Посвящается академику Б. А. Трофимову в связи с его 70-летием

А. В. Афонин, И. А.Ушаков, Д. Е. Симоненко, Е. Ю. Шмидт, Н. В. Зорина, А. В. Иванов, А. М. Васильцов, А. И. Михалева

СТЕРЕОСПЕЦИФИЧНОСТЬ КОНСТАНТ ЭКРАНИРОВАНИЯ ЯДЕР УГЛЕРОДА-13 В СПЕКТРАХ ЯМР ¹³С ОКСИМОВ ГЕТАРЕНКАРБАЛЬДЕГИДОВ И АЛКИЛГЕТАРИЛКЕТОНОВ

Обнаружено, что химические сдвиги атомов углерода в спектрах ЯМР 13 С оксимов, имеющих пиррольный, фурильный, бензофурильный, тиенильный и пиридиновый цикл в качестве заместителей изменяются систематически при переходе от *E*- к *Z*-изомеру. Это позволяет использовать указанные химические сдвиги для установления конфигурации оксимов с гетероциклическими заместителями и изучать особенности их электронного строения.

Ключевые слова: оксимы с гетероциклическими заместителями, спектры ЯМР ¹³С, стереоспецифичность констант экранирования.

Стереоспецифичность параметров спектров ЯМР альдоксимов и кетоксимов изучается на протяжении нескольких десятилетий [1–22]. Особо следует выделить исследования спектров ЯМР ¹H, ¹³C и ¹⁵N оксимов, имеющих гетероциклический заместитель. В более ранних работах [4, 5] исследованы спектры ЯМР ¹H оксимов фурфурола. Наиболее интересные данные были получены для оксимов, обогащенных изотопом ¹⁵N, в которых обнаружена зависимость геминальной КССВ ¹⁵N–¹H от пространственной ориентации неподеленной пары атома азота [5]. Представления о стереоспецифичности параметров спектров ЯМР ¹⁵N в ¹⁵N-меченых оксимах фурфуролов были развиты в работах [9, 12], в которых была показана стереоспецифичность констант экранирования ядер ¹⁵N, геминальной КССВ ¹⁵N–¹³C, вицинальной КССВ ¹⁵N–¹H. Цель настоящей работы – изучить стереоспецифичность констант экранирования ядер углерода-13 в спектрах ЯМР ¹³C ряда оксимов **1–6**, имеющих различные гетероциклические заместители.

Химические сдвиги атомов ¹³С оксимов **1–6**, а также модельных оксимов **7а,b**, представлены в таблице. Для отнесения сигналов в спектрах ЯМР ¹³С использовались двумерные корреляционные методики ¹H–¹³C HSQC и HMBC. Конфигурационное отнесение альдоксимов **1** и **2** было выполнено на основании различий в значениях химических сдвигов "оксимного" протона для *E*- и *Z*-изомеров, учитывая, что в *E*-изомере этот протон резонирует на 0.6–0.7 м. д. в более слабом поле по сравнению с

 $\begin{array}{l} 1 \ X = N - C_{\alpha} H = C_{\beta} H_2, \ R = R^1 = H; \ \textbf{3 a} \ X = O, \ R = Me, \ R^1 = CH = CH_2, \ \textbf{b} \ X = O, \ R = Me, \\ R^1 = H, \ \textbf{c} \ X = O, \ R = Et, \ R^1 = H; \ \textbf{5 a} \ X = S, \ R = Me, \ R^1 = CH = CH_2, \ \textbf{b} \ X = S, \ R = Me, \ R^1 = H, \\ \textbf{c} \ X = S, \ R = n - Pr, \ R^1 = H; \ \textbf{7 a} \ R = CMe_3, \ \textbf{b} \ R = SiMe_3 \end{array}$

Z-изомером [1]. В *Е*-изомерах альдоксимов 1 и 2 значение химического сдвига "оксимного" протона составляет 8.10 и 8.17 м. д., соответственно, тогда как в Z-изомере оно равно 7.49 и 7.55 м. д., соответственно. Для установления конфигурации кетоксимов **3а-с**, **4**, **5а-с**, **6** был использован тот факт, что атом углерода метильной либо метиленовой группы, находящихся в соседнем по отношению к связи C=N положении в Еизомерах резонирует в более сильном поле на 4-8 м. д., нежели в Z-изомерах [3, 6, 8, 13, 16]. В случае О-винил(2-пиридил)фенилкетоксима (6) служил в качестве критерия для конфигурационного отнесения химический сдвиг ипсо-атома углерода фенильного цикла, который в Еизомерах также уменьшается на 2-3 м. д. относительно Z-изомеров [7]. Соответствующие значения разностного параметра $\Delta \delta^{13}$ C (*E*–*Z*) приведены в таблице.

