Посвящается академику РАН Б. А. Трофимову в связи с его 70-летием

А.Б. Трофимов^{а,б}, И.Л. Зайцева^{а,в}, Т.Э. Московская^а, Н.М. Витковская^а

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ ФОТОЭЛЕКТРОННЫХ СПЕКТРОВ ФУРАНА, ПИРРОЛА, ТИОФЕНА И СЕЛЕНОФЕНА

Спектры ионизации фурана, пиррола, тиофена и селенофена рассчитаны в рамках неэмпирического квантово-химического метода одночастичной функции Грина в приближении алгебраического диаграммного построения третьего порядка [ADC(3)]. Рассчитанные энергии и интенсивности вертикальных переходов, относящихся к ионизации внешне- и внутривалентных оболочек, сопоставлены с новейшими экспериментальными данными. Хорошее согласие теоретических и экспериментальных результатов позволяет провести подробное отнесение и интерпретацию наблюдаемых фотоэлектронных спектров. Обсуждаются вопросы нарушения картины орбитальной ионизации; объяснен механизм возникновения низколежащих фотоэлектронных сателлитов. Рассмотрены некоторые общие зако-номерности и тенденции поведения спектров изучаемых систем.

Ключевые слова: пиррол, селенофен, тиофен, фуран, ионизация, метод функций Грина, неэмпирические квантово-химические расчеты, фотоэлектронные спектры.

Фуран, пиррол и тиофен являются фундаментальными представителями класса пятичленных гетероароматических соединений. Эти ключевые молекулы играют исключительно важную роль во многих областях современной химии, биохимии и технологии. Их структурные единицы входят в различные природные продукты и биологически активные вещества, а их производные являются строительными блоками для синтеза более сложных гетероатомных молекул и получения проводящих полимеров [1–6].

Спектры ионизации фурана, пиррола и тиофена служат одним из важнейших источников информации об электронном строении этих систем, в связи с чем они часто становились предметом различных экспериментальных исследований, результаты которых нашли отражение в справочных изданиях [7–9] и обзорных статьях [10–14].

Ранние работы, выполненные с использованием источников возбуждения Не I и Не II, посвящены преимущественно спектрам внешневалентной ионизации [15–19]. В этих работах охарактеризованы низко лежащие по энергии катионные состояния рассматриваемых систем, а также получены

данные о колебательной структуре соответствующих фотоэлектронных 1366

полос. Изучение угловых распределений для установления симметрии конечных состояний в спектрах фурана, пиррола и тиофена проводилось в работах [20–24]. Следует также упомянуть работы, относящиеся к ионизации Пеннинга [25, 26] и электронной импульсной (*e*, 2*e*) спектроскопии [27].

Полученные при использовании новейших источников монохроматического синхротронного излучения фотоэлектронные спектры фурана, пиррола, тиофена [28], селенофена [29] и галогенозамещенных тиофенов [30–32] характеризуют наиболее современный уровень спектроскопических исследований. При этом спектральный диапазон включает в себя также внутривалентную область, а варьирование энергии возбуждения делает возможным изучение ионизационной динамики.

Возрастание объема и усложнение доступной в таком виде спектроскопической информации влечет за собой необходимость применения теоретических подходов для интерпретации результатов наблюдений. Отмечаемые при этом трудности обусловлены резким увеличением числа переходов с энергией выше 15–18 эВ, а также нарушением в этой области орбитальной картины ионизации. Напомним, что последний эффект состоит в смещении спектральной интенсивности от основных "однодырочных" катионных состояний к близко лежащим фотоэлектронным сателлитам [33]. По своей сути эффект является проявлением многоэлектронных взаимодействий, связанных с процессами ионизации, и может быть описан только при использовании теоретических методов, адекватно учитывающих эффекты электронной корреляции.

Теоретические исследования ионизации фурана, пиррола и тиофена имеют давнюю историю [19, 28, 34–37]. К сожалению, существенным недостатком многих из перечисленных работ, в том числе и недавних [28, 37], является, на наш взгляд, то, что они сфокусированы преимущественно на внешневалентных переходах. Кроме того последующие расчеты часто лишь повторяют на несколько более точном уровне предшествующие, привнося при этом сравнительно мало нового в понимание природы спектров. В большинстве случаев за рамками обсуждения находятся переходы, относящиеся к внутривалентному диапазону, а также низко лежащие фотоэлектронные сателлиты, природа которых представляет значительный интерес. До настоящего времени практически полностью отсутствуют попытки выявления общих закономерностей в спектрах рассматриваемых молекул, принадлежащих к одному классу.

