С. Г. Клепикова, В. К. Ю, Е. Е. Фомичева, Р. Д. Мухашева, К. Д. Пралиев, К. Д. Берлин^а

СПЕКТРОСКОПИЯ ЯМР ¹Н В ИЗУЧЕНИИ ПРОСТРАНСТВЕННОГО СТРОЕНИЯ 7-АЛКОКСИАЛКИЛ-3-ТИА-7-АЗАБИЦИКЛО[3.3.1]НОНАН-9-ОНОВ И ИХ НЕКОТОРЫХ ПРОИЗВОДНЫХ

Методом спектроскопии ЯМР ¹Н установлено, что 7-алкоксиалкил-3-тиа-7-азабицикло[3.3.1]нонан-9-оны и их декарбонилированные производные в растворе дейтерохлороформа находятся в конформации *двойного кресла*. Образующиеся в большем количестве изомеры вторичных спиртов имеют предпочтительную конформацию *двойного кресла* с экваториальной относительно плоскости пиперидинового цикла гидроксильной группой. Эпимерные им спирты в абсолютном преобладании представлены конформацией *кресло–ванна*, причем форму *ванны* принимает пиперидиновый цикл за счет образования внутримолекулярной водородной связи между неподеленной парой электронов атома азота и протоном гидроксильной группы.

Ключевые слова: 7-алкоксиалкил-3-тиа-7-азабицикло[3.3.1]нонан-9-он и его производные, конформационный анализ, спектры ЯМР ¹Н.

Изучение пространственного строения бициклических соединений, в состав которых входят такие важнейшие биогенные элементы как кислород, азот, сера, представляет интерес не только в связи с поиском новых физиологически активных веществ, но также в плане дальнейшего развития общих вопросов конформационного анализа и стереохимии. Нами был описан синтез ряда 7-алкоксиалкил-3-тиа-7-азабицикло[3.3.1]нонан-9-онов, их бескислородных производных и вторичных спиртов [1]. В настоящей работе проведено определение пространственного строения этих соединений с помощью метода спектроскопии ЯМР ¹Н высокого разрешения. В качестве объектов исследования были взяты кетоны 1-5 с разными заместителями у атома азота, их восстановленные аналоги 6-10 и вторичные спирты 11-14. Найденные значения химических сдвигов и КССВ для индивидуальных стереоизомеров, выделенных из спиртов 11 и 12, успешно использованы при интерпретации достаточно сложных спектров спиртов 13 и 14, каждый из которых представлял собой неразделенную смесь двух изомеров.

Известно [2], что соединения бицикло[3.3.1]нонанового ряда и их 3,7-дигетерааналоги в растворе существуют в одной из четырех форм: *двойного кресла (cc), кресло-ванна (cb), ванна-кресло (bc), двойной ванны (bb), либо эти формы находятся в конформационном равновесии. Преиму*щественная конфигурация задается не только суммарными электронными и стерическими факторами внутри молекулы, но и зависит от внешних условий. Исходя из этого, установленные для кристаллического и рассчитанные для газообразного состояния структуры следует с осторожностью переносить на реально существующие в растворе. Если энергетическая разница между конформерами *двойного кресла* и *кресло–ванна* составляет незначительную величину порядка 1.5 ккал/моль [3], то смена растворителя, температурные и концентрационные изменения могут сместить равновесие в сторону другой формы.

1–14 X = S, 15–17 X = N(CH₂)₂OEt; 1, 6 R = (CH₂)₂OMe; 2, 7, 11 R = (CH₂)₂OEt; 3, 8, 12 R = (CH₂)₃OEt; 4, 9, 13 R = (CH₂)₃OBu; 5, 10, 14 R = (CH₂)₃OPr-*i*

Метод спектроскопии ЯМР ¹Н позволяет определить какая из форм в растворе является преобладающей. Информацию о строении несут вицинальные константы, которые характеристичны и описываются уравнением Карплуса [4]. Найдено [5, 6], что для 3,7-дигетероаналогов бицикло[3.3.1]нонана значения констант J=1-7 Гц отвечают экваториально-экваториальным и экваториально-аксиальным взаимодействиям протонов кресловидных циклов, тогда как J=9-12 Гц соответствуют взаимодействиям протонов H-1, H-5, расположенных экваториально вследствие заданного способа сочленения циклов, с псевдоэкваториальными протонами ваннообразного цикла [2, 7]. Обнаружение большой вицинальной константы J > 9 Гц является надежным критерием присутствия в растворе конформации *кресло-ванна*. Таким образом, установление пространственного строения сводится к правильному отнесению сигналов в спектре и определению вицинальных констант взаимодействия протонов на сочленении с соседними.