Как следует из данных, представленных в таблице, химические сдвиги некоторых атомов углерода в оксимах **1–6** при переходе от *E*- к *Z*-изомеру претерпевают систематические изменения. Так, в *E*-изомере оксимов **1–6** химический сдвиг атома C(2) всегда больше, чем в *Z*-изомере (от 2.1 до 8.1 м. д.), а химический сдвиг атома C(3) всегда меньше, чем в *Z*-изомере (от 1.9 до 8.3 м. д., таблица). Этот эффект проявляется для различных по природе гетероциклов – пиррольного, фурильного, бензофурильного, тиенильного и пиридинового. Кроме того, в *E*-изомере оксимов **1–6** химический сдвиг атома C(1) азометиновой связи C=N всегда больше, чем в *Z*-изомере (от 0.6 до 7.6 м. д., таблица). Слабопольный сдвиг сигнала атома C(2) в *E*-изомере оксимов фурфуролов относительно *Z*-изомера отмечался ранее и был отнесен на счет стерического эффекта атома кислорода [12]. Однако этим едва ли можно объяснить согласованные изменения химических сдвигов атомов C(1), C(2) и C(3) при переходе от *E*- к *Z*-изомеру оксимов **1–6** тем более, что весьма значительные изменения претерпевает химический сдвиг атома C(1), находящегося в геминальном положении к атому кислорода.

Аналогичные изменения химических сдвигов атомов C(1), C(2) и C(3) в *E*-изомере относительно *Z*-изомера обнаружены ранее для ряда оксимов замещенных пропиналей [22]. Данные ЯМР ¹³С двух представителей этого ряда, оксимов **7а,b**, также приведены в таблице для примера. Химические сдвиги атомов C(2) и C(3) тройной связи оксимов **7а,b** изменяются на такую же величину и в том же направлении, как и химические сдвиги атомов C(2) и C(3) в гетероциклах оксимов **1–6** (см. таблицу). Это свидетельствует об общности причин, вызывающих изменения химических сдвигов атомов углерода в указанных классах оксимов.

Существенные различия констант экранирования атомов С(2) и С(3) в *E*- и *Z*-изомерах оксимов **7а,b** вызваны различной степенью поляризации тройной связи в конфигурационных изомерах, что обусловлено неодинаковой степенью *p*-π-взаимодействия атома кислорода и π-системы оксимов при цис- и транс-расположении атома кислорода относительно тройной связи [22]. При *транс*-расположении атома кислорода и тройной связи *п*-система тройной связи поляризована в большей степени по сравнению с цис-расположением, что выражается в увеличении экранирования атома C(3) и уменьшении экранирования атома C(2) в *Е*-форме оксимов 7а, в по сравнению с Z-формой. Аналогичный эффект наблюдается и для оксимов 1-6 с той лишь разницей, что неодинаковой степени поляризации подвержена связь С(2)-С(3) гетероциклического фрагмента. При этом химические сдвиги атомов С(4) и С(5), за исключением оксимов 5а-с с тиенильным заместителем, претерпевают лишь незначительные изменения при переходе от Е- к Z-форме (таблица). Это свидетельствует о том, что взаимодействие π-систем гетероцикла и фрагмента –C=N–О происходит преимущественно с участием π-связи C(2)-C(3).

Вместе с тем, имея одинаковые направления изменений, абсолютные величины изменений химических сдвигов атомов C(1), C(2) и C(3) в Е-изомерах оксимов 1-6 относительно Z-изомеров существенно различаются в зависимости от природы гетероцикла. В оксимах 1-4, имеющих пиррольный, фурильный, либо бензофурильный цикл в качестве заместителя, наибольшую чувствительность к типу изомера проявляет химический сдвиг атома С(3) (таблица). В указанных оксимах гетероциклы обладают высокой π-донорной способностью, поэтому здесь следует ожидать наибольшей степени π,π-взаимодействия гетероцикла и фрагмента –C=N–O и, как следствие, их близкого к копланарному расположения [17]. л-Донорная способность тиенильного цикла значительно ниже, и, следовательно, степень π,π -взаимодействия в оксимах **5а-с** также существенно меньше. Поэтому в стерически напряженной *Z*-форме оксимов **5а-с** копланарность расположения гетероцикла и фрагмента –С=N–О нарушена [17]. Это объясняет гораздо меньшую чувствительность химического сдвига атома С(4) к типу изомера в случае оксимов **5а-с** с тиенильным заместителем.