Предпринятое нами в данной работе исследование призвано до некоторой степени восполнить имеющиеся пробелы в теоретическом изучении вопросов ионизации пятичленных гетероциклов. Кроме того, проведенные нами в рамках единого подхода, основанного на теории одночастичных функций Грина [38–40], систематические расчеты фотоэлектронных спектров пиррола, фурана, тиофена и селенофена способны стимулировать надежную интерпретацию и наиболее полное отнесение фотоэлектронных спектров данных систем [28–30].

Описание подхода. Энергии и интенсивности вертикальных переходов в спектрах ионизации фурана, пиррола, тиофена и селенофена рассчиты-1367 вались в приближении алгебраического диаграммного построения третьего порядка [ADC(3)] для одночастичной функции Грина [38–40], которое хорошо зарекомендовало себя в подобных расчетах (см., например, работы [38, 29–32, 41–43]). Метод ADC(3) последовательно учитывает все основные эффекты, связанные с ионизацией (электронную корреляцию и орбитальную релаксацию) и позволяет рассчитывать энергии (E) и относительные интенсивности (P) переходов напрямую, минуя раздельные вычисления для основного и конечного состояний.

Конечные катионные состояния здесь трактуются в терминах конфигураций типа "дырка" (h) и "две-дырки-одна-частица" (2h-1p), что позволяет описать как основные линии в спектре, так и сателлиты, а также ситуации с нарушением орбитальной картины ионизации, распространенные во внутривалентных областях спектров. Метод ADC(3) характеризуется средней ошибкой расчета энергий основных фотоэлектронных линий ~0.2 эВ (точность для 2h-1p-сателлитов ниже) и сравнительно небольшими вычислительными затратами, что делает его достаточно надежным и практичным инструментом для изучения спектров ионизации широкого круга молекулярных систем.

Для сравнения расчеты проводились также более простым методом внешневалентных функций Грина (OVGF) [38], который описывает в 3-м порядке теории возмущений энергии и интенсивности основных фотоэлектронных переходов, но не более энергоемких, конечные состояния которых имеют сложный многоконфигурационный характер.

Равновесные молекулярные геометрии основного состояния оптимизировались в рамках теории возмущений Мёллера–Плессета 2-го порядка (MP2) с использованием базисных наборов 6-31G* [44–47]. Расчеты методами ADC(3) и OVGF проводились в трехэкспонентных базисных наборах 6-311G* [44–49], дополненных поляризационными функциями (во всех случаях применялось 6-компонентное представление базисных *d*-функций). В приближении ADC(3) были "заморожены" орбитали К- и L-оболочек, а из расчета селенофена методом OVGF были исключены орбитали М-оболочки селена.

Описанная методика, на наш взгляд, является теоретически более адекватной по сравнению с подходом, где используются экспериментальные геометрии. В частности, она позволяет непосредственно сравнивать результаты для разных молекул, что особенно важно в случае анализа, проводимого в работе.

Расчеты методом ADC(3) выполнены с помощью программы AGAMIP [50], имеющей интерфейс к стандартному квантово-химическому пакету программ GAMESS [51]. Оптимизация геометрии в рамках схемы MP2 и расчеты в приближении OVGF проведены при использовании программы GAUSSIAN [52].

Огибающие теоретических фотоэлектронных спектров построены путем свертки рассчитанных спектров с функциями гауссова типа, имеющими полуширину линии (FWHM) 0.5 эВ, призванную приближенно скомпенсировать не учтенные в расчетах неразрешенные в спектрах колебательные структуры и другие факторы.

Общая характеристика спектров ионизации. Валентные электронные конфигурации Хартри-Фока (ХФ) для молекул фурана, пиррола, тиофена и селенофена в основном состоянии ¹А₁ за вычетом орбиталей 1368 внутренних К-, L- и М-оболочек могут быть записаны следующим образом:

внутривалентная часть – $1a_1^2 2a_1^2 1b_2^2 2b_2^2 3a_1^2$; внешневалентная часть – $4a_1^2 1b_1(\pi_1)^2 3b_2^2 4b_2^2 5a_1^2 6a_1^2 2b_1(\pi_2)^2 1a_2(\pi_3)^2$, где порядок молекулярных орбиталей (МО) показан для фурана и может несколько отличаться для других молекул.

Во всех рассматриваемых молекулах π -система включает три занятые MO $1b_1(\pi_1)$, $2b_1(\pi_2)$, $1a_2(\pi_3)$ и две вакантные MO $b_1(\pi_4^*)$ и $a_2(\pi_5^*)$. Наиболее глубоко лежащая орбиталь $1b_1(\pi_1)$ представляет собой связывающую комбинацию *p*-орбиталей всех кольцевых атомов со значительным вкладом гетероатома. MO $1a_2(\pi_3)$ описывает связь между атомами C_{α} и C_{β} , а MO $2b_1(\pi_2)$ по своему происхождению может быть отнесена к неподеленной электронной паре гетероатома. Вакантные MO $b_1(\pi_4^*)$ и $a_2(\pi_5^*)$ могут рассматриваться как разрыхляющие по отношению к MO $1b_1(\pi_1)$ и $1a_2(\pi_3)$ соответственно. Свойства локализации обсуждаемых орбиталей в определенной степени отражают результаты расчетов атомных заселенностей (табл. 1).