Спектры кетонов 3-5 достаточно легко анализируются, хотя сигналы

1717

циклических протонов расположены в узкой области и частично перекрыты. На основании полученных данных удалось расшифровать и более сложные спектры кетонов 1 и 2. Для шестичленных соединений с атомом серы в цикле, как правило, геминальная константа больше, чем для азотсодержащих. Учитывая это обстоятельство, из четырех дублетов дублетов два сигнала с геминальной константой 13.2 Гц отнесены к экваториальным и аксиальным протонам серусодержащего цикла, а два других сигнала с J = 11.1 Гц к соответствующим протонам пиперидинового шикла. Правильность отнесения полтверждается еще и тем, что значения химических сдвигов и констант метиленовых протонов пиперидинового цикла в исследуемых кетонах практически не отличаются от значений таковых для 3,7-диазабицикло[3.3.1]нонан-9-онов с теми же заместителями, которые, как было установлено ранее [8], существуют в растворе дейтерохлороформа в конформации двойного кресла. В табл. 1 для сравнения приведены данные для 3,7-ди(2-этоксиэтил)-3,7-диазабицикло-[3.3.1]нонан-9-она (15). Найденные для кетонов 1–5 вицинальные константы J = 2.0-7.2 Гц типичны для кресловидных циклов. Экваториально-аксиальные константы J = 6.9-7.2 Гц указывают на уплощение серусодержащего цикла, тогда как конфигурация пиперидинового цикла (4.8-5.4 Гц) становится ближе к идеальной по сравнению с конфигурацией кетона 15 для которого эта константа составила 6.3 Гц. Сигнал протонов на сочленении проявляется в виде неразрешенного мультиплета $\Delta \delta = 16-18$ Гц, что тоже свидетельствует в пользу конформации двойного кресла для кетонов 1-5.

В спектрах восстановленных аналогов 6-10 сигналы циклических протонов не перекрываются. Это позволяет определить необходимые характеристики (табл. 2). В спектре 7-(2-этоксиэтил)-3-тиа-7-азабицикло[3.3.1]нонана (7) мультиплет при 2.08 м. д. с Δδ = 19 Гц принадлежит протонам H-1 и H-5. Его форма говорит о том, что оба цикла являются кресловидными. Самый низкопольный сигнал при 3.00 м. д. с расщеплениями 13.2 и 6.3 Гц относится к аксиальным протонам серусодержащего цикла. Экваториальные протоны дают в спектре дублет (13.2 Гц) дублетов (2.7 Гц), причем компоненты последнего дополнительно имеют небольшое расщепление, обусловленное дальним спин-спиновым взаимодействием с аксиальным к плоскости пиперидинового цикла протоном Н-9. Для пиперидинового цикла сигнал экваториальных протонов при 2.84 м. д. представляет собой дублет (11.1 Гц) триплетов (2.0 Гц). Усложнение структуры сигнала также вызвано дальним взаимодействием по типу плоского зигзага с экваториальным протоном Н-9. Дублет (11.1 Гц) дублетов (3.9 Γn)

при 2.39 м. д. относится к аксиальным протонам. Наблюдаемые химические сдвиги и константы сигналов протонов H-6, H-8 неплохо коррелируют с приведенными в табл. 2 значениями для 3,7-(2-этоксиэтил)-3,7диазабицикло[3.3.1]нонана (16), который имеет конформацию *двой-ного кресла* [8]. Передача дальних взаимодействий между аксиальными протонами гетероциклов Ha-4 и Ha-6 (Ha-2 и Ha-8) в этих соединениях в отличие от соединений с гетероатомами кислорода и азота (O,N) [9]

не обнаружена. Таким образом, найденные значения вицинальных

констант 1.5–6.3 Гц подтверждают, что восстановленные аналоги **6–10** в растворе дейтерохлороформа существуют преимущественно в конформации *двойного кресла*. Следует отметить, что, серусодержащий цикл, как и в кетонах **1–5**, уплощен (6.0–6.3 Гц), а пиперидиновый цикл приобретает более правильную форму (3.3–3.9 Гц).

