И. Г. Дмитриева, Л. В. Дядюченко^а, В. Д. Стрелков^а, Е. А. Кайгородова

СИНТЕЗ И ПРЕВРАЩЕНИЯ ЗАМЕЩЕННЫХ 4,6-ДИМЕТИЛПИРАЗОЛО[3,4-*b*]ПИРИДИЛ-3-АЗИДОВ И -СУЛЬФОНИЛХЛОРИДОВ

Диазотированием аминогруппы 3-амино-4,6-диметилпиразоло[3,4-*b*]пиридинов с последующим замещением диазогруппы в образовавшихся диазонийхлоридах на азидогруппу синтезированы соответствующие 3-азидопроизводные и изучены их реакции с метиленактивными соединениями. Замещением диазогруппы на сульфогруппу получены 4,6-диметилпиразоло[3,4-*b*]пиридил-3-сульфонилхлориды и сульфониламиды на их основе.

Ключевые слова: азиды, пиразоло[3,4-*b*]пиридины, сульфониламиды, сульфо-нилхлориды, диазотирование, замещение, масс-спектры, синтез, элиминирование.

Ранее [1] нами был описан синтез 3-аминопиразоло[3,4-*b*]пиридинов **1а–d**, которые могут быть использованы в качестве исходных для синтеза новых химических веществ с различными полезными свойствами. С этой целью в настоящей работе нами была исследована возможность диазотирования аминогруппы соединений **1а–d** и последующего замещения диазогруппы в образовавшихся диазонийхлоридах на азидогруппу с получением азидопроизводных и на сульфогруппу с получением соответствующих сульфонилхлоридов (схема 1).

3-Аминопиразоло[3,4-*b*]пиридины **1а**–d, проявляя свойства ароматических аминов, легко подвергаются диазотированию в солянокислом растворе от –2 до 0 °C, образуя соответствующие диазонийхлориды **2а**–d. Соединения **2а**–c при взаимодействии с насыщенным раствором азида натрия при температуре от –1 до +1 °C (оптимальные условия) с высоким выходом (76–84%) дают 3-азидо-4,6-диметилпиразоло[3,4-*b*]пиридины **3а**–c. При проведении реакции солей **2а**–c с гидразином в аналогичном температурном режиме по известному методу [2] выход тех же азидопроизводных **3а–c** существенно ниже (54–67%).

Установлено, что в реакции диазонийхлорида 2d как с азидом натрия, так и с гидразином соответствующее азидопроизводное не образуется, а в обоих случаях получается 4,6-диметил-3,5-дихлор(1H)пиразоло[3,4-*b*]пиридин 4. Варьирование условий реакции к образованию целевого 3-азидо-4,6-диметил-5-хлор(1H)пиразоло[3,4-*b*]пиридина не приводит. По всей вероятности, диазонийхлорид 2d отличается крайней неустойчивостью, скорость элиминирования диазогруппы выше скорости ее замеще-

Схема 1

2-7 а $R = R^1 = H$, **b** R = H, $R^1 = Me$, **c** R = Cl, $R^1 = Me$, **d** R = Cl, $R^1 = H$; **8 а-f** R = H, **a** $R^1 = H$, R^2 , $R^3 = (CH_2CH_2)_2CH$ -Me; **b** $R^1 = H$, $R^2 = Me$, $R^3 = CH_2CH_2OH$; **c** $R^1 = R^2 = H$, $R^3 = 2$ -ClC₆H₄CH₂; **d** $R^1 = Me$, $R^2 = H$, $R^3 = \phi y p \phi y p \mu \pi$; **e** $R^1 = Me$; $R^2 = R^3 = CH_2CH = CH_2$; **f** $R^1 = R^2 = Me$; $R^3 = PhCH_2$; **g** R = Cl; $R^1 = Me$; $R^2 = H$, $R^3 = 4$ -MeOC₆H₄; **h** R = Cl; $R^1 = Me$, R^2 , $R^3 = (CH_2CH_2)_2CH$ -Me

Азиды **За-с** представляют собой бесцветные кристаллические вещества, устойчивые на свету, но при хранении на свету изменяющие окраску на ярко-желтую.

Физико-химические и спектральные характеристики, данные элементного анализа и спектров ЯМР ¹Н азидов **За–с** представлены в табл. 1, массспектров – в табл. 2. В ИК спектрах соединений **За-с** присутствует характерная полоса поглощения азидогруппы в области 2121–2138 см⁻¹ [3]. В спектрах ЯМР ¹Н содержатся сигналы от всех протонов соединений **За-с** в соответствующих областях.