Таблица 1

Малликеновские заселенности на атомах в молекулах пятичленных гетероциклов для внешневалентных МО (ХФ/6-311G*) *

Атом	Молекулярные орбитали										
ATOM	$1b_1(\pi_1)$	$3b_2$	$4b_{2}$	$5a_1$	$6a_1$	$2b_1(\pi_2)$	$1a_2(\pi_3)$				
	Фуран										
Ο	1.29	0.46	0.01	0.67	0.46	0.45	0.01				
C_{lpha}	0.27	0.41	0.28	0.04	0.25	0.09	0.69				
C_{β}	0.09	0.07	0.41	0.43	0.43	0.69	0.31				
	Пиррол										
Ν	1.00	0.41	0.07	0.36	0.01	0.63	0.01				
C_{α}	0.34	0.48	0.24	0.16	0.19	0.03	0.71				
C_{β}	0.16	0.02	0.44	0.39	0.63	0.65	0.29				
	Тиофен										
S	0.56	0.01	0.43	0.04	1.25	1.08	0.02				
C_{lpha}	0.11	0.30	0.40	0.56	0.08	0.01	0.72				
C_{β}	0.48	0.39	0.39	0.24	0.24	0.45	0.27				
	Селенофен										
Se	0.43	0.01	0.56	0.04	1.25	1.30	0.00				
C_{α}	0.39	0.39	0.48	0.24	0.24	0.01	0.72				
C_{β}	0.40	0.30	0.11	0.56	0.08	0.34	0.28				

* Сумма заселенностей для каждой МО (включая опущенные в таблице атомы водорода) равна 2.

Рассчитанные методом ADC(3) спектры фурана, тиофена, селенофена и пиррола сопоставлены с экспериментальными данными на рис. 1–4 [28, 29]. Результаты, относящиеся к внешневалентной области спектра, более подробно анализируются в табл. 2.

Как видно из представленных результатов (табл. 2), средняя ошибка рассчитанных в приближении ADC(3) низших вертикальных энергий ионизации относительно экспериментальных данных составляет ~ 0.2 эВ, а максимальная не превышает 0.5 эВ. Для рассматриваемых переходов результаты методов ADC(3) и OVGF хорошо согласуются друг с другом, а средняя ошибка при использовании OVGF относительно эксперимента лишь немного больше, чем в случае ADC(3). Оба метода обеспечивают заметное улучшение результатов по сравнению с методом ХФ (теоремой Купманса).

Рис. 1. Фотоэлектронные спектры фурана: a – экспериментальный [28] (hv = 90 эВ); b – теоретический (ADC(3)/6-311G*): $1 - 1a_2(\pi_3)$; $2 - 2b_1(\pi_2)$; $3 - 6a_1$; $4 - 5a_1$, $5 - 4b_2$, $6 - 3b_2$, $7 - 1b_1(\pi_1)$; $8 - 4a_1$, $9 - 3a_1$, $10 - 2b_2$, $11 - 1b_2$, $12 - 2a_1$

Рис. 2. Фотоэлектронные спектры пиррола: a – экспериментальный [28] (hv = 90 эВ); b – теоретический (ADC(3)/6-311G*): $1 - 1a_2(\pi_3)$; $2 - 2b_1(\pi_2)$; $3 - 6a_1$; $4 - 1b_1(\pi_1)$; $5 - 4b_2$, $6 - 3b_2$, $7 - 5a_1$; $8 - 4a_1$, $9 - 2b_2$, $10 - 3a_1$, $11 - 1b_2$, $12 - 2a_1$

Как следует из рассчитанных интенсивностей рассматриваемых основных фотоэлектронных линий ($P \sim 0.9-0.8$), суммарный вес сателлитов незначителен и орбитальная картина ионизации выполняется в хорошем приближении во всей внешневалентной области. Одним из исключений является МО $4a_1$, для которой наблюдается небольшое снижение интенсивности в фуране и тиофене (P = 0.78 и 0.74 соответственно) и более значительное в селенофене и пирроле (P = 0.38 и 0.56 соответственно). Снижение интенсивности основной линии $4a_1$ сопровождается появлением в спектре сопутствующих сателлитов, хорошо заметных в теоретических спектрах на рис. 1 и 3. Другим значительным отклонением от орбитальной картины ионизации во внешневалентной области является снижение во всех рассматриваемых молекулах интенсивности перехода $1b_1(\pi_1)^{-1}$ ($0.4 \le P \le 0.7$) и появление связанных с МО $1b_1(\pi_1)$ "шэйк-ап"

(а в случае фурана – также и "шэйк-даун") сателлитов в прилегающих к основной линии областях спектра.