При отнесении сигналов в спектрах индивидуальных эпимерных спиртов *A*-11 и *B*-11 были использованы данные для 3,7-ди(2-этоксиэтил)-3,7-диазабицикло[3.3.1]нонан-9-ола (*B*-17) (табл. 3). Ранее нами было установлено [10], что этот вторичный спирт находится в конформации *кресло–ванна*, энергетически более выгодной, чем конформация *двойного кресла* вследствие образования ВМВС между неподеленной электронной парой атома азота и атомом водорода гидроксильной группы, ориентированной аксиально относительно пиперидиного цикла. Доказательством наличия конформации *кресло–ванна* явилось одновременное присутствие в спектре с одинаково большим расщеплением (10.2 Гц) триплета и дублета мультиплетов, которые были отнесены к псевдоэкваториальным протонам и протонам на сочленении.

В спектре исследуемого стереоизомера В-11 наблюдаются аналогичные по местоположению и форме сигналы: триплет при 3.11 м. д. с расщеплением 11.4 Гц и дублет (11.4 Гц) мультиплетов при 2.58 м. д. Полученные данные однозначно свидетельствуют о ваннообразной форме пиперидинового цикла с аксиальной гидроксильной группой. В такой конформации возникают оптимальные условия для образования ВМВС, стабилизирующей неустойчивую форму ванны. Псевдоаксиальные протоны дают дублет (11.4 Гц) дублетов (4.2 Гц) при 2.73 м. д. Два дублета дублетов при 2.31 и 2.93 м. д. с геминальной константой 13.8 Гц и вицинальными 3.0 и 2.4 Гц, соответственно, принадлежат к аксиальным и экваториальным протонам H-2, H-4. Небольшие значения вицинальных констант указывают на идеальную кресловидную форму серусодержащего цикла, которая может реализоваться лишь в конформации кресло-ванна, когда отсутствуют несвязанные взаимодействия между гетероатомами (S и N) в положениях 3, 7. Сигнал протона Н-9 представляет собой триплет при 3.32 м. д. с J = 2.7 Гц. Таким образом, стереоизомер *B*-11 в растворе дейтерохлороформа существует в конформации кресло-ванна с аксиальой гидроксильной группой относительно плоскости пиперидинового цикла, находящегося в форме ванны за счет ВМВС. Из этого следует, что в эпимерном спирте А-11 гидроксильная группа расположена экваториально.

Спектр вторичного спирта A-11 содержит три дублета дублетов с небольшими вицинальными константами (1.2–2.7 Гц), один дублет дублетов с вицинальной константой 7.8 Гц и мультиплет $\Delta \delta = 15$ Гц, что свидетельствует о преимущественной конформации *двойного кресла*. Завышенное значение константы 7.8 Гц для протонов H-2, Ha-4 серусодержащего цикла может означать, что этот цикл либо сильно уплощен [2], либо конформер *кресло–кресло* находится в быстром равновесии с конформером *ванна–кресло*, причем форму *ванны* принимает цикл с атомом серы. Существование конформера *ванна–кресло* не исключается из-за возможного образования BMBC между протоном гидроксильной Таблица 1

(имичест	s ans	двиги, б, м.	д. (КССВ, J, I	(h)								
$ \begin{array}{c c} He-1, -5, \\ M, \Delta \delta, \Gamma \Pi \end{array} \begin{array}{c} Ha \\ (\mu \end{array} $	Ha (J	r-2,-4 ц. д)	Не-2, -4 (д. д)	На-6,-8 (д. д)	Не-6, -8 (д. д)	10-CH ₂ (T)	11-CH ₂	12 CH ₃ , 12-CH ₂	13-CH ₃ , 13-CH ₂ , 13-CH	14-CH ₃ , 14-CH ₂	15-CH ₂	16-CH ₃
2.83 (16.0)		3.16 (13.2; 3.9)	3.19 (13.2; 4.2)	2.85 (11.1; 5.4)	3.15 (11.1; 2.0)	2.65 (5.6)	3.51 (5.6) T	3.38 c				
2.80 (16.0)		3.11 (13.2; 4.8)	3.23 (13.2; 3.9)	2.83 (11.1; 4.8)	3.15 (11.1; 2.0)	2.66 (5.7)	3.54 (5.7) T	3.48 (6.9) K	1.19 (6.9) T			
2.54 (16.0)		2.87 (11.1; 6.3)	3.10 (11.1; 2.1)	2.87 (11.1; 6.3)	3.10 (11.1; 2.1)	2.62 (6.0)	3.52 (6.0) T	3.47 (6.9) K	1.18 (6.9) T			
2.81 (18.0)		3.12 (13.2; 6.9)	3.21 (13.2; 4.5)	2.71 (11.1; 4.8)	3.09 (11.1; 2.4)	2.49 (6.9)	1.74 (6.6) K	3.48 (6.6) T	3.47 (6.9) K	1.19 (6.9) T		
2.80 (18.0)		3.13 (12.9; 6.9)	3.21 (12.9; 4.2)	2.71 (11.7; 5.1)	3.08 (11.7; 2.0)	2.48 (7.2)	1.73 (6.9) K	3.47 (6.6) T	3.40 (6.6) T	1.54 (6.9) K	1.35 (7.2) сек	0.91 (7.2) T
2.80 (18.0)		3.12 (13.2; 7.2)	3.22 (13.2; 4.2)	2.70 (11.1; 4.8)	3.08 (11.1; 2.8)	2.484 (6.6)	1.72 (6.6) K	3.47 (6.6) T	3.54 (6.0) сеп	1.14 (6.0) д		