Масс-спектры азидов **3а–с** содержат пики молекулярных ионов, относительная интенсивность которых невелика – 3–19%. На стадии первичной фрагментации для всех трех соединений **3а–с** наблюдается элиминирование молекулярным ионом двух молекул $N_{(2)}$ с образованием достаточно стабильных фрагментов F_1 , затем характерна потеря фрагмента R^1 и молекулы HCN (схема 2).

Схема 2

Известно, что органические азиды образуют 1,2,3-триазолы с 1,3-дикетонами, β-кетоэфирами [4–6]. Нами изучены реакции не описанных ранее азидов **За–с** с ацетилацетоном и малононитрилом.

При нагревании азидов **3а–с** с избытком ацетилацетона в присутствии основания (Et₃N) получены 4,6-диметил-3-(1,2,3-триазолил)пиразоло[3,4-*b*]пиридины **5а–с** (схема 1). Реакция протекает при кипячении в ацетонитриле в течение 4–6 ч. Взаимодействие азидов **3а–с** с малононитрилом проходит в более мягких условиях при температуре 55–60 °С в среде протонного растворителя в присутствии основания (Et₃N) с образованием 3-(5-амино-4-циано-1,2,3-триазолил)-4,6-диметилпиразоло[3,4*b*]пиридинов **6а–с**.

Циклоприсоединение ацетилацетона и малононитрила к азидогруппе протекает селективно с получением единственных продуктов реакции, что согласуется с литературными данными [4, 5]. Выход продуктов присоединения **5а-с**, **6а-с** составляет 56–81%. Их структура подтверждена масси ЯМР ¹Н спектрами (табл. 1–3).

В спектрах ЯМР ¹Н соединений **5а–с**, в сравнении со спектрами исходных азидов **3а–с**, появляются сигналы протонов двух метильных групп в виде синглетов с δ 2.11–2.14 м. д. (5-CH₃ триазола) и δ 2.69–2.72 м. д. (COCH₃), спектры производных **6а–с** содержат сигналы протонов группы NH₂ в виде уширенного синглета при 7.41–7.46 м. д.

В масс-спектрах производных **5а–с**, **6а–с** присутствуют пики молекулярных ионов с относительной интенсивностью 6–72%. Под действием электронного удара в первую очередь деструкции подвергается триазольный цикл, что отражает общая схема фрагментации соединений **5а–с** (схема 3). Кроме того, для всех соединений характерно также расщепление в молекулярном ионе связи С–N, соединяющей пиразольный и триазольный циклы, причем возможен перенос атома водорода от находящейся в *орто*-положении метильной группы к C(3) пиразола.

Схема 3

Для синтеза 4,6-диметилпиразоло[3,4-*b*]пиридил-3-сульфонилхлоридов 7а-d (схема 1) к насыщенному раствору SO₂ в ледяной уксусной кислоте прибавляли по каплям раствор диазонийхлоридов 2а-d. В качестве катализатора использовали безводную сернокислую медь. Найден оптимальный температурный режим проведения реакции (0-4 °C), позволяющий получать сульфонилхлориды 7а-с с выходом 68–93%. Установлено, что диазонийхлорид 2d при взаимодействии с SO₂ образует трудноразделимую смесь, состоящую преимущественно из 3-хлорпроизводного 4 и небольшого количества целевого сульфонилхлорида (10–15% по данным спектров ЯМР ¹Н), причем изменение условий реакции не позволило заметно увеличить выход последнего.

Синтезированные сульфонилхлориды 7а-с представляют собой кристаллические вещества светло-желтого цвета, легко гидролизующиеся при хранении на воздухе (табл. 1).

В спектрах ЯМР ¹Н сульфонилхлоридов $7\mathbf{a}-\mathbf{c}$, как и следовало ожидать, сигналы протонов пиразолопиридиновой системы смещаются в более слабое поле в сравнении с соответствующими азидами $3\mathbf{a}-\mathbf{c}$, что объясняется влиянием сильной электроноакцепторной группы SO₂Cl (табл. 2).

