Посвящается академику Б. А. Трофимову

Е. К. Белоглазкина, А. В. Шиморский, А. Г. Мажуга, Н. В. Зык

КООРДИНАЦИОННЫЕ СВОЙСТВА 1,3-БЕНЗОТИАЗОЛОВ. ОБРАЗОВАНИЕ ПОЛИМЕРНОГО КОМПЛЕКСА С ПЛОСКО-КВАДРАТНОЙ ГЕОМЕТРИЕЙ КООРДИНАЦИОННОГО ОКРУЖЕНИЯ ИОНА МЕДИ(II) В РЕАКЦИИ CuCl₂•6H₂O C 1,2-БИС[2-(1,3-БЕНЗОТИАЗОЛ-2-ИЛ)ФЕНИЛТИО]ЭТАНОМ

Показано, что в реакции 1,2-бис[2-(1,3-бензотиазол-2-ил)фенилтио]этана с хлоридом меди(II) в смеси этанол-хлороформ при комнатной температуре происходит образование координационного полимера, структура которого доказана методом РСА. Атом меди в координационном полимере имеет плоско-квадратное лигандное окружение и координирован атомами азота бензотиазольных циклов двух различных молекул лиганда и двумя хлорид-анионами.

Ключевые слова: 1,3-бензотиазолы, координационные соединения, медь(II).

Металлсодержащие полимеры представляют интерес в качестве гибридных материалов, сочетающих такие свойства, как огромное разнообразие возможных геометрических и функциональных характеристик органического лиганда, технологические достоинства полимеров и электронные свойства, придаваемые ионом металла [1]. В литературе имеется несколько примеров образования полимерных комплексов меди(II) с плоско-квадратным координационным окружением иона металла [2–4]. Однако обычно при образовании таких комплексных соединений в координации иона металла участвуют пиридиновые атомы азота органических лигандов. Продолжая наши исследования комплексообразующих свойств лигандов N₂S₂-типа, содержащих донорные сульфидные и бензотиазольные фрагменты [5, 6], мы изучили реакцию комплексообразования 1,2-бис-[2-(1,3-бензотиазол-2-ил)фенилтио]этана **1** с гексагидратом хлорида меди(II).

Ранее мы установили, что при взаимодействии 1,3-бис[2-(1,3-бензотиазол-2-ил)фенилтио]пропана с хлоридом или перхлоратом меди образуются комплексные соединения, в которых координация осуществляется четырьмя донорными атомами дииминобис(сульфидной) системы [7].

В настоящей работе нами установлено, что продуктом реакции 1,2-бис-1576 [2-(1,3-бензотиазол-2-ил)фенилтио]этана 1 с хлоридом меди(II) в смеси этанол–хлороформ при комнатной температуре является принци-пиально иное координационное соединение: комплекс полимерного строе-ния 2.

Структура координационного полимера 2 доказана методом РСА. Кристаллографические данные, детали эксперимента и параметры уточнения структуры приведены в табл. 1 и 2, структура соединения 2 показана на рисунке. Атом меди в комплексе имеет плоско-квадратное лигандное окружение и координирован атомами азота бензотиазольных циклов двух различных молекул лиганда и двумя хлорид-анионами. В кристалле наблюдаются бесконечные цепи, в которых чередуются фрагменты лиганда и CuCl₂, где лиганд занимает частное положение [центр симметрии, расположенный на середине связи C(16)–C(16A) (рисунок)] и атом меди также занимает частное положение, являясь центром симметрии.

Данные электронной спектроскопии в видимой области для соединения 2 (см. экспериментальную часть) согласуются с плоско-квадратной структурой комплекса [3], позволяя предположить, что такая геометрия координационного окружения иона меди(II) сохраняется и в растворе.

Насколько нам известно, исследованная реакция представляет собой первый пример образования полимерного комплекса меди(II) с плоскоквадратной геометрией координационного окружения иона металла в реакции с лигандом, содержащим донорные 1,3-бензотиазольные фрагменты.

Таблица 1

		-	
Связь	l, Å	Угол	ω, град.
Cu(1)–N(3)	2.008(3)	N(3)-Cu(1)-N(3B)	180.00(14)
Cu(1)-Cl(1)	2.2501(8)	N(3)-Cu(1)-Cl(1A) N(2)-Cu(1)-Cl(1)	89.81(8)
S(1)=C(3) S(1)=C(2)	1.731(3)	N(3) = Cu(1) = Cl(1) Cl(1A) = Cu(1) = Cl(1)	180 00(5)
N(3)–C(2)	1.310(4)		100.00(0)
N(3)–C(4)	1.393(4)		

Некоторые межатомные расстояния (*l*) и валентные углы (ω) в молекуле соединения 2