Таблица

Значения химических сдвигов в спектрах ЯМР ¹³С оксимов 1, 2, 3а–с, 4, 5а–с, 6, 7a,b

	$\Delta\delta^{13}C~(E-Z)$	10								4.9				-6.2			-5.8			
Химические сдвиги, б, м. д.	\mathbb{R}^{1}	6								152.60 (C(α));	88.31 (C(B))	152.48 (C(α));	88.08 (C(B))							
	R	8								12.10 (CH ₃)		16.97 (CH ₃)		11.23 (CH ₃)		17.39 (CH ₃)	19.27 (CH ₂);	11.14 (CH ₃)	25.08 (CH ₂);	12.00 (CH ₃)
	C(6)	7	Ι		I	I		I												
	C(5)	9	121.70	(+0.5)	121.18	131.46(+0.8)	(C-9b)	130.67	(C-9b)	143.88	(+1.0)	142.90		143.59	$(+1.0)_{i}$	142.61	143.69	(+1.3)	142.40	
	C(4)	5	110.74	(-0.4)	111.12	124.50 (+0.4)	(C-3a)	124.05	(C-3a)	111.28	(-0.7)	112.02		111.31	(-0.8)	112.15	111.25	(-0.8)	112.05	
	C(3)	4	115.77	(-4.1)	119.63	110.60	(-6.6)	117.18		111.02	(-7.3)	118.35		110.05	(-7.9)	117.95	109.96	(-8.3)	118.24	
	C(2)	3	124.80	(+2.3)	122.45	126.40	(+2.9)	123.53		149.09	(+3.8)	145.27		150.22	(+4.2)	146.03	149.70	(+4.1)	145.65	
	C(1)	2	142.96	(+7.6)**	135.36	142.66	(+5.1)	137.54		149.09	(+3.5)	145.57		147.70	(+3.5)	144.43	152.47	(+3.9)	148.55	
Соеди-	нение	1	E-1*		Z-1*	E-2*		Z-2*		E-3a		Z-3a		E- $3b$		Z-3b	E- $3c$		Z-3c	

$(C(\alpha)); -5.1$	(C(β)) 3 (C(α)); 1 (C(β))	$(C(\alpha)); -6.2$ 9 (C(β)) -6.2	3 (C(α)); 5 (C(β))	-7.4		-7.1	
152.90	89.09 152.73 88.89	152.59 88.3	152.03 88.8				
12.57 (CH ₃)	17.66 (CH ₃)	13.42 (CH ₃)	19.58 (CH ₃)	12.46 (CH ₃)	19.81 (CH ₃)	$\begin{array}{c} 28.74 & (\alpha \text{-CH}_2) \\ 20.22 & (\beta \text{-CH}_2) \\ 14.33 & (\text{CH}_3) \end{array}$	35.81 (α-CH ₂) 21.27 (β-CH ₂) 13.94 (CH ₃)
155.34 (+1.7)	(C-8) 153.65 (C-8)	127.83 (-3.7)	131.52	126.86 (-4.2)	131.05	126.78 (–3.9)	130.65
127.77 (-0.5)	(C-9) 128.23 (C-9)	127.18 (+1.2)	125.95	127.20 (+1.5)	125.68	127.17 (+1.5)	125.69
107.99	(10.0–) 114.61	127.55 (-3.2)	130.72	126.55 (-3.4)	129.93	126.36 (-3.2)	129.59
149.51	(c.c+) 146.05	139.25 (+7.1)	132.20	140.20 (+8.0)	132.19	139.91 (+8.1)	131.81
150.95 (±4.5)	(c.++) 146.49	153.13 (+4.4)	148.73	151.84 (+4.7)	147.12	155.59 (+5.3)	150.30
E-4*	Z-4*	E-5a	Z-5a	E-5b	Z-5b	E-5c	Z-5c