Таблица 2

Спектры ЯМР ¹Н соединений 6–10, 16

	16-CH ₃					0.91 (7.2) T	
	15-CH ₂					1.37 (7.2) cek	
	14-CH ₃ , 14-CH ₂				1.19 (6.9) т	1.55 (6.9) K	1.14 (6.0) д
	13-CH ₃ , 13-CH ₂ , 13-CH		1.19 (6.9) т	1.18 (6.9) T	3.47 (6.9) ĸ	3.42 (6.6) T	3.56 (6.0) сеп
[ц)	12-CH ₃ , 12-CH ₂	3.35 c	3.50 (6.9) K	3.49 (6.9) K	3.51 (6.6) т	3.51 (6.6) T	3.51 (6.6) T
(KCCB, J, I	11-CH ₂	3.53 (6.0) T	3.57 (6.6) T	3.56 (6.3) T	1.74 (6.9) K	1.74 (6.6) K	1.67 (6.6)к
ов, б, м. д. (10-CH ₂ (T)	2.50 (6.0)	2.50 (6.3)	2.51 (6.3)	2.30 (6.9)	2.31 (6.9)	2.31 (6.6)
иги протон	Не-9 (д. м)	1.77 (12.9)	1.78 (12.6)	1.82 уш. м	1.80 (12.9)	1.81 (12.9)	1.79 (12.6)
ческие сдв	Н <i>а</i> -9 (д. т)	1.55 (12.9; 3.9)	1.53 (12.6; 3.9)	1.55 уш. м	1.51 (12.9; 3.9)	1.52 (12.9; 3.9)	1.53 (12.6) 3.9
Хими	Н <i>е</i> -6,-8 (д. т)	2.84 (11.1; 2.0)	2.84 (11.1; 2.0)	2.96 (11.4; 1.5)	2.83 (11.1; 1.5)	2.83 (10.8; 1.5)	2.84 (11.1; 1.5)
	На-6,-8 (д. д)	2.40 (11.1; 3.9)	2.39 (11.1; 3.9)	2.53 (11.4; 6.0)	2.26 (11.1; 3.6)	2.27 (10.8; 3.3)	2.29 (11.1; 3.9)
	Н <i>е</i> -2,-4 (д. м)	22.63 (12.9; 2.7)	2.64 (13.2; 2.7)	2.96 (11.4; 1.5)	2.63 (13.2; 2.4)	2.64 (13.2; 2.4)	2.62 (13.2; 2.4)
	На-2,-4 (д. д)	3.00 (12.9; 6.0)	3.00 (13.2; 6.3)	2.53 (11.4; 6.0)	3.01 (13.2; 6.0)	3.02 (13.2; 6.0)	3.01 (13.2; 6.0)
	H <i>e</i> -1,-5 (m, Δδ, Γι)	2.09 (19.0)	2.08 (19.0)	1.88 (18.0)	2.7 (15.0)	2.08 (19.0)	2.07 (19.0)
	Соеди- нение	9	L	16	×	6	10