В более высокоэнергетической части спектра, захватывающей верх внешневалентного диапазона и весь внутривалентный диапазон, орбитальная картина ионизации перестает выполняться, что делает невозможным соотнесение переходов с ионизацией отдельных орбиталей. В этом случае в спектре наблюдается лишь плотная структура сателлитных линий, отражающая сложные реорганизационные процессы и эффекты конфигурационного взаимодействия, характерные для данной области энергий. Выше 15 эВ в спектрах ионизации рассматриваемых пятичленных гетероциклов начинают преобладать переходы с конфигурацией конечного состояния 2h-1p, образующие перекрывающиеся кластеры сателлитных линий ионизации внутривалентных орбиталей.

Рис. 3. Фотоэлектронные спектры тиофена: a – экспериментальный [28] (hv = 90 эВ); b – теоретический (ADC(3)/6-311G*): $1 - 1a_2(\pi_3)$; $2 - 2b_1(\pi_2)$; $3 - 6a_1$; $4 - 1b_1(\pi_1)$; $5 - 4b_2$, $6 - 5a_1$, $7 - 3b_2$; $8 - 4a_1$, $9 - 2b_2$, $10 - 3a_1$, $11 - 2a_1$, $12 - 1b_2$, $13 - 1a_1$

Рис. 4. Фотоэлектронные спектры селенофена: a – экспериментальный [29] (hv = 80 эВ); b – теоретический (ADC(3)/6-311G*): $1 - 1a_2(\pi_3)$; $2 - 2b_1(\pi_2)$; $3 - 6a_1$; $4 - 1b_1(\pi_1)$; $5 - 4b_2$, $6 - 5a_1$, $7 - 3b_2$; $8 - 4a_1$, $9 - 2b_2$, $10 - 3a_1$, $11 - 2a_1$, $12 - 1b_2$, $13 - 1a_1$

Отнесение фотоэлектронных спектров. Результаты расчетов во всех случаях на хорошем качественном уровне воспроизводят основные особенности экспериментальных спектров, включая части спектральной огибающей, относящиеся к наиболее сложной области внутривалентной ионизации. Отнесение фотоэлектронных спектров фурана, пиррола, тиофена и селенофена, согласно полученным нами результатам, таким обраом, не представляет особых трудностей.

Как хорошо видно из рис. 1–4, спектры ионизации рассматриваемых молекул имеют много общего, что, очевидно отражает сходство в их поведении и электронном строении. Во всех спектрах могут быть выделены пять основных областей, визуально хорошо отличимых друг от друга.

Первая область при E < 11 эВ включает в себя в спектрах фурана и пиррола два пика (A, B), которые сливаются в один в спектрах тиофена и селенофена. Эти части спектров образованы за счет переходов $1a_2(\pi_3)^{-1}$ и $2b_1(\pi_2)^{-1}$, первый из которых, по нашим данным, в целом энергетически предпочтительнее второго. Лишь для селенофена расчеты предсказывают

МО	<i>Е</i> , эВ	<i>Е</i> , эВ	Р	<i>Е</i> , эВ	Р	<i>Е</i> , эВ					
	ΧФ	OVGF		AD	Экспе- римент *						
Фуран											
$1a_2(\pi_3)$	8.6	8.61	0.91	8.7	0.90	9.0					
$2b_1(\pi_2)$	10.8	10.0	0.90	10.2	0.89	10.4					
6 <i>a</i> ₁	14.7	13.1	0.91	13.3	0.90	13.0					
$5a_1$	15.2	13.8	0.91	14.0	0.90	12.6					
$4b_2$	15.6	14.0	0.91	14.3	0.90	14.2					
$3b_2$	16.5	15.1	0.90	15.2	0.89	15.2					
$1b_1(\pi_1)$	17.1	15.0	0.82	15.5	0.70	15.6					
$4a_1$	20.0			18.0	0.78	17.5					
Пиррол											
$1a_2(\pi_3)$	8.1	7.9	0.91	8.1	0.89	8.3					
$2b_1(\pi_2)$	9.3	8.7	0.90	8.8	0.89	9.3					
$6a_1$	14.2	12.7	0.90	13.0	0.90	12.8					
$1b_1(\pi_1)$	15.4	13.3	0.82	13.0, 16.6	0.40, 0.10	12.8					
$4b_2$	15.0	13.2	0.91	13.6	0.90	13.6					
$3b_2$	15.8	14.3	0.90	14.5	0.90	14.3					
$5a_1$	16.2	14.4	0.90	14.8	0.90	15.0					
$4a_1$	20.1	17.8	0.85	17.9	0.56	17.9					
Тиофен											
$1a_2(\pi_3)$	8.8	8.6	0.90	8.7	0.88	9.0					
$2b_1(\pi_2)$	9.4	9.0	0.91	9.0	0.90	9.5					
$6a_1$	12.9	11.9	0.90	11.9	0.90	12.1					
$1b_1(\pi_1)$	14.2	12.6	0.84	12.4, 15.6	0.57, 0.13	12.5, 15.6					
$4b_2$	14.4	13.1	0.90	13.3	0.90	13.3					
$5a_1$	15.0	13.2	0.90	13.6	0.89	13.7					
$3b_2$	15.6	13.9	0.90	14.2	0.89	14.2					
$4a_1$				17.0	0.74	16.6					
	1	ı	Селенофен	L	L						
$2b_1(\pi_2)$	9.0	8.7	0.91	8.7	0.90	9.0					
$1a_2(\pi_3)$	8.8	8.6	0.90	8.7	0.87	9.1					
$6a_1$	12.3	11.4	0.90	11.5	0.90	11.7					
$1b_1(\pi_1)$	13.6	12.2	0.84	12.1, 14.7	0.59, 0.16	12.1					
$4b_2$	13.6	12.4	0.90	12.6	0.89	12.9					
$5a_1$	15.1	13.2	0.89	13.6	0.89	13.5					
$3b_2$	15.7	13.8	0.89	14.1	0.87	14.2					
$4a_1$	18.8	16.7	0.85	16.6	0.38	16.5					