Со- еди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл °С	Выход,
нение		С	Н	Ν		%
3a	$C_8H_8N_6$	<u>50.68</u> 51.06	$\frac{4.43}{4.28}$	<u>44.12</u> 44.66	206–207 (EtOH)	76
3b	$C_9H_{10}N_6$	<u>52.88</u> 52.46	<u>5.25</u> 4.98	<u>41.31</u> 41.56	95–96 (гексан)	84
3c	C ₉ H ₉ ClN ₆	<u>45.41</u> 45.68	<u>4.20</u> 3.83	<u>35.19</u> 35.51	115–116 (цикло- гексан)	78
4	$C_8H_7Cl_2N_3$	<u>44.16</u> 44.47	$\frac{3.40}{3.27}$	<u>19.64</u> 19.44	188–190 (EtOH)	52
5a	$C_{13}H_{14}N_6O$	<u>56.81</u> 56.24	<u>5.16</u> 4.72	<u>31.12</u> 31.09	Разл. ≈280 (ДМФА)	56
5b	$C_{14}H_{16}N_6O$	<u>58.60</u> 59.14	<u>6.02</u> 5.67	<u>29.41</u> 29.56	156–158 (EtOAc)	81
5c	C ₁₄ H ₁₅ ClN ₆ O	<u>52.58</u> 52.75	<u>5.16</u> 4.74	<u>25.99</u> 26.36	197–199 (EtOH)	69
6a	$C_{11}H_{10}N_8$	<u>51.39</u> 51.96	<u>4.30</u> 3.96	<u>43.82</u> 44.07	Разл. ≈330 (ДМФА)	66
6b	$C_{12}H_{12}N_8$	<u>53.49</u> 53.72	<u>4.80</u> 4.51	<u>41.34</u> 41.77	Разл. ≈290 (ДМФА)	80
6c	$C_{12}H_{11}CIN_8$	<u>47.15</u> 47.61	<u>3.92</u> 3.66	<u>36.60</u> 37.01	Разл. 262–265 (ДМФА)	74
7a	C ₈ H ₈ ClN ₃ O ₂ S	<u>39.40</u> 39.11	$\frac{3.14}{3.28}$	<u>17.29</u> 17.10	238–240 (MeCN)	76
7b	$C_9H_{10}ClN_3O_2S$	<u>41.89</u> 41.62	<u>3.71</u> 3.88	<u>15.97</u> 16.18	108–109 (гексан)	68
7c	$C_9H_9Cl_2N_3O_2S$	<u>36.46</u> 36.75	<u>3.18</u> 3.08	<u>14.03</u> 14.28	115–116 (гексан)	93
8a	$C_{14}H_{20}N_4O_2S$	<u>54.83</u> 54.52	<u>6.31</u> 6.54	<u>18.22</u> 18.17	204–205 (EtOH)	81
8b	$C_{11}H_{16}N_4O_3S$	<u>46.15</u> 46.47	<u>5.83</u> 5.67	<u>19.65</u> 19.70	168–170 (EtOAc)	71
8c	$C_{15}H_{15}ClN_4O_2S$	<u>51.58</u> 51.35	<u>4.16</u> 4.31	<u>15.82</u> 15.97	198–200 (EtOH)	74
8d	$C_{14}H_{16}N_4O_3S$	<u>52.23</u> 52.49	$\frac{4.88}{5.03}$	<u>17.60</u> 17.49	96–97 (гексан)	64
8e	$C_{15}H_{20}N_4O_2S$	<u>56.41</u> 56.23	<u>6.13</u> 6.29	<u>17.22</u> 17.49	67-68 (гексан)	72
8f	$C_{17}H_{20}N_4O_2S$	<u>58.99</u> 59.28	<u>5.74</u> 5.85	<u>16.34</u> 16.27	92–93 (гексан)	76
8g	$C_{16}H_{17}ClN_4O_3S$	<u>50.24</u> 50.46	<u>4.58</u> 4.50	<u>14.49</u> 14.71	163–165 (EtOAc)	65
8h	$C_{15}H_{21}ClN_4O_2S$	<u>50.69</u> 50.48	<u>6.08</u> 5.93	<u>15.54</u> 15.70	151–152 (EtOAc	69

