Wilson, Ecdybase, a free ecdysteroid database. 2002, http://www.ecdybase.org.
- 6. V. N. Odinokov, I. V. Galyautdinov, D. V. Nedopekin, L. M. Khalilov, A. S. Shashkov, V. V. Kachala, L. Dinan, R. Lafont, *Insect Biochem. Molec. Biol.*, **32**, 161 (2002).

- 7. J.-P. Girault, Russ. Plant. Physiol., 45, 306 (1998).
- 8. J. Harmatha, M. Budesinsky, K. Vokac, Steroids, 67, 127 (2002).
- 9. Z. Pongracz, M. Bathori, G. Toth, A. Simon, M. Mak, I. Mathe, *J. Nat. Prod.*, **66**, 450 (2003).
- 10. T. Anthonsen, P. H. McCabe, R. McCrindle, R. D. H. Murray, *Tetrahedron*, **25**, 2233 (1969).
- 11. APEX II Software Package, Bruker AXS Inc., 5465, East Cheryl Parkway, Madison, WI 5317, 2005.
- 12. SHELXTL v. 5.10, Structure Determination Software Suite, Bruker AXS, Madison, Wisconsin, USA, 1998.
- 13. A. Suksamrarn, P. Pattanaprateep, Tetrahedron, 51, 10633 (1995).

Институт нефтехимии и катализа РАН, Уфа 450075 e-mail: ink@anrb.ru

^аИнститут элементоорганических соединений им. А. Н. Несмеянова РАН, Москва 119991

Поступило 27.05.2008