Рассчитанные (XФ, OVGF, ADC(3)/6-311G*) и экспериментальные энергии (*E*) и интенсивности (*P*) основных вертикальных переходов в спектре внешневалентной ионизации фурана, пиррола, тиофена, селенофена

* Для фурана, пиррола и тиофена значения получены из спектра, приведенного в работе [28], для селенофена – данные работы [29].

обратный порядок переходов, однако он ввиду очень малого различия между рассчитанными энергиями ионизации (~ 0.04 эВ) не может быть установлен однозначно.

Второй области отвечает интервал 11–15 эВ с довольно сложной системой полос, в которой может быть выделено до пяти спектральных максимумов (C–G). В эти части спектров вносят вклад переходы $6a_1^{-1}$, $1b_1(\pi_1)^{-1}$, $4b_2^{-1}$, $5a_1^{-1}$ и $5b_2^{-1}$, последовательность которых в каждом конкретном случае определяет конечный вид спектральной огибающей и количество максимумов в ней.

Наряду с основными линиями в рассматриваемой области присутствует небольшое количество сателлитов. В основном, это сателлиты, связанные с переходом $1b_1(\pi_1)^{-1}$, линия которого отсутствует "в чистом виде", так как расщепляется на несколько более слабых компонентов. Каждый из таких переходов связан с конечными состояниями, в которых конфигурация $1b_1(\pi_1)^{-1}$ смешивается с различными конфигурациями типа 2p-1h (где обе "дырки" находятся на внешних занятых МО π_2 или π_3). Поскольку для других переходов, находящихся в рассматриваемой области, не наблюдается столь интенсивного образования сателлитов, можно говорить о том, что для МО $1b_1(\pi_1)$ "выборочно" нарушается орбитальная картина ионизации.

Третья спектральная область (16–20 эВ) по сравнению с предыдущими заметно более диффузна и содержит до четырех максимумов (I–L). Спектральные полосы в данной области имеют значительно более сложную структуру, обусловленную процессами ионизации МО $4a_1$, $3b_2$ и $3a_1$. Каждая полоса включает помимо большого числа слабых сателлитов несколько компактно расположенных компонентов, относящихся к упомянутым МО.

Четвертая и пятая области спектров (20–23.5 и 23.5–26 эВ соответственно) характеризуются еще более диффузным строением. В данных областях превалирует режим ионизации с полным выходом за рамки обычной орбитальной картины, при котором основную роль начинают играть многоэлектронные эффекты. Реализующиеся здесь переходы 2p-1hтипа интенсивны преимущественно за счет взаимодействия с конфигурациями, имеющими вакансии на МО $2a_1$ и $2b_2$ (структуры М–О), а также $1a_1$ (структуры Р, Q). При этом спектральная интенсивность распределена между большим числом слабых сателлитных линий, лишь суммарный эффект которых приводит к изменениям формы спектральной огибающей.

Отдельно в рассматриваемых спектрах можно выделить область 15–16 эВ, где для тиофена и пиррола наблюдается слабый, но хорошо заметный максимум, а для селенофена – плечо спектральной огибающей (Н). Как хорошо видно из результатов расчетов, обсуждаемая структура обусловлена сильным "шэйк-ап" сателлитом, связанным с основным переходом $1b_1(\pi_1)^{-1}$. Согласно полученным нами результатам, относительная высокая спектральная интенсивность данных сателлитов ($P \sim 0.2$) является следствием сильного взаимодействия между конфигурацией $1b_1(\pi_1)^{-1}$ и различными конфигурациями, в которых две дырки находятся на внешних занятых МО π -типа.