1527

Окончание таблицы

10	-2.6					
6	152.58 (C(α)); 89.03 (C(β))	152.37 (C(α)); 88.76 (C(β))				
8	131.58 (+2.1) (C(i)); (-1.2) (20); (-1.2) (-1.2) (-0.1); (-0.4) (C(0)); 127.84 (-0.4) (C(m)); 129.21 (-0.7) (C(p))	134.13 (C(<i>i</i>)); 127.79 (C(o)); 128.23 (C(<i>m</i>)); 129.93 (C(<i>p</i>))	28.18 (C); 26.29 (CH ₃)	28.48 (C); 26.22 (CH ₃)	-0.50 (CH ₃)	-0.48 (CH ₃)
7	149.34 (-0.2)	149.59				
6	123.90 (+0.4)	123.51				
5	136.25 (+0.3)	135.95				
4	123.09 (-1.9)	125.00	104.57 (-6.9)	111.45	101.55 (-6.9)	108.49
3	153.85 (+2.1)	151.72	71.84 (+3.1)	68.73	96.30 (+3.4)	92.87
2	158.56 (+0.6)	157.92	135.49 (+4.3)	131.16	134.40 (+4.1)	130.34
1	E-6	9-Z	E-7a***	Z-7a	E-7b***	Z-7b

* Χινινιчεςκικ εдвиги, δ, м. д.: 132.65 (C(α)), 100.56 (C(β)) (E-1); 130.20 (C(α)), 104.04 (C(β)) (Z-1); 132.59 (C(α)), 113.72 (C(β)), 22.15 (C(4)), 30.65 (C(5)), 126.34 (C(6)), 128.51 (C(7)), 125.82 (C(8)), 122.29 (C(9)), 128.99 (C(9a)) (E-2); 132.39 (C(α)), 115.57 (C(β)), 22.15 (C(4)), 29.77 (C(5)), 126.40 (C(6)), 128.62 (C(7)), 126.22 (C(8)), 122.54 (C(9)), 128.89 (C(9a)) (Z-2); 121.34 (C(5)), 126.03 (C(6)), 111.78 (C(7)) (E-4); 121.52 (C(4)), 122.51 (C(5)), 126.59 (C(6)), 111.59 (C(7)) (Z-4).

** В скобках приведена разность химических сдвигов атомов углерода для *E*- и *Z*-изомеров оксимов **1**, **2**, **3а–с**, **4**, **5а–с**, **6**, **7а**,**b** *** Данные работы [22].

Заметный слабопольный сдвиг резонанса атома C(5), а также аномально большой сильнопольный сдвиг резонанса атома C(2) в Z-изомере оксимов **5а–с** по сравнению с таковыми в E-изомере (от -3.7 до -4.2 и от +7.1 до +8.1, соответственно), по-видимому, связаны с зарядовым перераспределением в π -системе тиенильного цикла при нарушении его копланарного распо- ложения относительно фрагмента -C=N-O.

В 1-винил-4,5-дигидробенз[g]индол-2-карбальдегидоксиме 2 переход от Е- к Z-форме сопровождается заметно большими изменениями химических сдвигов атомов С(2) и С(3), чем в альдоксиме 1 (+2.9, -6.6 и +2.3, -4.1 м. д., соответственно), указывая на более интенсивное п,п-взаимодействие пиррольного цикла и фрагмента -C=N-O в первом случае по сравнению со вторым. В изомерах альдоксима 2 сигнал атома С(β) винильной группы смещен в слабое поле по сравнению с таковым для изомеров 1-винилпиррол-2-карбальдегидоксима 1 (113.72 в Е- и 115.57 м. д. в Z-форме соединения 2 сравнительно с 100.56 в E- и 104.04 м. д. в Z-форме соединения 1). Это означает, что в альдоксиме 2 винильная группа выведена из плоскости пиррольного цикла вследствие стерического влияния соседних с винильной группой заместителей, а *p*-*π*-сопряжение с ней нарушено [23, 24]. За счет этого, *п*-донорная способность пиррольного цикла в альдоксиме 2 по сравнению с альдоксимом 1 увеличивается и, как отмечено выше, возрастает интенсивность его π,π -взаимодействия с фрагментом -С=N-О.