Физико-химические характеристики соединений 3-8

Спектры ЯМР ¹Н соединений 3–8

Соеди- нение	Химические сдвиги*, б, м. д. (Ј, Гц)					
3a	13.16 (1H, уш. с, N–H); 6.82 (1H, с, H-5); 2.61 (3H, с, 6-CH ₃); 2.55 (3H, с, 4-CH ₃)					
3 b	6.82 (1H, c, H-5); 3.93 (3H, c, N-CH ₃); 2.56 (3H, c, 6-CH ₃); 2.45 (3H, c, 4-CH ₃)					
3c	3.94 (3H, c, N-CH ₃); 2.71 (3H, c, 6-CH ₃); 2.62 (3H, c, 4-CH ₃)					
4	13.82 (1Н, уш. с, N–Н); 2.74 (3Н, с, 6-СН ₃); 2.64 (3Н, с, 4-СН ₃)					
5a	13.82 (1H, уш. с, NH); 7.09 (1H, с, H-5); 2.72 (3H, с, COCH ₃); 2.60 (3H, с, 6-CH ₃); 2.55 (3H, с, 4-CH ₃); 2.11 (3H, с, 5-CH ₃ триазола)					
5b	7.11 (1H, c, H-5); 4.12 (3H, c, N–CH ₃); 2.72 (3H, c, COCH ₃); 2.63 (3H, c, 6-CH ₃); 2.55 (3H, c, 4-CH ₃); 2.22 (3H, c, 5-CH ₃ триазола)					
5c	4.13 (3H, c, N–CH ₃); 2.69 (3H, c, COCH ₃); 2.62 (3H, c, 6-CH ₃); 2.55 (3H, c, 4-CH ₃); 2.14 (3H, c, 5-CH ₃ триазола)					
6a	14.08 (1H, уш. с, N–H); 7.46 (2H, уш. с, NH ₂); 7.05 (1H, с, H-5); 2.66 (3H, с, 6-CH ₃); 2.18 (3H, с, 4-CH ₃)					
6b	7.41 (2H, ym. c, NH ₂); 7.10 (1H, c, H-5); 4.09 (3H, c, N–CH ₃); 2.62 (3H, c, 6-CH ₃); 2.17 (3H, c, 4-CH ₃)					
6c	7.45 (2H, уш. c, NH ₂); 4.11 (3H, c, N–CH ₃); 2.73 (3H, c, 6-CH ₃); 2.22 (3H, c, 4-CH ₃)					
7a	15.05 (1H, уш. с, N–H); 7.20 (1H, с, H-5); 2.96 (3H, с, 6-CH ₃); 2.90 (3H, с, 4-CH ₃)					
7b	7.12 (1H, c, H-5); 4.48 (3H, c, N-CH ₃); 2.62 (3H, c, 6-CH ₃); 2.51 (3H, c, 4-CH ₃)					
7c	4.48 (3H, c, N–CH ₃); 2.92 (3H, c, 6-CH ₃); 2.80 (3H, c, 4-CH ₃)					
8 a	14.21 (1H, уш. с, N–H); 7.08 (1H, с, H-5); 2.70 (3H, с, 6-CH ₃); 2.55 (3H, с, 4-CH ₃ Py); кольцо пиперидина: 3.78 (м); 3.16 (м), 1.74 (м), 1.53 (м), 1.18 (м), 0.94 (3H, м, 4-CH ₃)					
8b	14.19 (1H, уш. с, N–H); 7.08 (1H, с, H-5); 4.82 (1H, уш. с, OH); 3.88 (2H, т, <i>J</i> = 5.8, <u>CH</u> ₂ OH); 3.62 (2H, т, <i>J</i> = 5.8, NCH ₂); 3.08 (3H, с, N–CH ₃); 2.68 (3H, с, 6-CH ₃); 2.56 (3H, с, 4-CH ₃)					
8c	14.18 (1H, уш. с, N–H); 8.78 (1H, уш. с, SO ₂ NH); 7.30–7.55 (4H, м, Ar); 7.07 (1H, с, H-5); 4.43 (2H, с, CH ₂); 2.72 (3H, с, 6-CH ₃); 2.56 (3H, с, 4-CH ₃)					
8d	8.54 (1H, уш. с, NH); 7.11 (1H, с, H-5 Ру); кольцо фурана: 7.52 (1H, д, $J_{5,4}$ = 1.8, H-5), 6.32 (1H, д. д, $J_{3,4}$ = 3.5, $J_{5,4}$ = 1.8, H-4), 6.23 (1H, д, $J_{3,4}$ = 3.5, H-3); 4.27 (2H, с, CH ₂); 4.04 (3H, с, N–CH ₃); 2.71 (3H, с, 6-CH ₃); 2.57 (3H, с, 4-CH ₃)					
8e	7.09 (1H, c, H-5); 5.82–5.94 (2H, м, CH ₂ CH=CH ₂); 5.18–5.30 (4H, м, CH ₂ CH= <u>CH₂</u>); 4.08 (3H, c, N–CH ₃); 3.96 (4H, д, <i>J</i> = 6.2, <u>CH₂CH=CH₂</u>); 2.81 (3H, c, 6-CH ₃); 2.68 (3H, c, 4-CH ₃)					
8f	7.32–7.45 (5H, м, C ₆ H ₅); 7.05 (1H, с, H-5 Ру); 4.52 (2H, с, CH ₂); 4.11 (3H, с, N– CH ₃); 2.94 (3H, с, <u>CH₃</u> –N–CH ₂ –Ar); 2.82 (3H, с, 6-CH ₃); 2.71 (3H, с, 4-CH ₃)					
8g	10.50 (1H, уш. с, N–H); 7.03 (2H, д, <i>J</i> = 8.9, H-2,4 Ar); 6.83 (2H, д, <i>J</i> = 8.9, H-3,5 Ar), 4.04 (3H, с, N–CH ₃); 3.68 (3H, с, OCH ₃); 2.79 (3H, с, 6-CH ₃); 2.71 (3H, с, 4-CH ₃)					
8h	4.09 (3H, c, N–CH ₃); 2.82 (3H, c, 6-CH ₃); 2.70 (3H, c, 4-CH ₃), кольцо пиперидина: 3.77 (м), 3.04 (м), 1.73 (м), 1.55 (м), 1.21 (м), 0.95 (3H, м, 4-CH ₃)					