Таблица 3

17
-14,
Ξ
соединений
$\mathbf{H}^{\mathbf{I}}$
ЯМР
Спектры

		16-CH ₃					
		15-CH ₂			I		
		14-CH ₃ , 14-CH ₂			I	1.19 (6.9) T	1.18 (6.9) T
		13-CH ₃ , 13-CH ₂ , 13-CH	1.19 (6.9) T	1.18 (7.2) T	$1.18 \\ 1.18 \\ (6.9)$	3.47 (6.9) ^K	3.43 (6.9) ^K
	Гц)	12-CH ₃ , 12-CH ₂	3.49 (6.9) ^K	3.47 (7.2) K	* * 	3.50 (6.6) T	3.46 (6.6) T
I, 17	. (KCCB, J,	11-CH ₂	3.54 (6.0) T	3.51 (5.7) T	* * 	1.72 (6.6) ^K	1.73 (6.6) K
ений 11–1	нов, δ, м. д	10-CH ₂ T	2.52 (6.0)	2.55 (5.7)	2.49 2.52 (6.0)	2.35 (6.6)	2.41 (6.6)
¹ Н соедин	авиги прото	Н <i>е</i> -9 т	I	3.32 (2.7)	* * 	I	3.32 (2.7)
ктры ЯМР	то ээихээн	Н <i>а</i> -9 т	3.66 (3.9)	I	* * * 	3.64 (4.2)	1
Спе	Хими	Не-6, -8** д. д	2.88 (11.4; 1.2)	2.73 (11.4; 4.2)	2.57 (10.2; 2.4)	2.82 (11.4; 1.2) д. д	2.62 (10.2; 3.9)
		H <i>a</i> -6, -8*	2.35 (11.4; 2.4) д. д.	3.11 (11.4) T	3.02 (10.2) T	2.22 (11.4; 2.1) д. д	3.07 (10.2) T
		Не-2,-4 д. д	2.73 (13.2; 2.7)	2.93 (13.9; 2.4)	2.74 (11.1; 2.7)	2.78 (13.5; 2.4)	2.93 (13.8; 2.1)
		На-2,-4 д. д	3.15 (13.2; 7.8)	2.31 (13.8; 3.0)	2.15 (11.1; 1.5)	3.09 (13.5; 7.8)	2.31 (13.8; 3.0)
		He-1,-5	2.19 (Δδ 15.0) M	2.58 (11.4) д. м	2.17 (10.2) д. м	2.22 (Δδ 15.0) M	2.57 (10.2) д. м
		Спирт	A-11	B-11	B-17	A-12	B-12

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1.74 3.50 (6.6) (6.6) k T 1.74 3.50 (6.6) (6.6) k T 1.74 3.39 (6.6) (6.6) k T 1.70 3.50	1.74 3.50 3.42 (6.6) (6.6) (6.6) k T T T 1.74 3.39 3.32 (6.6) (6.6) (6.6) k T T T 1.70 3.50 3.55	1.74 3.50 3.42 1.54 (6.6) (6.6) (6.6) (6.9) k T T KB 1.74 3.39 3.32 1.54 (6.6) (6.6) (6.9) k T T KB k T KB	1.74 3.50 3.42 1.54 1.36 (6.6) (6.6) (6.6) (6.9) (7.2) k T T KB cek 1.74 3.39 3.32 1.54 1.36 (6.6) (6.6) (6.9) (7.2) k T T KB cek 1.74 3.39 3.32 1.54 1.36 (6.6) (6.6) (6.6) (7.2) k T T KB cek
3.50 (6.6) 3.39 (6.6) 1 1 3.50	3.50 (6.6) T (6.6) (6.6) (6.6) (6.6) T T 3.32 (6.6) (6.6) T T 3.55	3.50 3.42 1.54 (6.6) (6.6) (6.9) T T KB 3.39 3.32 1.54 (6.6) (6.6) (6.9) T T KB 3.32 1.54 (6.6) (6.9) T KB	3.50 3.42 1.54 1.36 (6.6) (6.6) (6.9) (7.2) T T KB CeK 3.39 3.32 1.54 1.36 (6.6) (6.9) (7.2) T T KB CeK (7.2) (7.2)
	3.42 (6.6) 1 3.32 (6.6) 1 3.55	3.42 1.54 (6.6) (6.9) T KB 3.32 1.54 (6.6) (6.9) T KB 3.35 1.14	3.42 1.54 1.36 (6.6) (6.9) (7.2) T KB CeK 3.32 1.54 1.36 (6.6) (7.2) T KB CeK

*)	Для конформации кресло-ванна протоны псевдоэкваториальны.
ŀ	Для конформации кресло-ванна протоны псевдоаксиальны.
***	Наложение сигналов.