Брутто-формула	$C_{28}H_{20}Cl_2CuN_2S_4$	
Молекулярная масса	647.14	
Температура, К	100(2)	
Длина волны, Å	0.71073	
Вид кристалла	Черные призмы	
Размер кристалла, мм	$0.32 \times 0.24 \times 0.23$	
Сингония	Моноклинная	
Пространственная группа	P-21/c	
Параметры элементарной ячейки		
<i>a</i> , Å	8.8381(14)	
b, Å	10.8914(18)	
<i>c</i> , Å	13.533(2)	
β, град.	97.940(5)°	
<i>V</i> , Å ³	1290.2(4)	
Ζ	2	
Рассчитанная плотность, г•см ⁻³	1.666	
Коэффициент абсорбции, мм ⁻¹	0.401	
<i>F</i> (000)	658	
Диапазон Ө, град.	2.41-27.5	
Диапазоны индексов отражений	$-11 \le h \le 11, -140 \le k \le 13,$	
	$-13 \le l \le 17$	
Число измеренных / независимых	$6619 / 2965 (R_{\text{int}} = 0.0418)$	
отражений		
Число переменных уточнения	169	
Добротность по F^2	0.997	
<i>R</i> -факторы (<i>I</i> >2 σ (<i>I</i>))		
R_1	0.0425	
wR_2	0.1000	
<i>R</i> -факторы (по всем данным)		
R_1	0.0684	
wR_2	0.1122	

Кристаллографические данные, детали эксперимента и параметры уточнения структуры соединения 2

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Лиганд 1 получали по методике [7]. Электронный спектр записывали на приборе Specord-M40 (200–900 нм) в кварцевой кювете толщиной 0.1 см при 20–22 °С в ДМФА. Черно-коричневые монокристаллы соединения 2 выращивали из смеси EtOH и CHCl₃ и исследовали на автоматическом монокристальном дифрактометре Bruker APEX II (Мо $K\alpha = 0.71073$, графитовый монохроматор). Поправку на погло-щение вводили с использованием ω -сканирования [8]. Массив эксперименталь-ных данных обрабатывали, используя комплекс программ [9]. Все последующие расчеты выполняли в рамках комплекса программ SHELX97 [10]. Кристалли-ческую структуру определяли прямым методом с последующим уточнением пол-номатричным MHK позиционных и тепловых параметров в анизотропном прибли-жении для всех неводородных атомов. Комплекс 1,2-бис[2-(1,3-бензотиазол-2-ил)фенилтио]этана с дихлоридом меди (II) (2). К раствору 100 мг (0.02 ммоль) лиганда 1 в 1 мл CHCl₃ медленно по стенке сосуда приливают раствор 48.5 мг (0.02 ммоль) CuCl₂·6H₂O в 1 мл EtOH таким образом, чтобы образовалась двухфазная система. Реакционную смесь плотно закрывают и оставляют на 3 сут до образования кристаллов. Полученный осадок отфильтровывают, промывают Et₂O, сушат на воздухе. Получают 84 мг (65%) черно-коричневых кристаллов соединения **2**. Т. пл. >250 °C. Электронный спектр, λ_{max} , нм: 545, 600, 680. Найдено, %: C 51.31; H 2.84; N 4.21. C₂₈H₂₀Cl₂CuN₂S₄. Вычислено, %: C 51.97; H 3.09; N 4.33.

Работа выполнена при финансовой поддержке РФФИ (проект № 07-03-00584-а), Фонда содействия отечественной науке и Гранта поддержки талантливых студентов, аспирантов и молодых ученых МГУ им. М. В. Ломоносова 2007 г.

СПИСОК ЛИТЕРАТУРЫ

- 1. C. Janiak, Dalton Trans., 2781 (2003).
- 2. H. Ohi, Y. Tachi, S. Itoh, Inorg. Chem., 43, 4561 (2004).
- 3. D. M. L. Goodgame, D. A. Grachvogel, M. A. Hitchman, N. J. Long, H. Stratemeier, A. J. P. White, J. L. M. Wicks, D. J. Williams, *Inorg. Chem.*, **37**, 6354 (1998).
- 4. R. Murugavel, M. Sathiyendrian, R. Pothiraja, M. C. Walawalkar, T. Mallah, E. Riviere, *Inorg. Chem.*, **43**, 945 (2004).
- 5. Е. К. Белоглазкина, И. В. Юдин, А. Г. Мажуга, А. А. Моисеева, А. И. Турсина, Н. В. Зык, *Изв. АН, Сер. хим.*, 1738 (2006).
- 6. Е. К. Белоглазкина, И. В. Юдин, А. Г. Мажуга, А. А. Моисеева, С. В. Затонский, Н. В. Зык, Изв. АН, Сер. хим., 565 (2008).
- 7. Е. К. Белоглазкина, А. В. Шиморский, А. Г. Мажуга, А. А. Моисеева, Н. В. Зык, *Изв. АН, Сер. хим.*, 2115 (2007).
- 8. C. T. North, D. C. Philips, F. S. Mathews, Acta Crystallogr., A24, 351 (1968).
- 9. L. A. Farrugia, *WinGX. X-Ray Crystallographic Programs for Windows*, Univ. of Glasgow, Glasgow (UK), 2003.
- 10. G. M. Sheldrick, SHELX97. Program for the Solution and Refinement of Crystal Structures, Univ. of Göttingen, Göttingen (Germany), 1997.

Московский государственный университет им. М. В. Ломоносова, химический факультет, Москва 119992, Россия e-mail: bel@org.chem.msu.ru e-mail: beloglazki@mail.ru Поступило 16.06.2008