^{*} Спектры ЯМР ¹Н снимали в ДМСО-d₆ (соединения **3–6**, **8**) и CDCl₃ (соединения 7).

	Масс-спектры электронного удара соединений За–с 4, 5а–с, 6а–с
[-	Масс-спектр. <i>m/z</i> (<i>I</i> _{сти} , %)

Соеди- нение*	Масс-спектр, <i>m/z</i> (<i>I</i> _{отн} , %)			
3a	$188 [M]^{+}(19), 132 [F_1]^{+}(100), 131 [F_2]^{+}(12), 117 [F_1-CH_3]^{+}(15), 104 [F_3]^{+}(22)$			
3b	202 $[M]^+$ (6), 146 $[F_1]^+$ (31), 131 $[F_2]^+$ (29), 104 $[F_3]^+$ (32)			
3c	236 $[M]^+$ (3), 180 $[F_1]^+$ (21), 165 $[F_2]^+$ (21), 145 $[F_1$ –Cl] (25), 103 $[F_2$ –Cl, –HCN]^+ (11)			
4	215 $[M]^+$ (100), 180 $[M-CI]^+$ (58), 152 $[180-N_2]^+$ (20), 117 $[152-CI]^+$ (16), 90 $[117-HCN]^+$ (16)			
5a	270 $[M]^+$ (23), 242 $[F_4]^+$ (49), 227 $[F_5]^+$ (61), 200 $[F_6]^+$ (88), 199 $[F_7]^+$ (100), 147 $[F_8]^+$ (37), 146 $[F_9]^+$ (10)			
5b	284 $[M]^+$ (24), 256 $[F_4]^+$ (25), 241 $[F_5]^+$ (26), 214 $[F_6]^+$ (97), 213 $[F_7]^+$ (84), 161 $[F_8]^+$ (21), 160 $[F_9]^+$ (32)			
5c	318 $[M]^+$ (6), 290 $[F_4]^+$ (29), 275 $[F_5]^+$ (19), 248 $[F_6]^+$ (37), 247 $[F_7]^+$ (26), 195 $[F_8]^+$ (23), 194 $[F_9]^+$ (10)			
6a	254 $[M]^+$ (72), 226 $[M-N_2]^+$ (53), 225 $[M-H, -N_2]^+$ (13), 211 $[226-CH_3]^+$ (23), 200 $[226-CN]^+$ (14), 199 $[226-HCN]^+$ (50), 198 $[225-HCN]^+$ (31), 184 $[200-NH_2]^+$ (28), 147 $[M-Het]^+$ (26)			
6b	268 $[M]^+$ (28), 240 $[M-N_2]^+$ (77), 239 $[M-H, -N_2]^+$ (100), 225 $[M-CH_3N_2]^+$ (12), 199 $[225-CN]^+$ (28), 160 $[M-Het]^+$ (21), 133 $[160-HCN]^+$ (33)			
6с	302 $[M]^+$ (36), 274 $[M-N_2]^+$ (31), 273 $[M-H, -N_2]^+$ (100), 233 $[M-CN, -CH_3N_2]^+$ (34), 198 $[233-Cl]^+$ (22), 195 $[M-Het]^+$ (24), 167 $[198-N_2]^+$ (22)			
7a	245 $[M]^+$ (59), 210 $[M-CI]^+$ (23), 181 $[M-SO_2]^+$ (25), 146 $[210-SO_2]^+$ (48), 118 $[146-N_2]^+$ (82), 105 $[146-CN_2H]^+$ (31), 78 $[105-HCN]^+$ (100)			
7b	259 $[M]^+$ (85), 224 $[M-Cl]^+$ (59), 176 $[224-SO]^+$ (48), 160 $[224-SO_2]^+$ (100), 132 $[160-N_2]^+$ (54), 117 $[160-N_2, -CH_3]^+$ (8)			
7c	$\begin{array}{c} 293 \ \left[\text{M}\right]^{+} (54), 258 \ \left[\text{M}-\text{Cl}\right]^{+} (28), 229 \ \left[\text{M}-\text{SO}_{2}\right]^{+} (33), 210 \ \left[258-\text{SO}\right]^{+} (28), 194 \\ \left[258-\text{SO}_{2}\right]^{+} (100), 166 \ \left[194-\text{N}_{2}\right]^{+} (37), 131 \ \left[166-\text{Cl}\right]^{+} (28) \end{array}$			