Нарушение орбитальной картины ионизации для π₁-MO. Выше уже

отмечалось, что наблюдаемые во внешневалентной области 2h-1p-сателлиты могут быть классифицированы как "шэйк-ап" сателлиты [33], связанные с π_3 - и π_1 -МО. Эффекты смещения интенсивности от 1h к 2h-1p-переходам наиболее сильны в случае глубоко лежащей МО $\pi_1(1b_1)$. Это приводит, в частности, к снижению интенсивности основной линии перехода $1b_1(\pi_1)^{-1}$. Похожий эффект, затрагивающий внутренние π -МО, был обнаружен ранее при теоретическом изучении фотоэлектронных спектров ароматических систем [41].

Как показывает анализ, для π_1 -МО одноэлектронный режим ионизации нарушается из-за ее специфических пространственных свойств, которые близки к свойствам соответствующей ей незанятой МО π_4^* . Сходные пространственные характеристики этих МО способствуют сильному взаимодействию конфигураций $(\pi_1)^{-1}$ и $(\pi_i)^{-1}(\pi_i)^{-1}(\pi_4^*)$, где i = 2, 3. Сила такого взаимодействия приближенно описывается двухэлектронным интегралом $(\pi_1\pi_4^*|\pi_i\pi_i)$, который может принимать достаточно большие значения, поскольку орбитали π_1 и π_4^* занимают одну и ту же область пространства.

Аналогичное происходит в случае π_3 - и π_5^* -MO, но образование сателлитов здесь не столь выражено. МО π_2 связана по своему происхождению с неподеленной парой (НП) гетероатома и не имеет соответствующей вакантной π -MO. По причине своего, в значительной мере, несвязывающего характера МО π_2 лишь в малой степени перекрывается с вакантными МО других типов. Конфигурация (π_2)⁻¹, таким образом, не может эффективно взаимодействовать с подходящими по энергии 2h-1p-конфигурациями, чем объясняется отсутствие в спектрах сателлитов, связанных с π_2 -MO.

Аспекты ионизации $2a_2(\pi_3)$ - и $4b_1(\pi_2)$ -орбиталей. Одним из различий между спектрами обсуждаемых молекул является уменьшение энергетического интервала между состояниями $2a_2(\pi_3)^{-1}$ и $4b_1(\pi_2)^{-1}$ в ряду фуран, пиррол, тиофен, селенофен, что обусловлено приближением по энергии π_2 -МО к π_3 -МО. Такое поведение легко объясняется свойствами обсуждаемых МО. Энергия π_3 -МО во всех случаях практически неизменна (за исключением пиррола, где сказывается появление дополнительного атома водорода), поскольку данная МО описывает общий для всех молекул бутадиеновый фрагмент. Уменьшение энергии ионизации π_2 -МО происходит по причине ее родства с НП гетероатома, потенциал ионизации которого уменьшается в ряду O, N, S, Se.

Согласно результатам метода ADC(3), зазор между состояниями ${}^{2}A_{2}(\pi_{3}^{-1})$ и ${}^{2}B_{1}(\pi_{2}^{-1})$ составляет 1.48, 0.74, 0.30 и 0.04 эВ для фурана, пиррола, тиофена и селенофена соответственно. При сближении данных состояний вероятным становится их вибронное взаимодействие посредством колебательных мод симметрии b_{2} . Наличие такого взаимодействия и усиление неадиабатических эффектов в ряду фуран–пиррол–тиофен подтверждается нашей работой [53]. Очевидно, что еще более сильные неадиабатические эффекты следует ожидать в случае селенофена, где, согласно полученным данным, энергетический интервал между состояниями ${}^{2}A_{2}(\pi_{3}^{-1})$ и ${}^{2}B_{1}(\pi_{2}^{-1})$ наименьший.

На основе результатов квантово-химических расчетов методом одно-

частичной функции Грина в приближении алгебраического диаграммного построения третьего порядка впервые комплексно проанализированы спектры ионизации внешне- и внутривалентного диапазонов ключевых пятичленных гетероароматических молекул – фурана, пиррола, тиофена и селенофена. Рассчитанные энергии и интенсивности вертикальных переходов хорошо согласуются с новейшими экспериментальными данными и позволяют провести надежное отнесение и интерпретацию наблюдаемой фотоэлектронной структуры вплоть до 30 эВ. Показано, что эффекты электронной корреляции начинают играть существенную роль уже в верхней части внутривалентного диапазона, чем, в частности, обусловлено появление низко лежащих фотоэлектронных сателлитов, связанных с внутренними π_1 -орбиталями. Выявлен ряд закономерностей и тенденций в поведении фотоэлектронных спектров, которые должны быть в значительной степени общими для всего класса гетероароматических систем и их производных.