группы и атомом серы. Этот вопрос остается открытым и для его решения необходимо провести допольнительное исследование. Но разница между J = 7.8 и J = 11.4 Гц (для *ванны* в изомере *B*-11) означает, что предпочтительной является конформация *двойного кресла* с уплощенным тиановым циклом и идеальной формой (1.2 и 2.4 Гц) пиперидинового цикла. Триплет при 3.66 м. д. с расщеплением 3.9 Гц относится к протону H-9.

Отметим, что сигналы протонов H-9 в спектрах изомеров A-11 и B-11 не перекрыты другими. Они смещены относительно друг друга на 0.34 м. д. и имеют разные константы 3.9 и 2.7 Гц. В этой связи эти сигналы могут быть взяты в качестве аналитических при проведении количественного анализа неразделенных смесей эпимерных вторичных спиртов 13, 14. По интегральным интенсивностям этих сигналов установлено соотношение стереоизомеров A и B, которое оказалось равным 2:1. Найденное соотношение показывает на более благоприятные условия выхода изомера A.

В результате проведенного исследования с применением метода спектроскопии ЯМР ¹Н высокого разрешения установлено, что кетоны 1–5 и восстановленные аналоги 6–10 в растворе дейтерохлороформа преимущественно находятся в конформации *двойного кресла*, в которой тиановый цикл уплощен сильнее, чем пиперидиновый. Образующиеся с большим выходом вторичные спирты A-11–A-14 имеют предпочтительную конформацию *двойного кресла* с экваториальной относительно плоскости пиперидинового цикла гидроксильной группой. Аналогично кетонам серусодержащий цикл уплощен, тогда как пиперидиновый цикл преобретает правильную кресловидную форму. Эпимерные им спирты B-11–B-14 в абсолютном преобладании существуют в конформации *кресло–ванна*, причем форму *ванны* принимает пиперидиновый цикл за счет образования ВМВС между неподеленной парой атома азота и протоном аксиальной гидроксильной группы. В этом случае тиановый цикл имеет правильную кресловидную форму.

Полученные характеристики будут полезными при определении пространственного строения вновь синтезируемых производных данного ряда и интерпретации спектров смесей.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н исследуемых соединений в CDCl₃ записаны на спектрометре Varian Mercury-300 (300 МГц).

СПИСОК ЛИТЕРАТУРЫ

- 1. В. К. Ю, К. Д. Пралиев, Е. Е. Фомичева, Р. Д. Мухашева, С. Г. Клепикова, *XГС*, 585 (2006). [*Chem. Heterocycl. Comp.*, **42**, 512 (2006)].
- 2. Н. С. Зефиров, Успехи химии, 44, 413 (1975).
- K. D. Berlin, S. Tyagi, A. Rahaman, F. Qiu, L. M. Raff, L. Venkatramani, M. A. Khan, D. van der Helm, V. Yu, K. D. Praliev, *Phosphorus, Sulfur, Silicon*, 148, 97 (1999).
- 4. Б. И. Ионин, Б. А. Ершов, А. И. Кольцов, ЯМР-спектроскопия в органической

химии, Химия, Ленинград, 1983, 268 с.

- 5. A. Palanisamy, K. D. Berlin, J. Org. Chem., 46, 3196 (1981).
- N. S. Pantaleo, D. van der Helm, K. Ramarajian, B. R. Bailey, K. D. Berlin, J. Org. Chem., 46, 4199 (1981).
- 7. R. A. Apleton, S. G. Egan, J. M. Evans, S. H. Graham, J. R. Dixon, *J. Chem. Soc.*, 1110 (1968).
- 8. Н. А. Исмагулова, Дис. канд. хим. наук, Алматы, 2000.
- С. Г. Клепикова, В. А. Соломин, К. Д. Пралиев, Н. А. Исмагулова, В. К. Ю, Т. К. Искакова, К. Д. Берлин, *XIC*, 586 (2003). [*Chem. Heterocycl. Comp.*, 39, 504 (2006)].
- С. Г. Клепикова, В. К. Ю, Е. Е. Фомичева, Р. Д. Мухашева, К. Д. Пралиев, В. А. Соломин, К. Д. Берлин, *XIC*, 1562 (2003). [*Chem. Heterocycl. Comp.*, **39**, 1376 (2006)].

Институт химических наук им. А. Б. Бектурова МОН Республики Казахстан, Алматы 480100 e-mail: yu_vk@rambler.ru Поступило 08.06.2004 После доработки 03.09.2008

^аОклахомский государственный университет, химический факультет, Стиллуотер 74078, США e-mail: berlin.d.kenneth@okstate.edu