В О-винил(2-пиридил)фенилкетоксиме (6) наблюдаемые изменения химических сдвигов атомов C(1), C(2) и C(3) при переходе от E- к Zформе, как правило, значительно меньше, чем для других оксимов 1-5, имеющих гетероциклический заместитель. Пиридиновый цикл является лакцептором и, как следует из указанной выше тенденции, в наименьшей степени сопряжен с π-системой фрагмента –C=N–O. В то же время, можно обнаружить противоположный характер изменения химических сдвигов C(2) и C(3) пиридинового цикла и химических сдвигов C(i) и C(o) фенильного цикла в оксиме 6 (+2.1 и -1.9 сравнительно с -2.6 и +1.5 м. д., соответственно). Следовательно, связи С(2)-С(3) в пиридиновом цикле и C(i)-C(o) в фенильном цикле в обсуждаемом случае поляризуются в противоположных направлениях. В Е-изомере оксима 6 пиридиновый цикл находится в транс-положении относительно атома кислорода, поэтому связь С(2)-С(3) поляризована больше, чем в Z-изомере, где пиридиновый цикл имеет цис-расположение относительно атома кислорода. Напротив, фенильный цикл в Е-изомере оксима 6 находится в *иис*-положении относительно атома кислорода, поэтому связь C(i)-C(o)поляризована меньше, чем в Z-изомере, где фенильный цикл имеет *транс*расположение относительно атома кислорода.

Систематические различия химических сдвигов атомов C(1), C(2) и C(3) в *E*- и *Z*-изомерах оксимов, имеющих гетероциклический заместитель, могут быть использованы как для установления их конфигурации, так и при изучении их электронного строения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹³С зарегистрированы на спектрометрах Bruker DPX-250 и Bruker AVANCE 400 (63 и 100 МГц соответственно) в CDCl₃, внутренний стандарт ГМДС, концентрация образцов составляла 5–10 мас%. Параметры импульсной последовательности при регистрации спектров ЯМР ¹Н и ¹³С описаны в работе [17]. Для проведения экспериментов HSQC и HMBC использовались оптимизированные для значений КССВ ¹ $J_{CH} = 160$ и ^{*n*} $J_{CH} = 8$ Гц стандартные программы, которыми снабжены спектрометры Bruker DPX-250 и Bruker AVANCE 400

Альдоксимы 1 и 2 получены конденсацией соответствующих альдегидов [25] с гидрохлоридом гидроксиламина в пиридине по методу [26]. Синтез фурилкетоксимов **3а-с** описан в работе [27], тиенилкетоксимов **5а-с** – в работе [28], бензофурилкетоксима **4** – в работе [29], О-винил(2-пиридил)фенилкетоксима **(6)** – в работе [30].

Работа выполнена при финансовой поддержке Президиума СО РАН (проект № 8.20).