* Соединения Het = N

Масс-спектрометрическое поведение продуктов **7а–с** однотипно. В спектрах всех соединений (табл. 3) присутствуют высокостабильные пики молекулярных ионов (54–100%). Для первичной фрагментации характерны два направления: элиминирование молекулярным ионом атома хлора и выброс молекулы SO₂. На более поздних стадиях фрагментации наблюдается деструкция пиразольного цикла в результате элиминирования молекулы N₂.

Взаимодействием сульфонилхлоридов **7а-с** с различными аминами нами синтезирован ряд N-алкил(арил, гетерил)замещенных пиразоло-[3,4-*b*]пиридил-3-сульфониламидов **8а-h** (схема 1). Синтез проводили в среде безводного бензола в присутствии Et₃N в качестве акцептора хлороводорода. Высокая реакционная способность сульфонилхлоридов позволила получить замещенные сульфониламиды **8а-h** уже при комнатной температуре с достаточно высокими выходами 64–88% (табл. 1).

1562

В спектрах ЯМР ¹Н сульфониламидов **8а–h** кроме сигналов протонов пиразолопиридиновой системы присутствуют все необходимые сигналы протонов, соответствующие аминным компонентам молекул (табл. 2).

В ИК спектрах сульфониламидов **8а-h** присутствуют две сильные характеристические полосы поглощения в области 1315–1332 и 1149–1166 см⁻¹, отвечающие асимметрическим и симметрическим валентным колебаниям связи группы SO₂ соответственно [3]. Кроме того, спектры содержат полосы поглощения связей N–H средней интенсивности в области 3174–3286 см⁻¹ (экспериментальная часть).

В противоположность сульфонилхлоридам 7а–с в условиях электронного удара сульфониламиды Het–SO₂NR²R³ 8а–h образуют крайне неустойчивые молекулярные ионы, в большинстве случаев пики молекулярных ионов в масс-спектрах отсутствуют. Характерным направлением распада молекулярного иона является диссоциация связи Het–S, а максимальную интенсивность имеют пики фрагментов [NR²R³]⁺. Из-за малой информативности масс-спектры амидов 8а–h в данной публикации не приводятся.