СПИСОК ЛИТЕРАТУРЫ

- 1. A. R. Katritzky, A. F. Pozharskii, *Handbook of Heterocyclic Chemistry*, Acad. Press, Amsterdam, 2000.
- 2. A. Gossauer, Die Chemie der Pyrrole, Springer, Berlin, 1974.
- 3. *The Chemistry of Heterocyclic Compounds, Pyrroles*, vol. 48, R. A. Jones, E. C. Taylor, A. Weissberger (Eds.), Wiley, New York, 1992, Pt 1.
- 4. *The Chemistry of Heterocyclic Compounds, Pyrroles*, vol. 48, R. A. Jones, E. C. Taylor, A. Weissberger (Eds.), Wiley, New York, 1992, Pt 2.
- 5. *The Chemistry of Heterocyclic Compounds, Thiophene and its Derivatives*, vol. 44, S. Gronowitz, E. C. Taylor, A. Weissberger (Eds.), Wiley, New York, 1991, Pt 4.
- 6. Conjugated Polymers: The Novel Science and Technology of Highly Conducting and Nonlinear Optically Active Materials, J.-L. Bredas, R. Silbey (Eds.), Kluwer, Dordrecht, 1991.
- 7. E. Weigold, I. McCarthy, *Electron Momentum Spectroscopy*, Kluwer, New York, 1999.
- 8. K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, S. Iwata, *Handbook of HeI Photoelectron Spectra of Fundamental Organic Molecules*, Halsted, New York, 1981.
- 9. D. W. Turner, C. Baker, A. D. Baker, C. R. Brundle, *Molecular Photoelectron Spectroscopy*, Wiley, London, 1970.
- 10. M. H. Palmer, I. C. Walker, C. C. Ballard, M. F. Guest, *Chem. Phys.*, **192**, 111 (1995).
- 11. E. E. Rennie, C. A. F. Johnson, J. E. Parker, D. M. P. Holland, D. A. Shaw, M. A. MacDonald, M. A. Hayes, L. G. Shpinkova, *Chem. Phys.*, **236**, 365 (1998).
- 12. M. H. Palmer, I. C. Walker, M. F. Guest, Chem. Phys., 238, 179 (1998).
- E. E. Rennie, C. A. F. Johnson, J. E. Parker, R. Ferguson, D. M. P. Holland, D. A. Shaw, *Chem. Phys.*, **250**, 217 (1999).
- 14. M. H. Palmer, I. C. Walker, M. F. Guest, Chem. Phys., 241, 275 (1999).
- 15. P. J. Derrick, L. Asbrink, O. Edqvist, E. Lindholm, *Spectrochim. Acta*, **27A**, 2525 (1971).
- 16. P. J. Derrick, L. Asbrink, O. Edqvist, B.-O. Jonsson, E. Lindholm, *Int. J. Mass Spectrom. Ion Phys.*, 6, 161 (1971).
- 17. P. J. Derrick, L. Asbrink, O. Edqvist, B.-O. Jonsson, E. Lindholm, Int. J. Mass Spectrom. Ion Phys., 6, 177 (1971).