СПИСОК ЛИТЕРАТУРЫ

- 1. G. I. Karabatsos, R. A. Taller, Tetrahedron, 24, 3347 (1968).
- 2. T. Yonezawa, I. Morishima, J. Mol. Spectrosc., 27, 210 (1968).
- 3. G. E. Hawkes, K. Herwig, I. D. Roberts, J. Org. Chem. Soc., 39, 1017 (1974).
- 4. Н. П. Костюченко, А. Ф. Олейник, Т. И. Возякова, К. Ю. Новицкий, Ю. Н. Шейнкер, *ХГС*, 312 (1974). [*Chem. Heterocycl. Comp.*, **10**, 270 (1974)].
- 5. Н. П. Соловьёва, Ю. Н. Шейнкер, А. Ф. Олейник, К. Ю. Новицкий, *ХГС*, 890 (1975). [*Chem. Heterocycl. Comp.*, **11**, 779 (1975)].
- 6. P. Geneste, J. M. Kamenka, C. Breward, Org. Magn. Reson., 10, 31 (1977).
- 7. G. W. Bunchanan, B. N. Dawson, Canad. J. Chem., 55, 1437 (1977).
- 8. P. Geneste, R. Durand, J. M. Kamenka, H. Beierbeck, R. Martino, J. K. Saunders, *Canad. J. Chem.*, **56**, 1940 (1978).
- 9. Э. Э. Лиепиньш, Н. О. Салдабол, *ЖОрХ*, 17, 521 (1981).
- L. B. Krivdin, G. A. Kalabin, R. N. Nesterenko, B. A. Trofimov, *Tetrahedron Lett.*, 25, 4817 (1984).
- 11. Л. Б. Кривдин, Г. А. Калабин, Р. Н. Нестеренко, Б. А. Трофимов, *XIC*, 709 (1985). [*Chem. Heterocycl. Comp.*, **21**, 602 (1985)].
- 12. Ю. Ю. Попелис, Э. Э. Лиепиныш, Э. Я. Лукевиц, *ХГС*, 1172 (1985). [*Chem. Heterocycl. Comp.*, **21**, 974 (1985)].
- 13. K. Pandiarajan, R. T. S. Mohan, M. U. Hasan, Magn. Reson. Chem., 24, 312 (1986).
- L. B. Krivdin, S. V. Zinchenko, V. V. Shcherbakov, G. A. Kalabin, R. H. Contreras, M. F. Tufro, M. C. Ruiz de Azua, C. G. Giribet, *J. Magn. Reson.*, 84, 1 (1989).
- 15. G. Cerioni, A. Plumitallo, Magn. Reson. Chem., 31, 320 (1993).
- 16. А. В. Афонин, И. А. Ушаков, О. А. Тарасова, Е. Ю. Шмидт, А. И. Михалева, В. К. Воронов, *ЖОрХ*, **36**, 1831 (2000).
- A. V. Afonin, I. A. Ushakov, S. V. Zinchenko, O. A. Tarasova, B. A. Trofimov, *Magn. Reson. Chem.*, 38, 994 (2000).
- 18. Э. Абеле, Э. Лукевиц, ХГС, 156 (2001). [Chem. Heterocycl. Comp., **37**, 141 (2001)].
- 19. Н. А. Щербина, Н. В. Истомина, Л. Б. Кривдин, ЖОрХ, 41, 1124 (2005).
- 20. L. B. Krivdin, N. A. Scherbina, N. N. Istomina, *Magn. Reson. Chem.*, **43**, 435 (2005).
- 21. K. A. Chernyshev, L. B. Krivdin, L. I. Larina, T. V. Kon'kova, M. M. Demina, A. S. Medvedeva, *Magn. Reson. Chem.*, 45, 661 (2007).
- 22. А. В. Афонин, М. М. Демина, Т. В. Конькова, А. В. Мареев, Д. Е. Симоненко, 1530

И. А. Ушаков, А. С. Медведева, ЖОрХ, 43, 1725 (2007).

- 23. М. В. Сигалов, Б. А. Шаинян, Г. А. Калабин, А. И. Михалева, Б. А. Трофимов, *XГС*, 627 (1980) [*Chem. Heterocycl. Comp.*, **16**, 483 (1980)].
- M. V. Sigalov, B. A. Trofimov, A. I. Mikhaleva, G. A. Kalabin, *Tetrahedron*, 37, 3051 (1981).
- 25. A. I. Mikhaleva, A. B. Zaitsev, A. V. Ivanov, E. Yu. Schmidt, A. M. Vasil'tsov, B. A. Trofimov, *Tetrahedron Lett.*, **47**, 3693 (2006).
- 26. Вейганд-Хильгетаг, *Memodы* эксперимента в органической химии. Химия, Mocквa, 1976, c. 479. [Weygand-Hilgetag, Organisch-chemische Experimentierkunst, J. A. Barth (Ed.), Verlag, Berlin, 1964.]
- 27. Б. А. Трофимов, А. И. Михалева, Р. И. Половникова, Р. Н. Нестеренко, Ф. Г. Трофимова, *ЖОрХ*, **24**, 2628 (1978).
- 28. Б. А. Трофимов, А. И. Михалева, Р. Н. Нестеренко, А. Н. Васильев, А. С. Нахманович, М. Г. Воронков, *XTC*, 1136 (1977). [*Chem. Heterocycl. Comp.*, **13**, 920 (1977)].
- 29. А. Б. Зайцев, Е. Ю. Шмидт, А. М. Васильцов, А. И. Михалева, А. В. Афонин, И. А. Ушаков, Д.-С. Д. Торяшинова, *XГС*, 524 (2005). [*Chem. Heterocycl. Comp.*, **41**, 444 (2005)].
- A. B. Zaitsev, A. M. Vasil'tsov, E. Yu. Schmidt, A. I. Mikhaleva, L. V. Morozova, A. V. Afonin, I. A. Ushakov, B. A. Trofimov, *Tetrahedron*, 58, 10043 (2002).

Иркутский институт химии им. А. Е. Фаворского СО РАН, Иркутск 664033 e-mail: andvalaf@mail.ru Поступило 23.04.2008