Таким образом, найдены оптимальные условия синтеза 3-азидо-4,6диметилпиразоло[3,4-*b*]пиридинов **3а**-с и 4,6-диметилпиразоло[3,4-*b*]пиридил-3-сульфонилхлоридов **7а**-d и на их основе получены ряды производных. В числе синтезированных сульфониламидов **8а**-h обнаружены соединения, обладающие антидотной и рострегулирующей активностью.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записывали для образцов в таблетках КВг на приборе Infra LUM FT-02. Спектры ЯМР ¹Н получали на радиоспектрометре Bruker WM-500 (500 МГц), внутренний стандарт ТМС. Масс-спектры электронного удара записаны на приборе Finnigan MAT INCOS 50 (энергия ионизирующего излучения – 70 эВ). Элементный анализ на С, Н, N синтезированных соединений выполняли на анализаторе Carlo-Erba (мод. 1106). Контроль за ходом реакции и чистотой получаемых продуктов осуществляли методом ТСХ на пластинках Silufol UV-254 в системе гексан–ацетон, 1:1, проявитель – пары иода.

Используемые в синтезе растворители очищали от примесей и абсолютировали по известным методикам [7].

Исходные 3-амино-4,6-диметилпиразоло[3,4-*b*]пиридины **1а**–**d** получали по методу [1].

4,6-Диметил(1Н)пиразоло[3,4-*b***]пиридил-3-азид (3а)**. К раствору 1.0 г (6.2 ммоль) 3-амино-4,6-диметил(1Н)пиразоло[3,4-*b*]пиридина (**1a**) в 8 мл конц. НСІ при –5 °С и перемешивании прибавляют по каплям раствор 0.73 г (9.3 ммоль) нитрита натрия в 2 мл воды, поддерживая температуру реакционной смеси в интервале от –1 до +1 °С. По окончании прибавления перемешивают при 0 °С еще 20–30 мин, после чего раствор образовавшегося 4,6-диметил(1Н)пиразоло[3,4-*b*]пиридин-3-илдиазонийхлорида **2а** приливают небольшими порциями к охлажденному до –5 °С водному раствору 2.0 г (31 ммоль) азида натрия, интенсивно пере-мешивая реакционную массу (температура не должна подниматься выше 4 °С). Для завершения реакции температуру медленно повышают до комнатной, выделившийся осадок отфильтровывают, промывают водой, сушат. После перекристаллизации из этанола получают 0.88 г (76%) целевого продукта **3а** в виде бесцветных кристаллов. ИК спектр, v, см⁻¹: 2952, 2927 (С–H Me), 2131 (N₃), 1614, 1606 (С=С, С=N).

Соединения 3b,с получают аналогично. Соединение 3b. ИК спектр, v, см⁻¹:

2952, 2925 (С–Н Ме), 2854 (N–Ме), 2138 (N₃), 1598, 1581 (С=С, С=N). Соединение **3с**. ИК спектр, v, см⁻¹: 2958, 2923 (С–Н Ме), 2851 (N–Ме), 2121 (N₃), 1594, 1571 (С=С, С=N).

4,6-Диметил-2,5-дихлор(1Н)пиразоло[3,4-b]пиридин (4). Аналогично описанному выше диазотируют 1.0 г (5.1 ммоль) 3-амино-4,6-диметил-2,5-дихлор-(1Н)пиразоло[3,4-b]пиридина (1b), а затем обрабатывают образовавшийся раствор диазонийхлорида **2b** водным раствором азида натрия. Осадок отфильтровывают, промывают водой, сушат. После перекристаллизации из бензола получают 0.57 г (52%) продукта **4** в виде бледно-желтых кристаллов.

3-(4-Ацетил-5-метил-1,2,3-триазол-1-ил)-1,4,6-триметилпиразоло[3,4-*b***]пиридин (5b). К суспензии 0.75 г (3.7 ммоль) 1,4,6-триметилпиразоло[3,4-***b***]пиридил-3-азида 3b** в 9 мл ацетонитрила приливают раствор 0.93 г (9.3 ммоль) ацетилацетона и 0.93 г (9.3 ммоль) триэтиламина в 3 мл ацетонитрила и кипятят 5.5–6 ч. Реакционную массу упаривают досуха, промывают водой, сушат. После перекристаллизации из смеси гексан–этилацетат, 1:3, получают 0.85 г (81%) целевого продукта **5b** в виде бесцветных кристаллов.

Соединения 5а,с получают аналогично.