1377

- P. J. Derrick, L. Asbrink, O. Edqvist, B.-O. Jonsson, E. Lindholm, Int. J. Mass Spectrom. Ion Phys., 6, 191 (1971).
- G. Bieri, L. Asbrink, W. von Niessen, J. Electron Spectrosc. Relat. Phenom., 27, 129 (1982).
- 20. J. A. Sell, A. Kuppermann, Chem. Phys. Lett., 61, 355 (1979).
- 21. M. Takahasi, K. Otsuka, Y. Udagawa, Chem. Phys., 227, 375 (1998).
- 22. M. Takahasi, R. Ogino, Y. Udagawa, Chem. Phys. Lett., 288, 821 (1998).
- 23. U. Gelius, C. J. Allan, G. Johansson, H. Siegbahn, D. A. Allison, K. Siegbahn, *Phys. Scr.*, **3**, 237 (1971).
- 24. A. D. O. Bawagan, B. J. Olsson, K. H. Tan, J. M. Chen, B. X. Yang, *Chem. Phys.*, **164**, 283 (1992).
- T. Munakata, K. Kuchitsu, Y. Harada, J. Electron Spectrosc. Relat. Phenom., 20, 235 (1980).
- 26. N. Kishimoto, H. Yamakado, K. Ohno, J. Phys. Chem., 100, 8204 (1996).
- S. F. Zhang, X. G. Ren, G. L. Su, C. G. Ning, H. Zhou, B. Li, G. O. Li, J. K. Deng, *Chem. Phys.*, **327**, 269 (2006).
- 28. D. M. P. Holland, L. Karlsson, W. von Niessen, J. Electron Spectrosc. Relat. Phenom., 113, 221 (2001).
- 29. I. Powis, I. L. Zaytseva, A. B. Trofimov, J. Schirmer, D. M. P. Holland, A. W. Potts, L. Karlsson, J. Phys. B: At. Mol. Opt. Phys., 40, 2019 (2007).
- A. B. Trofimov, J. Schirmer, D. M. P. Holland, L. Karlsson, R. Maripuu, K. Siegbahn, A. W. Potts, *Chem. Phys.*, 263, 167 (2001).
- 31. A. W. Potts, A. B. Trofimov, J. Schirmer, D. M. P. Holland, L. Karlsson, *Chem. Phys.*, **271**, 337 (2001).
- 32. A. B. Trofimov, J. Schirmer, D. M. P. Holland, A. W. Potts, L. Karlsson, R. Maripuu, K. Siegbahn, J. Phys. B: At. Mol. Opt. Phys., **35**, 5051 (2002).
- 33. L. S. Cederbaum, W. Domcke, J. Schirmer, W. von Niessen, *Adv. Chem. Phys.*, **65**, 115 (1986).
- 34. W. von Niessen, L. S. Cederbaum, G. H. F. Diercksen, J. Am. Chem. Soc., 98, 2066 (1976).
- 35. W. von Niessen, W. P. Kraemaer, L. S. Cederbaum, J. Electron Spectrosc. Relat. Phenom., 8, 179 (1976).
- 36. G. De Alti, P. Decleva, Chem. Phys. Lett., 77, 413 (1981).
- M. Ehara, Y. Ohtsuka, H. Nakatsuji, M. Takahashi, Y. Udagawa, J. Chem. Phys., 122, 234319-01 (2005).
- 38. W. von Niessen, J. Schirmer, L. S. Cederbaum, Comp. Phys. Rep., 1, 57 (1984).
- 39. J. Schirmer, L. S. Cederbaum, O. Walter, Phys. Rev. A., 28, 1237 (1983).
- 40. J. Schirmer, G. Angonoa, J. Chem. Phys., 91, 1754 (1989).
- 41. M. S. Deleuze, A. B. Trofimov, L. S. Cederbaum, J. Chem. Phys., 115, 5859 (2001).
- A. W. Potts, D. M. P. Holland, A. B. Trofimov, J. Schirmer, L. Karlsson, K. Siegbahn, J. Phys. B: At. Mol. Opt. Phys., 36, 3129 (2003).
- 43. A. B. Trofimov, J. Schirmer, V. B. Kobychev, A. W. Potts, D. M. P. Holland, L. Karlsson, J. Phys. B: At. Mol. Opt. Phys., **39**, 305 (2006).
- 44. W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys., 56, 2257 (1972).
- 45. R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys., 72, 650 (1980).
- 46. T. Clarck, J. Chandrasekhar, G. W. Spitznagel, P. v. R. Schleyer, J. Comput. Chem., 4, 294 (1983).
- 47. P. C. Hariharan, J. A. Pople, Theoret. Chimica Acta, 28, 213 (1973).
- 48. A. D. McLean, G. S. Chandler, J. Chem. Phys., 72, 5639 (1980).
- L. A. Curtiss, M. P. McGrath, J.-P. Blandeau, N. E. Davis, R. C. Binning, Jr. L. Radom, J. Chem. Phys., 103, 6104 (1995).
- One-particle Green's function ADC(3) Code Written by O. Walter and J. Schirmer; The Constant Diagram Code Written by G. Angonoa, O. Walter and J. Schirmer; 1378

Further Developed by M. K. Scheller and A. B. Trofimov. TC/PCI/ Heidelberg University, 1984–2002.

- M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, *J. Comput. Chem.*, 14, 1347 (1993).
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, *Gaussian 98, Revision A.7*, Gaussian, Inc., Pittsburgh PA, 1998.
- 53. A. B. Trofimov, H. Köppel, J. Schirmer, J. Chem. Phys., 109, 1025 (1998).

^aИркутский государственный университет, Иркутск 664003, Россия e-mail: atrof@math.isu.runnet.ru e-mail: abtrof@mail.ru e-mail: demy@bk.ru e-mail: vita@cc.isu.ru

⁶Иркутский институт химии им. А. Е. Фаворского СО РАН, Иркутск 664033 e-mail: atrof@math.isu.runnet.ru e-mail: abtrof@mail.ru

^вВосточно-Сибирский институт МВД России, Иркутск 664074 e-mail: demy@bk.ru Поступило 21.05.2008