3-(5-Амино-4-циано-1,2,3-триазол-1-ил)-1,4,6-триметил-5-хлорпиразоло-

[3,4-b]пиридин (6с). Смешивают 1.0 г (4.2 ммоль) 1,4,6-триметил-5-хлорпиразоло[3,4-b]пиридил-3-азида (3с), 0.55 г (8.4 ммоль) малононитрила, 0.85 г (8.4 ммоль) триэтиламина в 10 мл этанола и нагревают при температуре 55–60 °С 3.5–4 ч. Реакционную массу разбавляют водой вдвое, выделившийся осадок отфильтровывают, промывают водой, сушат. После перекристаллизации из ацетона получают 0.95 г (74%) целевого продукта 6с в виде аморфного розового порошка.

Соединения 6а, в получают аналогично.

4,6-Диметил(1Н)пиразоло[3,4-b]пиридил-3-сульфонилхлорид (7а). Диазотируют 5.0 г (31 ммоль) 3-амино-4,6-диметил(1Н)пиразоло[3,4-b]пиридина **1a**, как описано выше. Затем в приготовленный заранее насыщенный раствор SO₂ в 30 мл ледяной уксусной кислоты вносят 0.85 г безводной сернокислой меди и при интенсивном перемешивании добавляют по каплям раствор 4,6-диметил-(1Н)пиразоло[3,4-b]пиридил-3-диазонийхлорида таким образом, чтобы температура реакционной смеси находилась в интервале 0–4 °C. По окончании выделения пузырьков N₂ содержимое колбы выливают в 100 мл 5% раствора NaCl охлажденного до 0 °C, выделившийся осадок отфильтровывают, промывают ледяной водой, высушивают досуха в эксикаторе под вакуумом 5–10 мм рт. ст. После перекристаллизации из безводного ацетонитрила получают 5.8 г (76%) продукта **7a** в виде кристаллов светло-желтого цвета.

Соединения 7b-с получают аналогично.

N-(2-Хлорбензил)-4,6-диметил(1Н)пиразоло[3,4-*b***]пиридил-3-сульфониламид (8с). К суспензии 1.0 г (4.0 ммоль) соединения 7а в 20 мл безводного бензола при перемешивании прибавляют по каплям раствор 0.62 г (4.4 ммоль) 2-хлорбензиламина и 0.4 г (4.0 ммоль) триэтиламина в 10 мл бензола при комнатной температуре. По окончании прибавления перемешивание продолжают еще 3 ч, затем осадок отфильтровывают, обильно промывают теплой водой, сушат. После перекристаллизации из этанола получают 1.05 г (74%) продукта 8с в виде кристаллов светло-желтого цвета. ИК спектр, v, см⁻¹: 3286 (N–H), 1618, 1583 (C=C, C=N аром.), 1332, 1149 (SO₂).**

Соединения 8а,b,d-h получают аналогично.

Соединение 8ј. ИК спектр, v, см⁻¹: 3174 (N–H), 1581, 1564 (С=С, С=N аром.), 1326, 1155 (SO₂).

СПИСОК ЛИТЕРАТУРЫ

- 1. И. Г. Дмитриева, Л. В. Дядюченко, Е. А. Кайгородова, Изв. вузов. Химия и хим. технол., 48, № 12, 29 (2005).
- 2. Вейганд-Хильгетаг, Методы эксперимента в органической химии, Химия, Москва, 1968, с. 541.
- 3. Л. Беллами, *Инфракрасные спектры сложных молекул*, Изд-во иностр. лит., Москва, 1963.
- 4. В. В. Соловьева, Э. Ю. Гудриниеце, Изв. АН ЛатвССР. Сер. хим., 572 (1972).
- 5. И. А. Ольшевская, М. Ю. Корнилов, М. Н. Смирнов, *ХГС*, 1120 (1990). [*Chem. Heterocycl. Comp.*, **26**, 938 (1990)].
- 6. С. Н. Михайличенко, А. А. Чеснюк, Л. Д. Конюшкин, С. И. Фирганг, В. Н. Заплишный, *XTC*, 1343 (2004). [*Chem. Heterocycl. Comp.*, **40**, 1162 (2004)].
- 7. А. Вайсбергер, Э. Проскауэр, Дж. Риддик, Э. Тупс, *Органические растворители*, Изд-во иностр. лит., Москва, 1958.

Кубанский государственный аграрный университет, Краснодар 350044, Россия e-mail: chem._dmitrieva@mail.ru e-mail: e_kaigorodova@mail.ru

^аВсероссийский научно-исследовательский институт биологической защиты растений, Краснодар 350039, Россия e-mail: vladstrelkov@yandex.ru Поступило 22.11.2006 После доработки 10.06.2008